
High locality and increased intra-node parallelism
for solving finite element models on GPUs by novel

element-by-element implementation
Imre Kiss

Budapest University of
Technology and Economics
H-1521 Budapest Hungary

Email: kiss@evt.bme.hu

Zsolt Badics, Senior Member, IEEE
Tensor Research, LLC

Andover, MA 01810, U.S.A
Email: badics@ieee.org

Szabolcs Gyimóthy and József Pávó
Budapest University of

Technology and Economics
H-1521 Budapest Hungary

Email: gyimothy,pavo@evt.bme.hu

Abstract—The utilization of Graphical Processing Units
(GPUs) for the element-by-element (EbE) finite element method
(FEM) is demonstrated. EbE FEM is a long known technique,
by which a conjugate gradient (CG) type iterative solution
scheme can be entirely decomposed into computations on the
element level, i.e., without assembling the global system matrix. In
our implementation, NVIDIA’s parallel computing solution, the
Compute Unified Device Architecture (CUDA), is used to perform
the required element-wise computations in parallel. Since element
matrices need not be stored, the memory requirement can
be kept extremely low. It is shown that this low-storage but
computation-intensive technique is better suited for GPUs than
those requiring the massive manipulation of large data sets. This
study of the proposed parallel model illustrates a highly improved
locality and minimization of data movement, which could also
significantly reduce energy consumption in other heterogeneous
HPC architectures.

Index Terms—CUDA Computing, EbE FEM, GPU Computing,
parallel FEM

I. INTRODUCTION

A. A Novel HPC Finite Element Environment
Our goal is to illustrate the efficiency of an application-

centric parallel model for the solution of a wide range of
partial differential equations (PDEs) discretized using regular
and irregular meshes by the finite element (FE) method.
Such a parallel model covers a significant application segment
of scientific computing problems. Examples are numerical
simulations of electromagnetics, structural mechanics, ther-
mal, and related multiphysics and multi-scale problems. We
demonstrate here the performance of the finite element parallel
model through solving an ECG (electrocardiography) forward
problem in the human torso[1].

The parallel model exhibits highly improved locality and
minimization of data movement compared to other FE im-
plementations on GPUs. The high locality and the increased
intra-node parallelism could also significantly reduce energy
consumption on other heterogeneous HPC architectures. Our
acceleration technique based on an element-by-element (EbE)
FE framework [2] provides a factor of one hundred speed
improvement for the ECG forward problem compared to top-
notch CPU implementations for a discretization with millions

of tetrahedrons. Here we summarize the major elements of
the parallel model and emphasize the high locality and the
increased intra-node parallelism.

B. Element-by-element FEM method

Nowadays the finite element method is one of the most fre-
quently used techniques for engineering analysis of complex,
real-life applications of both linear and non-linear types [3].
Let us consider the linear equations system of the form

Ax = b (1)

resulting from the FEM approximation of a partial differential
equation. A is the system matrix, x is the vector of unknowns,
and b, the right hand side (RHS), represents the excitation. For
large scale problems the solution of (1) is usually obtained by
iterative solvers. To keep generality – not taking advantage of
any special property of the system matrix A, except sparsity –
a preconditioned bi-conjugate gradient (BiCG) solver is used
in this paper [4].

The element-by-element type finite element method (EbE
FEM) was constructed originally for low memory computers
[5]. The foundation of the method is based on the recognition
that the assembling of element matrices to form the global sys-
tem matrix is a linear operation. Therefore certain calculations
with the system matrix –like e.g. a matrix-vector product– can
be traced back to the level of finite elements, thus converted to
calculations with the individual element matrices Ae, which
appear in the elementary equations having the form

Aexe = be (2)

Most iterative solvers can be decomposed into a sequence
of matrix-vector products and inner products of vectors so
they are suitable to be implemented in the EbE context. The
idea comes naturally: do not assemble and store the element
matrices into the system matrix as traditional methods do,
rather recompute them in each iteration. This is possible
because iterative solvers (in contrast to direct solvers) do not
affect the system matrix during the solution.

The technique can be thought as one which transforms a
highly memory dependent problem to a massively computa-
tional dependent one, which in turn can be efficiently par-
allelized [6]. Platforms having massively parallel computing
capability (like today’s GPUs) can take full advantage of this
method.

C. Parallel FEM implementations on GPUs

Although several methods partially accelerating the FEM
computations have already been implemented on GPUs [7],
[8], [9], these usually suffer from a strict design limitation.
Namely, these devices can operate only on data that is stored
in their on-board memory. In other words, data must be
transferred from the system memory to the device’s memory
prior to any computation.

Large scale FEM problems need large storage capacity for
the global system matrix. Consequently, efforts to accelerate
only the calculation of the matrix-vector product may conflict
with a substantial property of GPUs: the available memory
capacity is limited (in a few GBs).

To overcome this problem one may consider different do-
main decomposition techniques. The decomposition can be
conceptualized either in its traditional meaning [10] or one
just decomposes the large system matrix to smaller parts that
fit into the memory. These sub-matrices are then transferred
to the GPU one after the other, and the partial multiplications
are performed in parallel.

A major disadvantage of this technique is that although
the partial products are performed significantly (by several
order) faster this way, the necessary bus transfers will cause
the overall acceleration to be much more moderate. This
disadvantage becomes even more remarkable when multiple
GPUs are present. In this case the computing capacity is
drastically increased compared to the single GPU case but
the relative throughput of the data transfers is bounded by the
simultaneous needs from the devices.

To achieve better utilization, a remedy needs to be found
to avoid costly data transfers. Such a technique would be one
which acts entirely on the GPUs.

D. Aim of the work

As the gap between bus speed and computation density
increases, codes which use the accelerator design (i.e. in
which only the computation intensive parts of the program
are executed on the GPU) will fall behind codes that take full
advantage of it (i.e. perform all the necessary computations
on the GPU) [11].

The aim of this paper is to show that modern high perfor-
mance computing platforms (GPUs) offer considerable com-
puting capacity that can be fully utilized only if the applied
algorithm fits to their specific architecture. This property is in
contrast to traditional (multi-) CPU based program design pat-
terns where the efficiency of an algorithm is simply estimated
using its computational complexity.

Relying on the fact that it is cheaper to recompute element
matrices than continuously cache them between the device and

the system memory, the EbE FEM technique is revisited here,
and its implementation on CUDA architecture is presented. It
is also demonstrated that EbE FEM highly extends the scale of
problems that can be solved on devices having limited memory
capacity but a massively parallel architecture.

II. IMPLEMENTATION OF EBE FEM ON CUDA

A. Disassembling matrix manipulations to the element level

The finite element assembling procedure relies on some
functions by which the element matrix Ae and the RHS be

of (2) are computed. These functions depend among others
on the type of PDE to be solved as well as the applied shape
functions. The computed element matrices and RHS vectors
are then assembled to form the global system matrix A and
RHS vector b. Let this assembly step be represented by an
operator M, which is defined differently for matrices and
vectors:

A = M(Ae) =
∑
e∈E

CT
e AeCe (3)

b = M(be) =
∑
e∈E

Cebe (4)

where E is the set of elements, and matrix Ce represents the
transition between local and global numbering of the unknown
variables for the e-th element. Contrary to the sparse global
system matrix A, the matrix Ae of size ne×ne (ne being the
local degrees-of-freedom) is usually dense.

Using the above concept, the matrix-vector product, which
is the basis of iterative solvers, can be reformulated in terms
of element-wise computations as

Ax =
∑
e∈E

CT
e AeCex =

∑
e∈E

CT
e Aexe =M(Aexe). (5)

It follows that the product of an assembled global matrix and a
vector is equivalent with the assembled vector of the elemen-
tary matrix-vector products. According to (4) the elementary
contributions can be accumulated in a vector having the size
of the global degrees-of-freedom (DoF). Hence only vectors
have to be stored during the computations. Elementary matrix-
vector products in (3) can be computed for each element
separately, which enables parallel realization [6].

The inner product of two DoF-sized vectors is the other ba-
sic operation for iterative solvers. This operation is obviously
independent of the mesh structure and connectivity, and its
parallel execution is straightforward.

A further advantage of the EbE implementation is that no
global numbering of unknowns and finite elements is required.
Due to the lack of assembly, there is no need for an optimized
global numbering to obtain a low bandwidth system matrix.
If one uses some mesh refinement/reduction technique during
the iterations, locality for the necessary modifications is also
ensured [12].

B. Concurrency – global updates and coloring

On shared memory architectures (like the GPUs) an impor-
tant question is how the partial products are summarized. The
challenge during a global update is to ensure that different
threads do not access the same memory space simultaneously.

This concurrent access is called race-condition and results
in an indefinite outcome. Treatment of such cases is tradition-
ally of two kinds. One solution is “atomic” updates, when the
memory space is protected during I/O, causing other threads
accessing the same memory place to wait until the operation
is fully completed.

The other solution is “coloring” [13], [14]. In this case the
mesh is considered as a graph, with the unknown variables
(DoFs) being the nodes of the graph and the elements rep-
resenting the connections between them. This graph is then
colored in a way that any two elements having the same color
do not share a common unknown. Different colors are then
processed “serially” (one after the other), while elements with
the same color are processed simultaneously in parallel.

C. Element-by-Element formulation of the BiCG solver

In a BiCG solver based on an EbE implementation the
computations can be grouped into so-called “EbE” steps and
“DoF” steps, respectively. The former refers to the matrix-
vector product of (5), while the latter means vector-vector
product or initialization of variables. The BiCG algorithm
requires a few auxiliary vectors (r, r̃,d, d̃,q, q̃) and complex
variables (δ, δ̃, α) during the iterations. Function of these
variables is identical to that outlined in [4, Chapter 2.3.5].

Elements of these vectors, similarly to elements of the
solution vector, u, are stored as global unknowns. A global
unknown can therefore be thought as an object which contains
all the (self) associated elements of the different working
vectors.

The way the variables are stored gives the real modularity
of the EbE method. Contrary to traditional FEM methods
using global numbering, here a dynamic storage structure is
used instead. The structure can be thought as an index array
(pointers in the actual implementation) keeping the informa-
tion how local unknowns correspond to global ones. (Such
storage pattern is often referred as “spatial data structure” in
the literature.) This is functionally equivalent to the role of Ce

in (3) - (4).
Algorithm 1 shows the EbE based BiCG implementation,

which is functionally equivalent to the one presented in [4,
Chapter 2.3.5] and is implemented in terms of “EbE” and
“DoF” iterations. Label “EbE iteration” indicates the compu-
tation of the element matrices. To avoid race conditions during
global updates, the elements are colored. The iteration goes
through all colors serially, and performs the computations on
the elements having the actual color, E(c), in parallel. Label
“DoF iteration” indicates the computation of the vector-vector
products. This iteration is performed simultaneously on all
U global unknowns. Label “global update” means that the
value of a global variable is affected. To avoid race conditions,
atomic updates are used to access global variables.

D. Some drawbacks of the EbE implementation

The lack of assembling makes the method convenient for
GPU parallel execution but it also comes with some dif-
ficulties. The first one is related to preconditioning, which
traditionally assumes the system matrix to be in an assembled
form. To overcome this problem one can use specific element-
by-element preconditioners [14], [15].

In this paper a simple Jacobi preconditioner is used [4]

Algorithm 1: Element-by-Element BiCG algorithm

INIT foreach u ∈ U do // DoF iteration

1 r(u) ← 0

2 D(u) ← 0

3 for c = 1 to |colors| do // serial loop

4 foreach e ∈ E(c) do // EbE iteration
5 re ← re + be −Aeue

6 De ← De + diag (Ae)

7 foreach u ∈ U do // DoF iteration

8 D(u) ← 1/D(u)

9 r̃(u) ← r(u)

10 d(u) ← D(u) · r(u)
11 d̃(u) ← D(u) · r̃(u)

12 q(u) ← 0

13 q̃(u) ← 0

14 δ ← 0 // global update
15 foreach u ∈ U do // DoF iteration

16 δ ← δ + r(u)d(u) // global update

17LOOP while δ > prescribed accuracy do // host loop

18 for c = 1 to |colors| do // serial loop

19 foreach e ∈ E(c) do // EbE iteration
20 qe ← qe +Aede

21 q̃e ← q̃e +AT
e d̃e

22 α← 0 // global update
23 foreach u ∈ U do // DoF iteration

24 α← α+ d̃(u) · q(u) // global update

25 foreach u ∈ U do // DoF iteration

26 x(u) ← x(u) + δ/α · d(u)

27 r(u) ← r(u) − δ/α · q(u)
28 r̃(u) ← r̃(u) − δ/α · q̃(u)

29 δ̃ ← δ; δ ← 0 // global update

30 foreach u ∈ U do // DoF iteration

31 δ ← δ + r(u)D(u)r̃(u) // global update

32 α← δ/δ̃ // global update

33 foreach u ∈ U do // DoF iteration

34 d(u) ← D(u) · r(u) + α · d(u)
35 d̃(u) ← D(u) · r̃(u) + α · d̃(u)

36 q(u) ← 0

37 q̃(u) ← 0

because it can be represented by a diagonal matrix (D), which
can be stored the same way as the DoF-sized auxiliary vectors.
The Jacobi preconditioner is implemented as a “DoF” step (see
Algorithm 1, line 10-11, 31 and 34-35).

The second problem is related to the required “extra”
computations: since element matrices are not stored, they
must be recomputed in each iteration, which is obviously
redundant when dealing with linear problems. However, this
extra computation becomes necessary for non-linear or cou-
pled problems [12].

E. Details of CUDA implementation

The EbE BiCG method is implemented to run exclusively
on the GPUs. After the mesh is read in and its appropriate
“coloring” is determined, point positions and triangulation
information is moved to the GPU memory. Both data are stored
in special, aligned data types to ensure coalesced access during
the operations [16]. All computations are carried out using
double precision floating point representation.

Each EbE and DoF iteration is performed as a separate
kernel call including global updates. When only one GPU is
used, there is no need for synchronization during the kernel
calls. In an EbE iteration, a kernel call has as many allocated
threads as the number of elements having the current color.
Element sets of different colors are handled one after the
other by calling the same kernel, embedded in a host side
iteration through all the colors. Since in a DoF iteration all
computations can be carried out simultaneously, kernels have
as many threads as global unknowns. Global updates in DoF
iterations are carried out using kernels with internal block
summations.

Following the initialization part, the BiCG loops (c.f.
“INIT” and “LOOP” labels in Algorithm 1) are computed as
numerous kernel calls embedded in a host loop. At the end
of this loop, the global variable δ is transferred to the host’s
memory, and the termination of the loop is decided on the
host side. Since no other host side computation is carried out
during looping, the CPU load of the algorithm is negligible.

III. RESULTS

To study the accuracy and speed of the proposed method,
the “Utah Torso” model was investigated by solving an ECG
forward problem [1] (c.f. Fig. 1). This test problem is a static
conduction problem with inhomogeneous conductivity. The
equation to be solved is therefore the Laplace equation with
spatially varying conductivity

∇ · σ∇ϕ = 0. (6)

The domain is discretized by tetrahedral elements and linear
nodal shape functions are used. The element matrices are com-
puted using analytical expressions [17]. The global unknowns
(DoFs) referred in Section II-C are the potential values ϕ at
the nodes of the mesh.

The run time statistics obtained for several different mesh
sizes are shown in Table I . (The target residual error is
set to 10−8 for both the GPU and CPU implementations.)

Figure 1. Utah torso model with major organs and electrodes

The computations have been carried out on a HP-XW8600
workstation, having 32 GB memory, an NVIDIA GTX 590
GPU card (with two GPU processors on a single board) and a
quad-core Intel Xeon X3440 CPU. The fully parallelized CPU
implementation of the preconditioned BiCG method is based
on the Intel R© Math Kernel Library (MKL). Figure 2 shows
the runtime comparison for the different implementations.

Table I
RESULTS, UTAH TORSO PROBLEM

Mesh #1 #2 #3 #4
No. of tetrahedra 560K 6, 559K 18, 884K 29, 772K
No. of unknowns 91K 1, 339K 3, 836K 6, 064K

GPU implementation
No. of iterations 322 671 978 1111
No. of colors 41 45 53 56
Memory [MByte] 12 213 613 968
Runtime (1 GPU) [s] 2.8 40.3 171.3 303.8
Runtime (2 GPUs) [s] 1.7 23.6 93.4 167.6

CPU implementation
No. of iterations 79 248 338 391
Memory [MByte] 1,564 5,251 13,645 19,371
Runtime [s] 5.9 403.4 1,166.6 1,694.6

As also outlined in [9], the performance of the GPU ac-
celerated matrix-vector multiplication (MxV) highly depends
on the structure of the matrix, i.e., the distribution and num-
ber of non-zero elements. Unlike methods using GPUs only
for accelerating the computation of the MxV, the proposed
method does not rely on the system matrix, hence no such
degradation may occur. This results in a uniform performance
irrespectively of the matrix structure.

Another advantage is the memory efficiency. Since sparse
matrix storage inherently requires some extra storage overhead
(for the row and column information of non-zero elements),
the efficiency of memory occupancy is limited. On the con-
trary, the proposed EbE FEM only needs to store the meshing
information and several DoF sized auxiliary vectors required
for the CG iterations (see Section II-C).

0

500

1000

1500

2000

0 1 2 3 4 5 6 7

R
u

n
 t

im
e

 [
s]

Number of Unknowns (x 106)

1 GPU

2 GPUs

CPU

Figure 2. Runtime comparison of GPU and CPU implementations

IV. CONCLUSION

We re-formulated the EbE FEM method to fit to GPU archi-
tectures. The method has extremely low memory consumption
and can take full advantage of the massively parallel execution
environment due to the applied EbE-FEM formulation.

The main cause of the outstanding performance of such a
method is that it is very well suited for the special multi-core
GPU environment where cores are independent and don’t eas-
ily communicate with each other. Since the EbE-FEM requires
no communication on the level of processing cores (that is, it
is highly localized) the hardware utilization can be maximized.
Another important property of the method is that it does
not rely on the traditional “assemble-and-solve” computational
structure because the entire system matrix is never assembled.
This results in an excellent memory utilization pattern.

Not only the algorithm outperforms traditional CUDA ac-
celerated FEM methods [7], [8], [9] but it is also competitive
with today’s CPU based algorithms. Table I shows some run
time data for the same meshes generated by a FEM conduction
solver using a preconditioned BiCG implementation based
on the Intel R© Math Kernel Library. Another advantage over
the popular GPU FEM implementations is that the treatable
problem size is limited by the amount of meshing information
rather than by the number of non-zero elements in the system
matrix.

Although this paper only outlined the application of the
method on a single GPU, multi-GPU computations were also
performed and preliminary results have been already acquired
for a simple 2 GPU system. (See in Table I.) These preliminary
multi-GPU results indicate good scalability of the method,
which could easily be extended to GPU clusters. Utilization of
further processing capacity revealed that the expected linear
scaling could be achieved. This topic will be covered in a
forthcoming paper.

Although the presented solution of an ECG problem was
notably accelerated, the utilization of EbE FEM can be appre-
ciated even more when treating non-linear problems or when

the mesh structure changes during the computation (that is,
when adaptive mesh refinement is applied). In non-linear FE
problems the system matrix must be recomputed in every
iteration step. Thus, due to the fact that the EbE method
recomputes the local element matrix in each iteration step,
the achievable speed-up could be even more significant. In
adaptive mesh generation the system matrix as well as the
unknowns are changing during the solution steps. Since the
EbE technique stores the variables locally it is straightforward
that adaptive mesh refinement is easier to perform in this
environment.

Finally, it should be noted that all these benefits also
make the element-by-element method very favorable for other
heterogeneous HPC environments where high locality is a key
concern.

REFERENCES

[1] R. MacLeod, C. Johnson, and P. Ershler, “Construction of an inhomo-
geneous model of the human torso for use in computational ECG,” in
IEEE Medicine and Biology Society. IEEE Press, 1991, pp. 688–689.

[2] I. Kiss, S. Gyimóthy, Z. Badics, and J. Pávó, “Parallel realization of
the element-by-element FEM technique by CUDA,” IEEE Trans. on
Magnetics, vol. 48(2), pp. 507–510, 2012.

[3] P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers.
Cambridge University Press, 1990.

[4] R. Barrett, Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Ed. Philadelphia, PA: SIAM, 1994.

[5] G. F. Carey, E. Barragy, R. McLay, and M. Sharma, “Element-by-
element vector and parallel computations,” Commun. Appl. Numer.
Methods, vol. 4, no. 3, pp. 299–307, 1988.

[6] G. F. Carey and B.-N. Jiang, “Element-by-element linear and nonlinear
solution schemes,” Appl. Num. Meth., vol. 2 (2), pp. 145–153, 1986.

[7] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, “Sparse matrix solvers
on the GPU: conjugate gradients and multigrid,” ACM Trans. Graph.,
vol. 22, pp. 917–924, July 2003.

[8] C. Cecka, A. Lew, and E. Darve, “Introduction to assembly of finite
element methods on graphics processors,” IOP Conference Series:
Materials Science and Engineering, vol. 10, no. 1, p. 012009, 2010.

[9] A. Cevahir, A. Nukada, and S. Matsuoka, “Fast conjugate gradients
with multiple GPUs,” in ICCS 2009, G. G. van Albada, J. Dongarra,
and P. Sloot, Eds., 2009, vol. 5544, pp. 893–903.

[10] R. K. W. Hackbusch, B. N. Khoromskij, “Direct schur complement
method by domain decomposition based on H-matrix approximation,”
Computing and Visualization in Science, vol. 8, pp. 179–188, Dec 2005.

[11] I. Kiss, S. Gyimóthy, and J. Pávó, “Acceleration of moment method
using CUDA,” The International Journal for Computation and Mathe-
matics in Electrical Engineering (COMPEL), vol. 31(6), IN PRESS.

[12] S. Gyimóthy and I. Sebestyén, “Symbolic description of field calculation
problems,” IEEE Tran. Mag., vol. 34, no. 5, pp. 3427 –3430, 1998.

[13] C. Farhat and L. Crivelli, “A general approach to nonlinear FE computa-
tions on shared-memory multiprocessors,” Computer Methods in Applied
Mechanics and Engineering, vol. 72, no. 2, pp. 153–171, Feb. 1989.

[14] A. J. Wathen, “An analysis of some element-by-element techniques,”
Computer Methods in Applied Mechanics and Engineering, vol. 74,
no. 3, pp. 271–287, Sep. 1989.

[15] G. Golub and Q. Ye, “Inexact preconditioned conjugate gradient method
with inner-outer iterations,” SIAM J. on Scientific Computing, vol. 21(4),
pp. 1305–1320, 2000.

[16] D. Kirk and W.-M. Hwu, Programming Massively Parallel Processors,
A Hands-on Approach. Morgan Kaufmann, 2010.

[17] A. Nentchev, “Numerical analysis and simulation in microelectronics by
vector finite elements,” Ph.D. dissertation, Tech. Univ. Wien, 2008.

