Reconfigurable Advanced Rapid-prototyping Environment (RARE):
A Computing Technology for Challenging Form Factors

Prepared by
Michael J. Bonato
Colorado Engineering, Inc.
for HPEC 2012
September 12, 2012
Outline

• Background

• Overview of RARE Architecture
 – Approach
 – Features
 – Software and Programming Model
 – Packaging

• Application Examples

• Summary
Background

• Ideal high performance computing environment is heterogeneous
 – Variety of processing technologies
 • General purpose / multi-core
 • Field Programmable Gate Arrays (FPGAs)
 • Graphics processors
 • Application Specific Integrated Circuits (ASICs)
 – Enables engineer to optimize solution to fit Size, Weight, and Power (SWaP) budget

• Technologies represent different points in trade space
 – Computing horsepower
 – Power consumption
 – Programmability
Background

• Heterogeneous computing approaches have traditionally relied on backplanes
 – Added weight, size, and cost
 – Constrain incremental scalability

• Backplanes limit designer’s ability to realize solutions in physical volumes not conducive to legacy form factors
A New Approach

• MDA funded an SBIR Phase I and II program to address challenges of modularity, scalability, and heterogeneity in deployments with challenging form factors
 – RARE: Reconfigurable Advanced Rapid-prototyping Environment
 – Executed by CEI under technical guidance and influence of NRL, NSWC, and ONR
 – Recipient of 2011 Tibbetts Award
 – No Backplane!

• Presentation will describe architecture and provide real-world application examples
MOSA Inspired Technology

- Decomposes a system into functional COTS building blocks
- Blocks provide a modular way to achieve loosely coupled common operational subsystem components
- When tied together using well defined interfaces, blocks form a complete, scalable processing and control system
RARE Modularity and Scalability

- 6.25” x 6.25” cards with interface connections in three dimensions
 - I/O bandwidth of 39 GB/sec per module via PCIe, LVDS, and SerDes
 - 3D direct connectivity of FPGA processing elements
 - I²C network of microcontrollers for health and status management
- Stack and/or tile modules in x, y, and z
 - Incrementally scale performance, I/O bandwidth, and physical footprint
 - Physically reconfigure systems while maintaining common HW/FW/SW
 - Solutions in a fraction of the volume of traditional backplanes
COTS Modules: Digital and RF

GP/FPGA Processor
- AMCC 460SX PowerPC
- Xilinx Virtex-6 FPGA
- Dual 1Gb Ethernet
- USB, RS-232

ADC+Processor
- 10 ADC channels
- 16b @ 160MSPS
- Xilinx Virtex-6 FPGA

DAC+Processor
- 2 DAC channels
- 16b @ 1GSPS
- Xilinx Virtex-6 FPGA

Starter Kit
- TRL 8

Roadmap
- Stratix V
- Multicore GP
- GPU + x86
- Ultra-wideband ADCs
- Enhanced Tamper Resistance

High Fidelity, Low Phase Noise Clock Distribution
- TRL 8

Dual 10Gb Ethernet
- TRL 8

Phased Array Antenna / Radar Interface
- TRL 8

PCIe Expansion
- TRL 8

RF Up Converter
- TRL 8

LO Synthesizer
- TRL 8

RF Down Converter
- TRL 8

Use or disclosure of data contained on this sheet is subject to the restrictions listed on the title page.
RARE Inter-Module I/O Bandwidths

<table>
<thead>
<tr>
<th>RARE Connector</th>
<th>Half Duplex (FPGA LVDS @ 1GHz)</th>
<th>Full Duplex</th>
<th>Bandwidth (per Connector)</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Clusters</td>
<td># of LVDS Pairs</td>
<td>LVDS Total (MB/s)</td>
<td>LVDS Total (MB/s)</td>
</tr>
<tr>
<td>X</td>
<td>3</td>
<td>7</td>
<td>21,000</td>
</tr>
<tr>
<td>Y</td>
<td>3</td>
<td>7</td>
<td>21,000</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>13</td>
<td>26,000</td>
</tr>
</tbody>
</table>

Total Bandwidth (per RARE Module)

<table>
<thead>
<tr>
<th>RARE Connector</th>
<th>Total Bandwidth (Dual Connectors per Direction)</th>
<th>Total Bandwidth per RARE Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>13.25 GB/s</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>9.25 GB/s</td>
<td>39.00 GB/s</td>
</tr>
<tr>
<td>Z</td>
<td>16.50 GB/s</td>
<td></td>
</tr>
</tbody>
</table>

RARE Modules Balance High Bandwidth Cross-Channel I/O with Processing to Maximize Performance

Use or disclosure of data contained on this sheet is subject to the restrictions listed on the title page.
Fabric Communication without Dedicated Switch Cards

- PCIe switches built into modular architecture
- End points can be FPGAs or General Purpose Processors

- FPGAs also interconnect with low latency, high bandwidth across the 3D topology
 - LVDS
 - SerDes
Integrated Health and Status Monitoring

• I²C network of microcontrollers distributed throughout architecture for health and status
 – ADCs built into microcontrollers monitor voltages, currents, and temperatures
 – Sequences power supplies and protect modules in event of supply issues or overheating
 – Microcontrollers can shut down modules or system when tolerances are not within defined limits

• Fully programmable
Software Development Kit

• Leverages open source
 – Avoids sole source proprietary operating systems
 – Lower TOC
 – Can be tailored by user

• SDK handles module communication protocols and data movement between processors and FPGAs
 – Linux kernel
 – Fedora x86-64 gcc cross compiler tool chain
 – U-Boot boot loader
 – Core root file system
Model-Based Programming

• Code wrappers encapsulate modules and enable MATLAB® / Simulink® tool flows for VHDL and C code development
 – Model desired algorithms and functionality
 – Map functions onto computing elements hosted on RARE modules
 – Define interfaces between elements
 – Generate embedded application code

• Benefits
 – Gain insight into behavior of complex algorithms
 – Eliminate need for different tool flows and skill sets
 – Quickly optimize the approach and converge on a solution
 – Model also serves as a test bench to verify implementation

Enables quick turn from algorithmic concept and simulation to implementation
Packaging Examples

Platform-Ready Deployment
- Fits specific platform installation envelopes
- Tight physical integration with antenna and RF subsystems

Tailored Box-Level Solutions
- Supports variety of module counts
- System level interfaces can be brought out to panel bulkheads (digital and analog)

Standard 19” Rack Mount Enclosure
- Supports variety of module counts based upon chassis height and depth
- System level interfaces can be brought out to panel bulkheads (digital and analog)

Flexible Interconnections for Form Fitting SWaP
- Flexible cable-based connections
- Fully customizable cable lengths
- Increases bandwidth for stacked systems
- Right angle and straight connectors available
- Facilitates module replacement within mesh

Use or disclosure of data contained on this sheet is subject to the restrictions listed on the title page.
Example Applications

• RARE architecture is being utilized by multiple DoD agencies to meet C-SWaP within challenging installation footprints

• Two examples
 – Programmable MIMO radar transmit / receive system
 – Sense and Avoid radar for UAVs
Example 1: Multichannel DREX

- Programmable MIMO radar transmit / receive system
- Uses three COTS RARE modules
 - 2x exciter channels (1 GHz)
 - 10x receive channels (160 MSPS)
 - 3x Virtex-6 FPGAs
 - 1x PPC
 - 2x 1GbE
- Electronics: 6.25” x 6.25” x 4”
- Dual 10GbE can be supported through the addition of one more module
Example 2: Sense and Avoid Radar

- Autonomous sense and avoid capability needed in unmanned aerial systems (UAS)
- Addresses safety and compliance concerns which prevent UAS from operating freely within national airspace
- Limits ability for UAS to help with
 - Boarder patrol
 - Weather monitoring
 - Wildlife monitoring
 - Search and rescue
 - Local law enforcement
 - Disaster relief / emergency response
- UAS platforms typically very SWaP constrained
RARE: Enabling Technology for Radar
Tight Integration onto Phased Array

Antenna Sub-Assembly
Includes heat sink and mounting hardware

RF Sub-Assembly
Up converter
Down converters
LO synthesis
RF filters

approx. 21.25" x 16" x 5.5"

Digital Electronics Sub-Assembly
6 computing modules in 2 layers
(capacity = 9 in 3 layers)

Flexible RF
Up/down Convert; Master LO

Fully Programmable Digital
6 Modules in 2 Layer L-shape

Electronics Behind ESA Panel
RARE-Enabled Search/Track Radar

Tow Plane Towing Glider
Turning Away From RADAR
Towards Mountains

5 Degrees Up Beam Steer
Summary

• RARE enables high performance embedded computing in form-factor challenged installation envelopes
 – Heterogeneous
 – Scalable modularity
 – 3D connectivity

• Graphical programming methodology facilitates rapid integration and deployment

• Solutions can be made less costly and more scalable in finer-grain increments than architectures employing legacy backplanes

• Award winning technology currently being utilized in multiple DoD programs
Acknowledgements

CEI would like to thank MDA, NRL, ONR, and NSWC for their support and guidance of the RARE SBIR Phase I and II development program.
Thank You!

For more information please contact:

Michael J. Bonato
Colorado Engineering, Inc.
michael.bonato@coloradoengineeringinc.com
719-388-8582 (office)

www.coloradoengineeringinc.com
Colorado Engineering Overview

- Company mission
 - Engineering excellence
 - Rapid response
 - Low cost
- Founded 2003
- Located in Colorado Springs, CO
- No outside investment
- Woman-owned small business (8m)
- Facility Clearance
- Winner of Tibbetts and Nunn-Perry awards
- Recognized industry leaders in MOSA applications
- 30 Phase I/II SBIR & STTR awards
- Over 37 technologies deployed in DoD and Government systems