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Abstract — The performance of HPC storage 
systems depend upon a variety of factors.   The results of using 
any of the standard benchmark suites for storage depends not 
only on the storage architecture, but also on the type of disk 
drives, type and design of the interconnect, and the type and 
number of clients.   In addition, each of the benchmark suites 
have a number of different parameters and test methodologies 
that require careful analysis to determine the optimal settings 
for a successful benchmark run.  To reliably benchmark a 
storage solution, every stage of the solution needs to be 
analyzed including block and file performance of the RAID, 
network and client throughput to the entire filesystem and 
meta data servers.  For a filesystem to perform at peak 
performance, there needs to be a balance between the actual 
performance of the disk drives, the SAS chain supporting the 
RAID sets, the RAID code used (whether hardware RAID 
controllers or software MD-RAID), the interconnect and 
finally the clients.  This paper describes these issues with 
respect to the Lustre filesystem.  The dependence of 
benchmark results with respect to various parameters is 
shown.  Using a single storage enclosure consisting of 8 RAID 
sets (8+2 drives each) it is possible achieve both read and write 
performances in excess of 6 GB/s which translates to more than 
36 GB/s per rack of measured client based throughput.  This 
paper will focus on using Linux performance tool, obdfilter-
survey, and IOR to measure different levels of the filesystem 
performance using Lustre. 
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I.  INTRODUCTION  
Benchmarking system performance has always been an 

important factor in the HPC industry. This is especially true 
during procurement phases of a new system. Although 
benchmarks seldom, if ever, provide any indication of real 
life performance of an application (unless the application 
itself is benchmarked at intended scale which is usually hard 
before the final system is delivered), a benchmark allows an 
end user to compare an offered solution to others. In a 
number of RFPs, the customers have written their own 
benchmarks which is distributed to vendors with specific 
instructions of how they should be wrong. While this is a 
prudent approach, these benchmark codes rarely shows the 
peak performance of a new solution as they often were 

written on older, less capable solutions. For compute systems 
on the Top500 list, the benchmark of choice is Linpack [1] 
that will test a large system floating point performance as a 
result of the CPU architecture and system interconnect. For 
storage, however, there is no similar standard and 
unfortunately no equivalent list. This had led some vendors 
to state performance of their products in different ways such 
as aggregated theoretical disk bandwidth that obviously says 
nothing about the systems actual performance.  

In the storage arena, a number of different benchmark 
suites exist. These can be used to measure a systems I/O 
performance regardless if the solution is based on direct 
attached storage, network attached storage (such as NFS 
based solutions) or a parallel distributed filesystem (such as 
GPFS or Lustre)[2, 3]. 

For general filesystem I/O, benchmark tools such as IOR 
[4], IOzone [5], Bonnie++ [6] as well as meta data 
performance of said filesystem such as MDtest [7]. For the 
purpose of this paper, we focused on obdfilter-survey and 
IOR. 

II. LUSTRE® PARALLEL FILESYSTEM 
While there’s a number of parallel filesystems used in 

HPC solutions today, Lustre currently dominates with 5 of 
the top10 systems and more that 70% of the Top100 [8]. 
This is also why Xyratex is basing all solutions on this 
filesystem and hence this paper will focus on Lustre 
performance benchmarking.  

Lustre is based on the concept of separating meta data 
from block I/O using a pair of metadata servers (MDS) and a 
number of object store servers (OSSes) all interconnected 
with a network fabric (fig. 1). 

III. STORAGE SYSTEM ARCHITECTURES 
While the choice of filesystem probably has the greatest 

impact on I/O performance, it is important to remember that 
the specific architecture of the underlying storage solution is 
also very important to understand to achieve good 
throughput. Factors that affect the storage performance 
ranges from the choice of RAID system (hardware based or 
software such as MD-RAID), disk protocols such as S-ATA 
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and SAS, disk type (even within a range of say 2TB NL-SAS 
drives from one of the 3 major vendors, has very different 
I/O characteristics), firmware levels of all components, the 
components of the software stack, tuning parameters 
(important even on the client side) and type of interconnect 
to mention a few. 

It is therefore important to benchmark the underlying 
hardware before starting client based tests to set a baseline of 
the disk backend subsystem. The most commonly used tool 
for this (at the filesystem level) is obdfilter-survey[9]. 

IV. SYSTEM ARCHITECTURE 

A. Storage Subsystem 
The ClusterStor 6000 Lustre based engineered solution 

consist of a pair of active-passive failover servers with 
shared storage acting as the systems metadata server (MDS) 
and metadata management server (MGS). Each object store 
servers consists of a 5 RU enclosure, known as a Scalable 
Storage Unit (SSU) hosting 84 3,5’ disk drive slots and two 
embedded OSS server modules in the back of the 
enclosure[10]. The following storage components were used: 

• 82 Hitachi Mars-K near line SAS drives (3,5’ form 
factor) with a total capacity of 2 TB each. 

• 2 Hitachi Ralston Peak SSDs (2.5’ form factor in a 
3.5’ carrier) with a total capacity of 100 GB each. 

The disk drives are configured as 8 RAID 6 (8+2) 
volumes formatted with ldiskfs rendering them into 8 object 
store targets (OST) with the remaining 2 drives acting as 
roaming spares. The 2 SSDs (formatted with RAID 1) was 
exclusively used for write intend bitmaps WIBs) and for 
Linux journals.   

The embedded server modules (2 per enclosure) are 
based on a single socket Intel Xeon CPU, 32 GB RAM and 
an onboard Mellanox CX3 FDR capable HCA.  The 
ClusterStor architecture uses Lustre version 2.1.3 + Xyratex 
extensions.   The ClusterStor solution benchmarked consists 
of a total of 2 SSUs, 4 OSS servers, and 16 OSTs. 

The storage subsystem is configured with the following 
Lustre parameters: writethrough cache enabled, read cache 
enabled and the read cache max filesize = 1M.  The MDT, 
MGS and OSTs leverage software RAID and no data 
caching.  All data is stored directly to disk and committed 
before sending an ACK back to the client. 

B. Clients and interconnect 
The test clients were made up of 64 x86 compute nodes 

with the following configuration: 
• 2x Intel Xeon Westmere Processors 
• 24 GB RAM 
• QDR interface 
All clients as well as the ClusterStor SSUs were 

connected to a Mellanox based FDR capable core switch 
fabric. 

The clients connected to the storage were configured 
with Lustre client version 1.8.8. Each client is also tuned 
according to industry best practice with LRU and check-
sums disabled, and the max RPCs in flight set to 32. 

V. TEST METHODOLOGY 
To define the optimal benchmark parameters, a number 

of settings were tested. This paper will focus on the 
following subset of all user modifiable test parameters: 

 
 

Fig. 1 Schematic overview of active components making up the Lustre filesystem.  

 

 



A. Obdfilter-survey 
A part of the Lustre I/O kit, the obdfilter-survey script 

generates sequential I/O from varying numbers of threads 
and objects (files) to simulate the I/O patterns of a Lustre 
client. While it can run on a network attached client, it is 
commonly used as a server side tool.  

B. I/O mode 
IOR supports a number of I/O modes such as Buffered 

I/O and Direct I/O. In addition, the benchmark suite also 
supports simulation of several application characteristics 
such as file per process (FFP) and single shared file (SSF). In 
this paper we focused used both buffered and direct I/O 
using the file per process methodology. For the file system, 
we used the default Lustre stripe size of 1M and stripe count 
of 1.  

C. I/O slots per client 
IOR supports a number of client side settings defining 

how the application is using the hardware and I/O subsystem 
of the client node. When launching a benchmark run, the 
node from where the job is issued, refers to a “machinefile” 
listing the available client IP addresses or hostname and their 
individual settings. Each line in the machinefile were defined 
as: 

‘hostname’ slots=4 max_slots=12 

For the 64 clients, we define each host with a minimum of 4 
slots and a maximum number of slots equal to the maximum 
number of CPU cores, which in this benchmark setup were 
12 cores.  Slots can be referenced as number of tasks per 
client running IOR to measure performance. 

The execution of IOR is done using MPI using the --byslot 
option.  One can use the --bynode, but using the --byslot will 
use 4 slots in the first node than 4 slots in the second node, 
so on and so forth.  If using --bynode, the slots will be filled 
using 1 slot per node than round-robin back to the first node 
to fill in the second slots.  The benchmarks revealed using --
byslot provided evenly distributed benchmarks for the 
number of slots executing IOR running on all nodes that 
yielded better per client results than using --bynode.   

Under IOR, we defined the block-size per node to be 2X 
the memory size to ensure no caching effect is being done on 
the clients to truly measure ClusterStor 6000 performance. 

D. IOR transfer size 
To assess the importance of IOR transfer size, we ran a 

number of benchmark runs using different transfer sizes. 
There have been numerous tests done on other systems 

where transfer size have been used as a variable but most 
ranges from sub 1 MB to a max of 4 MB. As our previous 
performance experiences with the ClusterStor solution have 
indicated that the system architecture requires significant 
load to perform well, we decided to vary transfer size (-t) the 
between 1 and 64 megabytes. 

E. Number of client threads 
As IOR uses MPI for its execution on multiple nodes, it 

is possible to control the number of processes each node will 
use. This is set with the mpirun argument of –np. To assess 
how much load each client needs to produce to achieve 
maximum throughput on the storage solution, a number of 
runs were done varying the total number of processes 
between 4 and 1024.  

VI. RESULTS 
As this paper is limited in size, we cannot report all 

iterations performed to find the optimal performance of the 
ClusterStor solution. We have therefore chosen to discuss the 
parameters that produce the best results. 

A. Obdfilter-survey 
As obdfilter-survey is run on an OSS basis (each Xyratex 

ClusterStor SSU consists of 2 OSSes), the results (fig. 2) are 
showing the performance of two OSSes.  

The results reveal that a single SSU have a write 
performance of 6,055 MB/s (75,9 MB/s per disk) and a read 
performance of 7,904 MB/s (98.8 MB/s per disk).  

B. IOR – Buffered I/O mode 
For maximum write performance, we found a few 

interesting results with IOR with the buffered IO option and 
file-per-process. Different IOR transfer sizes provided 
different but favorable results for Write performance. As can 
be seen from the results in figure 3, Write performance using 
buffered I/O is very good and peaks just above 12 GB/s over 
2 SSUs. To assess the maximum performance capabilities, 
we used the results above to define a few specific benchmark 
runs with optimized parameters for write performance. 

Write optimized benchmark 1: 
• Number of Clients:  32 
• Number of Slots:  128 
• Block size (-b):  12g 
• Transfer size (-t):  1m 
• Buffered IO 
• --byslot option for mpirun 

# pdsh -g oss "TERM=linux thrlo=256 thrhi=256 nobjlo=1 nobjhi=1 rsz=1024K size=32768 obdfilter-survey" 
cstor01n04: ost  4 sz 134217728K rsz 1024K obj    4 thr 1024 write 3032.89 [ 713.86, 926.89] rewrite 
3064.15 [ 722.83, 848.93] read 3944.49 [ 912.83,1112.82] 
cstor01n05: ost  4 sz 134217728K rsz 1024K obj    4 thr 1024 write 3022.43 [ 697.83, 819.86] rewrite 
3019.55 [ 705.15, 827.87] read 3959.50 [ 945.20,1125.76] 

Fig. 2 Results of an optimized obdfilter-survey run on a single SSU. The individual OSS results are highlighted in bold. 



Benchmark command line: 
mpirun -machinefile machinefile.txt -np 128 --
byslot ./IOR/src/C/IOR -v -F -t 1m -b 12g -o 
/xyratex/test.0 

Write Results:  12,369.32 MB/s 

 

Write optimized benchmark 2: In the second benchmark 
run, we changed the transfer size to 2 megabytes using the 
following command line: 

mpirun -machinefile machinefile.txt -np 128 --
byslot ./IOR/src/C/IOR -v -F -t 2m -b 12g -o 
/xyratex/test.0 

Write Results:  12,579.55 MB/s 

 

Write optimized benchmark 3: In this run, we changed 
the number of clients, the number of slots and increased the 
transfer size to 8 megabytes: 

• Number of Clients:  16 
• Number of Slots:  64 
• Block size (-b):  12g 
• Transfer size (-t):  8m 
• Buffered IO 
• --byslot option for mpirun 

Benchmark command line: 
mpirun -machinefile machinefile.txt -np 64 --
byslot ./IOR/src/C/IOR -v -F -t 8m -b 24g -o 
/xyratex/test.0 

Write Results:  13,192.72 MB/s 

 

C. IOR – Direct I/O mode 
For maximum read performance, we found a few 

interesting results with IOR with the direct IO option and 
file-per-process As the results indicate that a larger IOR 
transfer size provide the most favorable results for Read 

performance, we used the runs to define the best set of 
parameters to achieve peak read performance.  Below are the 
parameters and the Read results for each of the IOR transfer 
size the yielded best results. 

Read optimized benchmark 1: 
• Number of Clients:  64 
• Number of Slots:  256 
• Block size (-b):  12g 
• Transfer size (-t):  32m 
• Direct IO (-B) 
• --byslot option for mpirun 

 

Benchmark command line: 
mpirun -machinefile machinefile.txt -np 256 --
byslot ./IOR/src/C/IOR -v -F -B -t 32m -b 12g -o 
/xyratex/test.0 

Read Results:  11,889.93 MB/s 

 

Read optimized benchmark 2: 
• Number of Clients:  64 
• Number of Slots:  512 
• Block size (-b):  6g 
• Transfer size (-t):  32m 
• Direct IO (-B) 
• --byslot option for mpirun 

 

Benchmark command line: 
mpirun -machinefile machinefile.txt -np 512 --
byslot ./IOR/src/C/IOR -v -F -B -t 32m -b 6g -o 
/xyratex/test.0 

Read Results:  11,996.17 MB/s 

 

     
 

Fig. 3 Write performance using IOR buffered I/O mode.  

 
 

Fig. 4 Read performance using IOR Direct I/O mode.  



Read optimized benchmark 3: 
• Number of Clients:  32 
• Number of Slots:  128 
• Block size (-b):  12g 
• Transfer size (-t):  64m 
• Direct IO (-B) 
• --byslot option for mpirun 

Benchmark command line: 
mpirun -machinefile machinefile.txt -np 128 --
byslot ./IOR/src/C/IOR -v -F -B -t 64m -b 12g -o 
/xyratex/test.0  

Read Results:  11,754.37 MB/s 

 

For Single Shared File benchmarks with IOR, there is 
still a lot more investigation that still needs to be done to 
maximize read and write results, reduce the lock contention 
and using standard IOR parameters with large block sizes to 
equal 2x the client memory and using smaller block size and 
the segment option, which reduces locks at much small 
blocks but the balance between clients and OSTs still needs 
further investigation. Based on various results for single 
shared file, we found the number of clients should be a 
multiple of the number of OSTs to maximize performance, 
regardless if the number of clients is more or less than the 
number of OSTs, To optimize performance is done by 
balancing the block transfer size, using the “segment” flag in 
IOR as a multiple of the block size, matching stripe sizes to 
the block size, or having the block size be a multiple of the 
Lustre transfer size all have factors in maximizing 
performance and a separate paper is needed to address these 
type of parameters and results for single shared file. 

D. IOR transfer size 
This parameter showed some significant differences 

between the 2 I/O modes. When using buffered I/O mode, 
the smaller transfer size change had some impact on the 
performance to maximize writes, and with direct IO, there 
was in increase in read performance when increasing the 
transfer size, which are illustrated in fig. 3 and fig 4.  

E. Number of client threads 
Increasing the number of client processes clearly had an 

impact on performance regardless of the mode used. Peak 
performance however, is reached with different parameters 
for each type of I/O and I/O mode. Buffered writes peak 
using 64 processes whereas read peaks using 16 (fig 3). For 
direct I/O, both read and write seems to peak using 512 
processes (fig 4). 

VII. DISCUSSION 
The results in this paper clearly show that the Xyratex 

ClusterStor 6000 solution is capable of delivering very high 
throughput with regards to both read and write performance. 
In fact the throughput calculated on a per disk drive is very 
close to maximum single formatted disk performance. The 

performance of a single HA-pair of object store servers (each 
using 4 OSTs) peaks in excess of 6 GB/s translating to about 
750 MB/s per OST which compared to other published 
results [11, 12] is significantly higher. While there’s several 
explanations for the differences (different disk drives, older 
CPU architecture, QDR vs. FDR and PCI-e gen 2 vs. gen 3) 
the performance gap is remarkable and a result of the system 
architecture of the ClusterStor system. The use of a balanced 
solution pushing the bottleneck to the disk backend rather 
than limiting performance closer to the clients means using 
fewer disks and maximizing the disk subsystem. Current 
high end systems suffers from having to use 3-5x the number 
of disk drives needed from a capacity point of view, to 
achieve the required performance. With the ClusterStor 6000 
solution, this overhead is significantly reduced due to the 
integration and balanced design of the architecture. This has 
a number of very important benefits associated with it such 
as reduced floor space, less power and cooling, and increased 
reliability. It also has positive effects on supportability, as the 
number of drives in the solution is fewer, the need to replace 
and suffer RAID set rebuilds is lessened (assuming similar 
disk failure rates regardless of vendor and solution).  

With the ClusterStor 6000, we found using a 
combination of buffered and direct I/O option for IOR were 
needed to maximize results for Writes and Reads.  We found 
IOR writes and reads data differently and reading data is not 
as sequential as writes.  While there might be several reasons 
for this behavior, Xyratex believes that this is due to buffered 
IO using pagecache and has all the tools to align pages 
before sending them to LNET whereas direct I/O does not do 
that. Buffered I/O directly creates an RPC and run it in 
synchronized mode. This means that the software is not able 
to send new chunks of direct I/O data until the previous RPC 
is processed on client side and a reply is returned. 

Based on the initial assessment of the backend disk 
performance as illustrated by the obdfilter-survey 
benchmark, one could expect that the read performance 
would be higher. However, by the same token, the IOR 
based write performance is actually greater than the 
obdfilter-survey write results. In essence, while the obdfilter-
survey benchmark delivers a good approximation of the disk 
system backend performance, it does not utilize the entire 
software stack or the network component. The tool obdfilter-
survey is used to measure performance of the OSTs without 
client and LNET, which has it’s own benefits isolating 
outside factors to provide a base-line performance test. 

The analysis of the number of client processes needed to 
deliver peak performance clearly indicates that storage 
solutions based on modern architecture (including FDR IB, 
PCI-E gen 3, CPU architectures with 8 or more cores and 
hyper threading capabilities) requires a significant load to 
perform optimally. The current rule of thumb requires a 
minimum of 8 clients to saturate a single SSU.  

Something that sets IOR apart from other benchmark 
suites and the reason it’s been used to benchmark many of 
the largest parallel filesystems in the world is that it mimic 
many commonly used applications in that it uses MPI I/O for 
cluster execution and is bound by most of the limitations 



normally seem with HPC codes running in large clusters. 
Within the open source community, efforts are currently 
underway to define a new and more modern benchmark suite 
better suited for the storage solution being planned for the 
near future. For now, we are required to use what is available 
and while a tool like IOR does require a lot of 
experimentations and time consuming benchmark runs, with 
a bit of experience and good understanding of the parameters 
and what they do to achieve relevant and repeatable 
performance numbers. This paper really focused on two 
major modes of I/O (buffered and direct) as well as 
modulation of two basic parameters (number of client 
processes and IOR transfer size) with clear and significant 
impact to the measured results. While not part of the current 
study, it is clear to the authors that different solutions does 
require drastically different setup to produce optimal results 
and that “one size fits all” does not always work. It is 
therefore very important when writing a RFP, that the 
benchmark is not being artificially restricted by requiring 
that an IOR has to be run with pre-defined settings and 
arguments. Most likely, these settings are derived from 
systems previously acquired by the customer and therefore 
based on older technology and software stacks. Forcing a 
vendor to use suboptimal settings will only result in over 
provisioning of a solution or choice of an inferior solution. In 
these cases, a real application, using customer supplied input 
data is a much better approach, but if that’s not doable, 
traditional benchmarking will have to suffice. As most 
application suites can be tuned with regards to their data in- 
and output parameters, properly performed benchmarking 
can provide good insight into the right I/O tuning. 
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