
Optimizing Performance of HPC Storage Systems
Optimzing performance for reads and writes.

Torben Kling Petersen, PhD
HPC Storage Solutions

Xyratex Ltd
Langstone Road, Havant, Hampshire PO9 1SA, UK

Torben_Kling_Petersen@xyratex.com

John Fragalla
HPC Storage Solutions

Xyratex International Inc.
46831 Lakeview Blvd, Fremont, California 94538, USA

John_Fragalla@xyratex.com

Abstract — The performance of HPC storage
systems depend upon a variety of factors. The results of using
any of the standard benchmark suites for storage depends not
only on the storage architecture, but also on the type of disk
drives, type and design of the interconnect, and the type and
number of clients. In addition, each of the benchmark suites
have a number of different parameters and test methodologies
that require careful analysis to determine the optimal settings
for a successful benchmark run. To reliably benchmark a
storage solution, every stage of the solution needs to be
analyzed including block and file performance of the RAID,
network and client throughput to the entire filesystem and
meta data servers. For a filesystem to perform at peak
performance, there needs to be a balance between the actual
performance of the disk drives, the SAS chain supporting the
RAID sets, the RAID code used (whether hardware RAID
controllers or software MD-RAID), the interconnect and
finally the clients. This paper describes these issues with
respect to the Lustre filesystem. The dependence of
benchmark results with respect to various parameters is
shown. Using a single storage enclosure consisting of 8 RAID
sets (8+2 drives each) it is possible achieve both read and write
performances in excess of 6 GB/s which translates to more than
36 GB/s per rack of measured client based throughput. This
paper will focus on using Linux performance tool, obdfilter-
survey, and IOR to measure different levels of the filesystem
performance using Lustre.

Keywords—HPC Storage, Benchmarking,

I. INTRODUCTION
Benchmarking system performance has always been an

important factor in the HPC industry. This is especially true
during procurement phases of a new system. Although
benchmarks seldom, if ever, provide any indication of real
life performance of an application (unless the application
itself is benchmarked at intended scale which is usually hard
before the final system is delivered), a benchmark allows an
end user to compare an offered solution to others. In a
number of RFPs, the customers have written their own
benchmarks which is distributed to vendors with specific
instructions of how they should be wrong. While this is a
prudent approach, these benchmark codes rarely shows the
peak performance of a new solution as they often were

written on older, less capable solutions. For compute systems
on the Top500 list, the benchmark of choice is Linpack [1]
that will test a large system floating point performance as a
result of the CPU architecture and system interconnect. For
storage, however, there is no similar standard and
unfortunately no equivalent list. This had led some vendors
to state performance of their products in different ways such
as aggregated theoretical disk bandwidth that obviously says
nothing about the systems actual performance.

In the storage arena, a number of different benchmark
suites exist. These can be used to measure a systems I/O
performance regardless if the solution is based on direct
attached storage, network attached storage (such as NFS
based solutions) or a parallel distributed filesystem (such as
GPFS or Lustre)[2, 3].

For general filesystem I/O, benchmark tools such as IOR
[4], IOzone [5], Bonnie++ [6] as well as meta data
performance of said filesystem such as MDtest [7]. For the
purpose of this paper, we focused on obdfilter-survey and
IOR.

II. LUSTRE® PARALLEL FILESYSTEM
While there’s a number of parallel filesystems used in

HPC solutions today, Lustre currently dominates with 5 of
the top10 systems and more that 70% of the Top100 [8].
This is also why Xyratex is basing all solutions on this
filesystem and hence this paper will focus on Lustre
performance benchmarking.

Lustre is based on the concept of separating meta data
from block I/O using a pair of metadata servers (MDS) and a
number of object store servers (OSSes) all interconnected
with a network fabric (fig. 1).

III. STORAGE SYSTEM ARCHITECTURES
While the choice of filesystem probably has the greatest

impact on I/O performance, it is important to remember that
the specific architecture of the underlying storage solution is
also very important to understand to achieve good
throughput. Factors that affect the storage performance
ranges from the choice of RAID system (hardware based or
software such as MD-RAID), disk protocols such as S-ATA

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

and SAS, disk type (even within a range of say 2TB NL-SAS
drives from one of the 3 major vendors, has very different
I/O characteristics), firmware levels of all components, the
components of the software stack, tuning parameters
(important even on the client side) and type of interconnect
to mention a few.

It is therefore important to benchmark the underlying
hardware before starting client based tests to set a baseline of
the disk backend subsystem. The most commonly used tool
for this (at the filesystem level) is obdfilter-survey[9].

IV. SYSTEM ARCHITECTURE

A. Storage Subsystem
The ClusterStor 6000 Lustre based engineered solution

consist of a pair of active-passive failover servers with
shared storage acting as the systems metadata server (MDS)
and metadata management server (MGS). Each object store
servers consists of a 5 RU enclosure, known as a Scalable
Storage Unit (SSU) hosting 84 3,5’ disk drive slots and two
embedded OSS server modules in the back of the
enclosure[10]. The following storage components were used:

• 82 Hitachi Mars-K near line SAS drives (3,5’ form
factor) with a total capacity of 2 TB each.

• 2 Hitachi Ralston Peak SSDs (2.5’ form factor in a
3.5’ carrier) with a total capacity of 100 GB each.

The disk drives are configured as 8 RAID 6 (8+2)
volumes formatted with ldiskfs rendering them into 8 object
store targets (OST) with the remaining 2 drives acting as
roaming spares. The 2 SSDs (formatted with RAID 1) was
exclusively used for write intend bitmaps WIBs) and for
Linux journals.

The embedded server modules (2 per enclosure) are
based on a single socket Intel Xeon CPU, 32 GB RAM and
an onboard Mellanox CX3 FDR capable HCA. The
ClusterStor architecture uses Lustre version 2.1.3 + Xyratex
extensions. The ClusterStor solution benchmarked consists
of a total of 2 SSUs, 4 OSS servers, and 16 OSTs.

The storage subsystem is configured with the following
Lustre parameters: writethrough cache enabled, read cache
enabled and the read cache max filesize = 1M. The MDT,
MGS and OSTs leverage software RAID and no data
caching. All data is stored directly to disk and committed
before sending an ACK back to the client.

B. Clients and interconnect
The test clients were made up of 64 x86 compute nodes

with the following configuration:
• 2x Intel Xeon Westmere Processors
• 24 GB RAM
• QDR interface
All clients as well as the ClusterStor SSUs were

connected to a Mellanox based FDR capable core switch
fabric.

The clients connected to the storage were configured
with Lustre client version 1.8.8. Each client is also tuned
according to industry best practice with LRU and check-
sums disabled, and the max RPCs in flight set to 32.

V. TEST METHODOLOGY
To define the optimal benchmark parameters, a number

of settings were tested. This paper will focus on the
following subset of all user modifiable test parameters:

Fig. 1 Schematic overview of active components making up the Lustre filesystem.

A. Obdfilter-survey
A part of the Lustre I/O kit, the obdfilter-survey script

generates sequential I/O from varying numbers of threads
and objects (files) to simulate the I/O patterns of a Lustre
client. While it can run on a network attached client, it is
commonly used as a server side tool.

B. I/O mode
IOR supports a number of I/O modes such as Buffered

I/O and Direct I/O. In addition, the benchmark suite also
supports simulation of several application characteristics
such as file per process (FFP) and single shared file (SSF). In
this paper we focused used both buffered and direct I/O
using the file per process methodology. For the file system,
we used the default Lustre stripe size of 1M and stripe count
of 1.

C. I/O slots per client
IOR supports a number of client side settings defining

how the application is using the hardware and I/O subsystem
of the client node. When launching a benchmark run, the
node from where the job is issued, refers to a “machinefile”
listing the available client IP addresses or hostname and their
individual settings. Each line in the machinefile were defined
as:

‘hostname’ slots=4 max_slots=12

For the 64 clients, we define each host with a minimum of 4
slots and a maximum number of slots equal to the maximum
number of CPU cores, which in this benchmark setup were
12 cores. Slots can be referenced as number of tasks per
client running IOR to measure performance.

The execution of IOR is done using MPI using the --byslot
option. One can use the --bynode, but using the --byslot will
use 4 slots in the first node than 4 slots in the second node,
so on and so forth. If using --bynode, the slots will be filled
using 1 slot per node than round-robin back to the first node
to fill in the second slots. The benchmarks revealed using --
byslot provided evenly distributed benchmarks for the
number of slots executing IOR running on all nodes that
yielded better per client results than using --bynode.

Under IOR, we defined the block-size per node to be 2X
the memory size to ensure no caching effect is being done on
the clients to truly measure ClusterStor 6000 performance.

D. IOR transfer size
To assess the importance of IOR transfer size, we ran a

number of benchmark runs using different transfer sizes.
There have been numerous tests done on other systems

where transfer size have been used as a variable but most
ranges from sub 1 MB to a max of 4 MB. As our previous
performance experiences with the ClusterStor solution have
indicated that the system architecture requires significant
load to perform well, we decided to vary transfer size (-t) the
between 1 and 64 megabytes.

E. Number of client threads
As IOR uses MPI for its execution on multiple nodes, it

is possible to control the number of processes each node will
use. This is set with the mpirun argument of –np. To assess
how much load each client needs to produce to achieve
maximum throughput on the storage solution, a number of
runs were done varying the total number of processes
between 4 and 1024.

VI. RESULTS
As this paper is limited in size, we cannot report all

iterations performed to find the optimal performance of the
ClusterStor solution. We have therefore chosen to discuss the
parameters that produce the best results.

A. Obdfilter-survey
As obdfilter-survey is run on an OSS basis (each Xyratex

ClusterStor SSU consists of 2 OSSes), the results (fig. 2) are
showing the performance of two OSSes.

The results reveal that a single SSU have a write
performance of 6,055 MB/s (75,9 MB/s per disk) and a read
performance of 7,904 MB/s (98.8 MB/s per disk).

B. IOR – Buffered I/O mode
For maximum write performance, we found a few

interesting results with IOR with the buffered IO option and
file-per-process. Different IOR transfer sizes provided
different but favorable results for Write performance. As can
be seen from the results in figure 3, Write performance using
buffered I/O is very good and peaks just above 12 GB/s over
2 SSUs. To assess the maximum performance capabilities,
we used the results above to define a few specific benchmark
runs with optimized parameters for write performance.

Write optimized benchmark 1:
• Number of Clients: 32
• Number of Slots: 128
• Block size (-b): 12g
• Transfer size (-t): 1m
• Buffered IO
• --byslot option for mpirun

pdsh -g oss "TERM=linux thrlo=256 thrhi=256 nobjlo=1 nobjhi=1 rsz=1024K size=32768 obdfilter-survey"
cstor01n04: ost 4 sz 134217728K rsz 1024K obj 4 thr 1024 write 3032.89 [713.86, 926.89] rewrite
3064.15 [722.83, 848.93] read 3944.49 [912.83,1112.82]
cstor01n05: ost 4 sz 134217728K rsz 1024K obj 4 thr 1024 write 3022.43 [697.83, 819.86] rewrite
3019.55 [705.15, 827.87] read 3959.50 [945.20,1125.76]

Fig. 2 Results of an optimized obdfilter-survey run on a single SSU. The individual OSS results are highlighted in bold.

Benchmark command line:
mpirun -machinefile machinefile.txt -np 128 --
byslot ./IOR/src/C/IOR -v -F -t 1m -b 12g -o
/xyratex/test.0

Write Results: 12,369.32 MB/s

Write optimized benchmark 2: In the second benchmark
run, we changed the transfer size to 2 megabytes using the
following command line:

mpirun -machinefile machinefile.txt -np 128 --
byslot ./IOR/src/C/IOR -v -F -t 2m -b 12g -o
/xyratex/test.0

Write Results: 12,579.55 MB/s

Write optimized benchmark 3: In this run, we changed
the number of clients, the number of slots and increased the
transfer size to 8 megabytes:

• Number of Clients: 16
• Number of Slots: 64
• Block size (-b): 12g
• Transfer size (-t): 8m
• Buffered IO
• --byslot option for mpirun

Benchmark command line:
mpirun -machinefile machinefile.txt -np 64 --
byslot ./IOR/src/C/IOR -v -F -t 8m -b 24g -o
/xyratex/test.0

Write Results: 13,192.72 MB/s

C. IOR – Direct I/O mode
For maximum read performance, we found a few

interesting results with IOR with the direct IO option and
file-per-process As the results indicate that a larger IOR
transfer size provide the most favorable results for Read

performance, we used the runs to define the best set of
parameters to achieve peak read performance. Below are the
parameters and the Read results for each of the IOR transfer
size the yielded best results.

Read optimized benchmark 1:
• Number of Clients: 64
• Number of Slots: 256
• Block size (-b): 12g
• Transfer size (-t): 32m
• Direct IO (-B)
• --byslot option for mpirun

Benchmark command line:
mpirun -machinefile machinefile.txt -np 256 --
byslot ./IOR/src/C/IOR -v -F -B -t 32m -b 12g -o
/xyratex/test.0

Read Results: 11,889.93 MB/s

Read optimized benchmark 2:
• Number of Clients: 64
• Number of Slots: 512
• Block size (-b): 6g
• Transfer size (-t): 32m
• Direct IO (-B)
• --byslot option for mpirun

Benchmark command line:
mpirun -machinefile machinefile.txt -np 512 --
byslot ./IOR/src/C/IOR -v -F -B -t 32m -b 6g -o
/xyratex/test.0

Read Results: 11,996.17 MB/s

Fig. 3 Write performance using IOR buffered I/O mode.

Fig. 4 Read performance using IOR Direct I/O mode.

Read optimized benchmark 3:
• Number of Clients: 32
• Number of Slots: 128
• Block size (-b): 12g
• Transfer size (-t): 64m
• Direct IO (-B)
• --byslot option for mpirun

Benchmark command line:
mpirun -machinefile machinefile.txt -np 128 --
byslot ./IOR/src/C/IOR -v -F -B -t 64m -b 12g -o
/xyratex/test.0

Read Results: 11,754.37 MB/s

For Single Shared File benchmarks with IOR, there is
still a lot more investigation that still needs to be done to
maximize read and write results, reduce the lock contention
and using standard IOR parameters with large block sizes to
equal 2x the client memory and using smaller block size and
the segment option, which reduces locks at much small
blocks but the balance between clients and OSTs still needs
further investigation. Based on various results for single
shared file, we found the number of clients should be a
multiple of the number of OSTs to maximize performance,
regardless if the number of clients is more or less than the
number of OSTs, To optimize performance is done by
balancing the block transfer size, using the “segment” flag in
IOR as a multiple of the block size, matching stripe sizes to
the block size, or having the block size be a multiple of the
Lustre transfer size all have factors in maximizing
performance and a separate paper is needed to address these
type of parameters and results for single shared file.

D. IOR transfer size
This parameter showed some significant differences

between the 2 I/O modes. When using buffered I/O mode,
the smaller transfer size change had some impact on the
performance to maximize writes, and with direct IO, there
was in increase in read performance when increasing the
transfer size, which are illustrated in fig. 3 and fig 4.

E. Number of client threads
Increasing the number of client processes clearly had an

impact on performance regardless of the mode used. Peak
performance however, is reached with different parameters
for each type of I/O and I/O mode. Buffered writes peak
using 64 processes whereas read peaks using 16 (fig 3). For
direct I/O, both read and write seems to peak using 512
processes (fig 4).

VII. DISCUSSION
The results in this paper clearly show that the Xyratex

ClusterStor 6000 solution is capable of delivering very high
throughput with regards to both read and write performance.
In fact the throughput calculated on a per disk drive is very
close to maximum single formatted disk performance. The

performance of a single HA-pair of object store servers (each
using 4 OSTs) peaks in excess of 6 GB/s translating to about
750 MB/s per OST which compared to other published
results [11, 12] is significantly higher. While there’s several
explanations for the differences (different disk drives, older
CPU architecture, QDR vs. FDR and PCI-e gen 2 vs. gen 3)
the performance gap is remarkable and a result of the system
architecture of the ClusterStor system. The use of a balanced
solution pushing the bottleneck to the disk backend rather
than limiting performance closer to the clients means using
fewer disks and maximizing the disk subsystem. Current
high end systems suffers from having to use 3-5x the number
of disk drives needed from a capacity point of view, to
achieve the required performance. With the ClusterStor 6000
solution, this overhead is significantly reduced due to the
integration and balanced design of the architecture. This has
a number of very important benefits associated with it such
as reduced floor space, less power and cooling, and increased
reliability. It also has positive effects on supportability, as the
number of drives in the solution is fewer, the need to replace
and suffer RAID set rebuilds is lessened (assuming similar
disk failure rates regardless of vendor and solution).

With the ClusterStor 6000, we found using a
combination of buffered and direct I/O option for IOR were
needed to maximize results for Writes and Reads. We found
IOR writes and reads data differently and reading data is not
as sequential as writes. While there might be several reasons
for this behavior, Xyratex believes that this is due to buffered
IO using pagecache and has all the tools to align pages
before sending them to LNET whereas direct I/O does not do
that. Buffered I/O directly creates an RPC and run it in
synchronized mode. This means that the software is not able
to send new chunks of direct I/O data until the previous RPC
is processed on client side and a reply is returned.

Based on the initial assessment of the backend disk
performance as illustrated by the obdfilter-survey
benchmark, one could expect that the read performance
would be higher. However, by the same token, the IOR
based write performance is actually greater than the
obdfilter-survey write results. In essence, while the obdfilter-
survey benchmark delivers a good approximation of the disk
system backend performance, it does not utilize the entire
software stack or the network component. The tool obdfilter-
survey is used to measure performance of the OSTs without
client and LNET, which has it’s own benefits isolating
outside factors to provide a base-line performance test.

The analysis of the number of client processes needed to
deliver peak performance clearly indicates that storage
solutions based on modern architecture (including FDR IB,
PCI-E gen 3, CPU architectures with 8 or more cores and
hyper threading capabilities) requires a significant load to
perform optimally. The current rule of thumb requires a
minimum of 8 clients to saturate a single SSU.

Something that sets IOR apart from other benchmark
suites and the reason it’s been used to benchmark many of
the largest parallel filesystems in the world is that it mimic
many commonly used applications in that it uses MPI I/O for
cluster execution and is bound by most of the limitations

normally seem with HPC codes running in large clusters.
Within the open source community, efforts are currently
underway to define a new and more modern benchmark suite
better suited for the storage solution being planned for the
near future. For now, we are required to use what is available
and while a tool like IOR does require a lot of
experimentations and time consuming benchmark runs, with
a bit of experience and good understanding of the parameters
and what they do to achieve relevant and repeatable
performance numbers. This paper really focused on two
major modes of I/O (buffered and direct) as well as
modulation of two basic parameters (number of client
processes and IOR transfer size) with clear and significant
impact to the measured results. While not part of the current
study, it is clear to the authors that different solutions does
require drastically different setup to produce optimal results
and that “one size fits all” does not always work. It is
therefore very important when writing a RFP, that the
benchmark is not being artificially restricted by requiring
that an IOR has to be run with pre-defined settings and
arguments. Most likely, these settings are derived from
systems previously acquired by the customer and therefore
based on older technology and software stacks. Forcing a
vendor to use suboptimal settings will only result in over
provisioning of a solution or choice of an inferior solution. In
these cases, a real application, using customer supplied input
data is a much better approach, but if that’s not doable,
traditional benchmarking will have to suffice. As most
application suites can be tuned with regards to their data in-
and output parameters, properly performed benchmarking
can provide good insight into the right I/O tuning.

ACKNOWLEDGMENT
The following people are acknowledged for their

contribution to this paper: Alan Poston, Eugene Birkine, Karl
Merritts, Colin Faber, and Nathan Rutman.

REFERENCES
[1] "Linpak" http://www.top500.org/project/linpack/.
[2] "GPFS" http://www-03.ibm.com/systems/software/gpfs/.
[3] "Lustre" http://lustre.org.
[4] "IOR" http://sourceforge.net/projects/ior-sio/.
[5] "IOzone" http://www.iozone.org.
[6] "Bonnie++" http://sourceforge.net/projects/bonnie/.
[7] "MDtest" http://sourceforge.net/projects/mdtest/.
[8] "Top500" http://www.top500.org.
[9] "obdfilter-survey"

http://wiki.lustre.org/manual/LustreManual20_HTML/B
enchmarkingTests.html.

[10] K. Claffey, A. Poston, and T. Kling Petersen, "Xyratex
ClusterStor - World Record Performance at Massive
Scale"
http://www.xyratex.com/sites/default/files/files/field_inli
ne_files/Xyratex_white_paper_ClusterStor_The_Future_
of_HPC_Storage_1-0_0.pdf, 2012.

[11] "HP - DDN quickspecs,"
http://h18000.www1.hp.com/products/quickspecs/13648
_div/13648_div.PDF.

[12] W. Turek, and P. Calleja, "High Performance, Open
Source, Dell Lustre Storage SystemDell PowerVault
MD3200 storage platform and QDR Mellanox
Infiniband,"
http://i.dell.com/sites/content/business/solutions/hpcc/en/
Documents/Lustre-HPC-Whitepaper-10082011.pdf,
2011.

