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Abstract—Field programmable gate arrays (FPGAs) provide
reconfigurable computing fabrics that can be tailored to a wide
range of time and power sensitive applications. Traditionally,
programming FPGAs required an expertise in complex hardware
description languages (HDLs) or proprietary high-level synthesis
(HLS) tools. Recently, Altera released the worlds first OpenCL
conformant SDK for FPGAs. OpenCL is an open, royalty-free
standard for cross-platform, parallel programming of heteroge-
neous systems that together with Altera extensions significantly
reduces FPGA development time and costs in high-performance
computing environments. In this paper, we demonstrate dynamic
programming on FPGAs with OpenCL by implementing the
Smith Waterman algorithm for DNA, RNA, or protein sequenc-
ing in bioinformatics in a manner readily familiar to both
hardware and software developers. Results show that Altera
FPGAs significantly outperform leading CPU and GPU parallel
implementations by over an order of magnitude in both absolute
performance and relative power efficiency.

I. INTRODUCTION

Modern high-performance computing (HPC) systems in-
creasingly contain a variety of multi- and many-core processor
architectures, but harnessing their full processing potential
has proven difficult in terms of the hardware and software
expertise, and the development time required. While several
proprietary standards and tools have been developed to address
some of these difficulties for a limited subset of processor
architectures, OpenCL is the first and most popular open
royalty-free standard for general purpose parallel programming
heterogeneous systems including CPUs, GPUs, FPGAs, and
other accelerators and custom devices. Thanks to OpenCL, it
is now possible to do reconfigurable computing with FPGAs
entirely within a software development framework in a fraction
of the time of a traditional hardware development cycle. In this
paper, we present a case study on the acceleration of the Smith
Waterman algorithm using FPGAs with OpenCL.

A. Dynamic Programming

As scientists and engineers encounter ever-increasingly
complex problems, they naturally look to solve their problems
by breaking them down into simpler subproblems. Dynamic
programming, like divide-and-conquer, is a method for solving
complex problems by exploiting an optimal substructure, often
represented by a recursive relationship. However, dynamic
programming differs from divide-and-conquer in that it has
overlapping subproblems, which increases the fine grain com-
munication overhead in the parallel computer architectures

scientists and engineers employ to solve their problems. A
common example of dynamic programming is the Smith Wa-
terman algorithm from the field of bioinformatics for finding
the optimal local alignment of two DNA, RNA, or protein
sequences [1], [2].

Given a database sequence a = a1a2 . . . am and a query
sequence b = b1b2 . . . bn such that m ≥ n, the forward pass
of the Smith Waterman algorithm generates an (m+1)×(n+1)
scoring matrix S whose non-negative elements Si,j quantify
(higher being better) the alignment between a1a2 . . . ai and
b1b2 . . . bj . To begin, define a similarity function

σ(ai, bj) =

{
match, ai = bj ,

−mismatch, ai 6= bj ,

and non-negative affine gap function parameters for opening
and extending both horizontal and vertical gaps, respectively:
ogh, ogv, egh, and egv such that ogh + egh ≥ match +
mismatch and ogv + egv ≥ match + mismatch. Next, set
Si,0 = 0 for 0 ≤ i ≤ m and S0,j = 0 for 0 ≤ j ≤ n. Similarly,
set SHi,0 = −ogh for 1 ≤ i ≤ m and SV 0,j = −ogv for
1 ≤ j ≤ n. Then for 1 ≤ i ≤ m and 1 ≤ j ≤ n, compute
the scoring matrix through the following bottom-up recursion
relationship:

Si,j = max



0,
Si−1,j−1 + σ(ai, bj),

Si,j−1 − ogh,
Si−1,j − ogv,
SHi,j−1 − egh,
SV i−1,j − egv


, (1)

where

SHi,j = max
{
Si,j−1 − ogh,
SHi,j−1 − egh

}
,

and

SVi,j = max
{
Si−1,j − ogv,
SV i−1,j − egv

}
.

Finally, the backward pass of the Smith Waterman algorithm
starts from the maximum element of S and retraces the path
of elements that lead to the maximum element, stopping with
an element equal to zero, see Fig. 1 for an example finding
the optimal local alignment of two RNA sequences. Note that
the elements of an anti-diagonal are dependent on elements of

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE



∆ C A G C C U C G C
∆ 0 0 0 0 0 0 0 0 0 0
A 0 0 3 0 0 0 0 0 0 0
A 0 0 3 2 0 0 0 0 0 0
U 0 0 0 2 1 0 3 0 0 0
G 0 0 0 3 1 0 0 2 3 0
C 0 3 0 0 6 4 1 3 1 6
C 0 3 2 0 3 9 5 4 3 4
A 0 0 6 2 1 5 8 4 3 2
U 0 0 2 5 1 4 8 7 3 2
U 0 0 1 1 4 3 7 7 6 2
G 0 0 0 4 0 3 3 6 10 6
A 0 0 3 0 3 1 2 2 6 9

Fig. 1. Smith Waterman algorithm results for RNA sequences a =
AAUGCCAUUGA and b = CAGCCUCGC with parameters: match = 3,
mismatch = 1, ogh = 3, ogv = 3, egh = 1, and egv = 1. The optimal
local alignment obtained is GCCAUUG and GCC–UCG.

Fig. 2. A logical view of an Altera Stratix V A7 FPGA: logic array blocks
(blue), embedded memory blocks (green), and DSP blocks (red)

the preceding anti-diagonal, but are mutually independent of
one another within the same anti-diagonal.

B. FPGAs

FPGAs are reconfigurable integrated circuits consisting of
programmable routing networks linking together logic array
blocks, embedded memory blocks, and digital signal processor
(DSP) blocks, see Fig. 2. In contrast to the fixed datapaths and
topologies found in CPUs and GPUs that process program
instructions, FPGA resources may be configured and linked
together to create custom instruction pipelines through which
data is processed. Dynamically creating custom pipelines
to process each target application increases throughput per-
formance and power efficiency by reducing the amount of
superfluous functional units in silicon.

Traditionally, hardware developers design and verify dig-
ital circuits on FPGAs at the register-transfer level (RTL)
using hardware description languages (HDLs) like Verilog
and VHDL. Unfortunately, HDLs are verbose and error prone

low-level languages akin to assembly language but with an
extra complexity that comes with an explicit notion of time.
Just as software developers gained from transitioning from
assembly to C/C++ and other higher-level languages, hardware
developers want the ease, portability, and productivity that
comes with a standard and open higher level of abstraction.

C. OpenCL and Altera Vendor Extensions

OpenCL is an open, royalty-free standard for cross-platform
parallel programming of heterogeneous systems. Therefore,
unlike other proprietary HLS tools available for FPGAs,
OpenCL is both vendor and architecture agnostic. The Altera
SDK for OpenCL comforms to the OpenCL 1.0 specification
for embedded profiles and supports several features in the
OpenCL 1.1 and 1.2 specifications [3]–[5]. The OpenCL
embedded profile is a subset of the full profile, but with
more flexible requirements and more optional features, such
as optional support for online kernel compilation.

The OpenCL specification clearly defines a platform model,
memory model, execution model, and programming model,
while permitting Khronos, cross-vendor, and vendor-specific
extensions thereof. These models are exposed to developers
through the OpenCL platform and runtime API and the
OpenCL C programming language. Each vendor is allowed
significant freedom to implement their platform and runtime
internals as long as their implementations abide by the behav-
ior mandated in the OpenCL specification.

In the OpenCL platform model, Altera
FPGAs are dedicated OpenCL accelerators
(CL DEVICE TYPE ACCELERATOR) that contain
a memory hierarchy, see Table I, following a relaxed
consistency memory model and communicate with the host
processor using a peripheral interconnect such as PCIe. Each
Altera FPGA can have multiple in-order command queues
associated with it that can execute independent enqueue
commands concurrently. As part of the embedded profile,
kernels are compiled offline with the Altera OpenCL compiler,
e.g., ”aoc smith waterman.cl -o smith waterman.aocx.” The
previous command compiles every kernel in the source file
smith waterman.cl for the default target board and saves the
output in the binary file smith waterman.aocx, the content
of which is then passed to clCreateProgramWithBinary at
runtime to create an OpenCL program object. Like most other
C/C++ compilers, the ”-D” compiler option may be used to
provide an easy and convenient means to pass compile-time
literal constants, such as required work-group sizes and the
loop unroll factors in our kernels to instantiate a specific
number of Smith Waterman processing elements.

An important Altera implementation detail of the OpenCL
execution model that we take advantage of is the work-item
ordering within a pipeline. The OpenCL specification defines
as part of the programming model that a work-item executes
an instance of a kernel as part of a work-group that makes up
an NDRange. However, the execution model doesn’t specify
in what order work-items must start executing. In the Altera
implementation, work-groups and work-items in an NDRange



TABLE I
OPENCL MEMORY MODEL FOR FPGAS

OpenCL Memory FPGA Memory
global external (e.g., DDR3-1600)
constant cache
local embedded (e.g., M20K)
private registers (e.g., MLAB)

a t t r i b u t e ( ( r e q d w o r k g r o u p s i z e (X, 1 , 1 ) ) )
k e r n e l vo id worker ( g l o b a l c o n s t i n t ∗ i n p u t ,

g l o b a l i n t ∗ o u t p u t ) {
s i z e t i = g e t g l o b a l i d ( 0 ) ;
o u t p u t [ i ] = i n p u t [ i ] ;

}

Fig. 3. A producer-consumer model in OpenCL

spawn such that get group id(dim) and get local id(dim)
iterate faster than get group id(dim + 1) and get local id(dim
+ 1), respectively. Therefore in a one-dimensional NDRange,
work-items spawn sequentially from 0 to get global size(0)
- 1. Furthermore, barring id-dependent branching, work-items
maintain their spawning order throughout kernel execution [6],
[7].

Altera’s channels extension (cl altera channels) provides
an easy and efficient mechanism to pass built-in data types
between work-items in the same kernel, work-items in dif-
ferent kernels, and work-items in kernels and I/O interfaces.
Altera’s channels are first-in, first-out (FIFO) buffers defined
with a channel ID and buffer depth, see Fig. 3 and 4 for a
comparison of a simple producer-consumer model in OpenCL
without and with the Altera channels extension, respectively.
Furthermore, a work-item will block if it attempts to write to a
full channel or read from an empty channel, and thus channels
may also be used as synchronization points between two
work-items. This is important because the execution model in
the OpenCL specification only requires two synchronization
points: at explicit barriers for all work-items within a work-
group while a kernel is running, and at an implied barrier upon
kernel completion for all work-items in an NDRange.

II. IMPLEMENTATION

Our FPGA implementation is based roughly on the Novo-
G design by George, Lam and Stitt [8]. The DNA and
RNA sequence elements in our implementation are stored
one element per byte. The four least significant bits store the
four nucleic acids and every wildcard permutation of adenine
(A), cytosine (C), guanine (G), and thymine (T) or uracil
(U), and the four most significant bits store control signals.
The control signals allow our implementation to efficiently
stream database sequences and query sequences through our
unidirectional linear systolic array via channels.

Next, note that the forward and backward pass of the
Smith Waterman algorithm areO(mn) andO(n), respectively,
where typically m is on the order of millions or billions and
n is on the order of thousands or less. Therefore we decided

# pragma OPENCL EXTENSION c l a l t e r a c h a n n e l s : e n a b l e

c h a n n e l i n t c i d [ 2 ] a t t r i b u t e ( ( d e p t h ( 0 ) ) ) ;

a t t r i b u t e ( ( r e q d w o r k g r o u p s i z e (X, 1 , 1 ) ) )
k e r n e l vo id p r o d u c e r ( g l o b a l c o n s t i n t ∗ i n p u t ) {

s i z e t i = g e t g l o b a l i d ( 0 ) ;
w r i t e c h a n n e l a l t e r a ( c i d [ 0 ] , i n p u t [ i ] ) ;

}

a t t r i b u t e ( ( a u t o r u n ) )
a t t r i b u t e ( ( r e q d w o r k g r o u p s i z e (X, 1 , 1 ) ) )
k e r n e l vo id worker ( vo id ) {

i n t tmp = r e a d c h a n n e l a l t e r a ( c i d [ 0 ] ) ;
w r i t e c h a n n e l a l t e r a ( c i d [ 1 ] , tmp ) ;

}

a t t r i b u t e ( ( r e q d w o r k g r o u p s i z e (X, 1 , 1 ) ) )
k e r n e l vo id consumer ( g l o b a l i n t ∗ o u t p u t ) {

s i z e t i = g e t g l o b a l i d ( 0 ) ;
o u t p u t [ i ] = r e a d c h a n n e l a l t e r a ( c i d [ 1 ] ) ;

}

Fig. 4. A producer-consumer model in OpenCL using the Altera channels
extensions

to offload the forward pass to the FPGA using OpenCL.
Furthermore, since the target application should continu-

ously align query sequences to database sequences, we decided
to take advantage of the asynchronous execution between the
host and OpenCL device by carving out the optimal alignment
database sequence region beginning at i = Omax − Amax

and ending at i = Omax, which is the row containing
the maximum alignment score Smax. We call Omax and
Amax the offset and alignment indices, respectively, associated
with Smax. The benefit to this implementation is that we
can calculate the maximum alignment score on the FPGA
significantly faster by not storing a prohibitively large scoring
matrix to global memory. We also then need only to transfer
several bytes back to the host over PCIe instead of anywhere
between megabytes to terabytes of data depending on the
length of the database and query sequences. Once we obtain
the carved out database sequence region from the FPGA,
the host can perform the Smith Waterman algorithm on a
minuscule subsequence of the full database sequence while the
FPGA carves out another alignment region for a new database
or query sequence, effectively increasing the systems overall
throughput with an efficient pipeline.

Similar to calculating a scoring matrix to obtain Smax, we
must calculate an alignment matrix to obtain Amax. To begin,
set Ai,0 = 0 for 0 ≤ i ≤ m and A0,j = 0 for 0 ≤ j ≤ n. Next,
set AHi,0 = 0 for 1 ≤ i ≤ m and AV 0,j = 0 for 1 ≤ j ≤ n.
Then for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Ai,j =



0, Si,j = 0,
Ai−1,j−1 + 1, Si,j = Si−1,j−1 + σ(ai, bj),
Ai,j−1, Si,j = Si,j−1 − ogh,
Ai−1,j + 1, Si,j = Si−1,j − ogv,
AHi,j−1, Si,j = SHi,j−1 − egh,
AV i−1,j + 1, Si,j = SV i−1,j − egv,

(2)
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Fig. 5. A unidirectional linear systolic array of Smith Waterman processing
elements and dependency graph for calculating the scoring and alignment
matrices

where

AHi,j =

{
Ai,j−1, Si,j−1 − ogh ≥ SHi,j−1 − egh,
AHi,j−1, Si,j−1 − ogh < SHi,j−1 − egh,

and

AV i,j =

{
Ai−1,j + 1, Si−1,j − ogv ≥ SV i−1,j − egv,
AV i−1,j + 1, Si−1,j − ogv < SV i−1,j − egv.

We processed the elements of the scoring and alignment
matrices together using a unidirectional linear systolic array
of Smith Waterman processing elements, see Fig. 5.

A. Task

A task kernel executes a single work-group containing a
single work-item. We implemented our task kernel much like a
standard single-threaded host implementation because a single
work-item doesn’t require any inter work-item communication
or synchronization, see Fig. 6. Each iteration of the outer loop
parses a database sequence element and streams it through
the unidirectional linear systolic array of Smith Waterman
processing elements created by fully unrolling the inner loop.
We used private memory to communicate between adjacent
diagonal, horizontal, vertical Smith Waterman cells. The major
benefit to using a task kernel is that the Altera OpenCL
compiler automatically pipelines the outer loop of our kernel
based upon the dependency analysis it performs.

B. NDRange

An NDRange kernel executes one or more work-groups
containing one or more work-items. We implemented our
NDRange kernel by slightly refactoring our task kernel to use a
one-dimensional NDRange and the Altera channels extension,
see Fig. 7. Analogous to our task kernel, each work-item

a t t r i b u t e ( ( r e q d w o r k g r o u p s i z e ( 1 , 1 , 1 ) ) )
k e r n e l vo id smi th wate rman ( i n t m, . . . ) {

. . .
f o r ( s i z e t i = 0 ; i < m; ++ i ) {

i n t S d p r i v a t e [N ] ;
i n t S h p r i v a t e [N ] ;
i n t S v p r i v a t e [N ] ;
. . .
# pragma u n r o l l N
f o r ( s i z e t j = 0 ; j < N; ++ j ) {

i n t Sd = S d p r i v a t e [ j ] ;
i n t Sh = S h p r i v a t e [ j ] ;
i n t Sv = S v p r i v a t e [ j ] ;
. . .
smi th wate rman pe ( . . . ) ;
. . .
S d p r i v a t e [ j + 1 ] = S ;
S h p r i v a t e [ j + 1 ] = S ;
S v p r i v a t e [ j ] = S ;

}
}

}

Fig. 6. Pseudocode for a task-based Smith Waterman kernel

in the one-dimensional NDRange parses a database sequence
element and streams it through the unidirectional linear sys-
tolic array of Smith Waterman processing elements created
by fully unrolling the main loop. Just like in our task kernel,
we used private memory to communicate between adjacent
horizontal Smith Waterman cells. However, communicating
between adjacent diagonal and vertical Smith Waterman cells
requires communicating between work-items, possibly in dif-
ferent work-items, during kernel execution, which prohibits
us from using local memory and explicit barriers. Therefore
to efficiently communicate between adjacent diagonal and
vertical cells without going to global memory, we used one
depth channels to communicate between adjacent diagonal
cells (zero depth channels would result in deadlocks) and
zero depth channels to communicate between adjacent vertical
cells.

III. EXPERIMENT

We performed the following experiments using the our task
kernel executing on a Nallatech PCIe-385n board (populated
with D-Link 1000Base-TX SFP modules) in an HP Z620
workstation running Windows 7 Professional 64-bit with an
internal build of Altera’s Quartus II 13.1 with the Altera
SDK for OpenCL [9]. Our Nallatech board contains an Altera
Stratix V FPGA (part number 5SGXMA7H2F35C2) and the
entire board fits in a 25 watt power envelope.

We used the m = 1259197 elements of a megavirus’s
complete genome (NC 016072.1) as our database sequence
and the first n elements of a mamavirus’s complete genome
(JF801956.1) as our query sequence, and set match = 2,
mismatch = 1, ogh = 2, ogv = 2, egh = 1, and egv = 1.

We measured the performance of our Smith Waterman
algorithm implementation in cell updates per second (CUPS)



# pragma OPENCL EXTENSION c l a l t e r a c h a n n e l s : e n a b l e

c h a n n e l i n t S d p r i v a t e [N] a t t r i b u t e ( ( d e p t h ( 1 ) ) ) ;
c h a n n e l i n t S v p r i v a t e [N] a t t r i b u t e ( ( d e p t h ( 0 ) ) ) ;

a t t r i b u t e ( ( r e q d w o r k g r o u p s i z e (X, 1 , 1 ) ) )
k e r n e l vo id smi th wate rman ( i n t m, . . . ) {

s i z e t i = g e t g l o b a l i d ( 0 ) ;
. . .
i n t S h p r i v a t e [N ] ;
# pragma u n r o l l N
f o r ( s i z e t j = 0 ; j < N; ++ j ) {

i n t Sd = r e a d c h a n n e l a l t e r a ( Sd channe l [ j ] ) ;
i n t Sh = S h p r i v a t e [ j ] ;
i n t Sv = r e a d c h a n n e l a l t e r a ( Sv channe l [ j ] ) ;
. . .
smi th wate rman pe ( . . . ) ;
. . .
w r i t e c h a n n e l a l t e r a ( Sd channe l [ j + 1 ] , S ) ;
S h p r i v a t e [ j + 1 ] , S ) ;
w r i t e c h a n n e l a l t e r a ( Sv channe l [ j ] , S ) ;

}
}

Fig. 7. Pseudocode for an NDRange-based Smith Waterman kernel

given by

ν =
m× n
t

(3a)

= f × λ, (3b)

where m and n are the lengths of the database and query
sequences, respectively, t is the kernel time to fill in the scoring
matrix, f is the frequency of the Smith Waterman compute
unit synthesized in the FPGA, and λ is the number of cell
updates computed concurrently. We then calculated the power
efficiency as the number of CUPS per watt that the entire
FPGA board consumes, which we take to be the full 25 watts.

IV. RESULTS

A. Resource Utilization

The FPGA resource utilization for our task-based Smith
Waterman kernel is given in Table II. Our unidirectional
linear systolic array of Smith Waterman processing elements
consumes 0.23% of logic, 0.10% of registers, and 0.01% of
memory blocks per processing element. There is an overall
overhead of 22% for logic, 7.9% for registers, and 12% for
memory blocks.

TABLE II
FPGA RESOURCE UTILIZATION

n f Logic Registers Memory Blocks
16 210 MHz 25% 9% 12%
32 195 MHz 29% 11% 13%
64 209 MHz 36% 14% 13%

128 186 MHz 51% 20% 13%
256 193 MHz 80% 32% 15%

Total N/A 234720 938880 2560

B. Performance and Power Efficiency

The FPGA performance and power efficiency for our task-
based Smith Waterman kernel is given in Table III. We achieve
0.095 GCUPS per Smith Waterman processing element with
a power efficiency that reaches 0.988 GCUPS/W. Our task-
based Smith Waterman kernel operates around 200 MHz with
a latency of 2 clock cycles per cell update.

TABLE III
FPGA PERFORMANCE AND POWER EFFICIENCY

n f GCUPS GCUPS/W
16 210 MHz 1.67 0.067
32 195 MHz 3.11 0.124
64 209 MHz 6.69 0.268

128 186 MHz 11.9 0.476
256 193 MHz 24.7 0.988

V. CONCLUSION

For n = 256, CPUs achieve 2.5 GCUPS running at 0.038
GCUPS/W in [10]. Meanwhile, GPUs have been shown to
reach 9.4 GCUPS in [11], 14 GCUPS in [12], and 16 GCUPS
in [13] with power efficiencies of 0.039, 0.058, and 0.067
GCUPS/W, respectively. Our OpenCL implementation of the
Smith Waterman algorithm for the FPGA outperforms the
best CPUs and GPUs above by a factor of 9.9 and 1.5
in absolute performance, and 26 and 15 in relative power
efficiency, respectively. Furthermore, we have much room in
our design for improvement. Our current implementation has
an instantiation interval of 2, which means we could readily
double our throughput to 49.4 GCUPS by interleaving two
n = 256 query sequences per kernel execution. Alternatively,
if we reduce the latency from 2 clock cycles per cell update
to 1, we would also double our throughput to 49.4 GCUPS.
Also, our current implementation can be extended to stream
sequences and results to and from I/O using the Altera
channels extension just like the Novo-G design by George,
et al [8]. By streaming from I/O, we would save a significant
amount of resources presently used to interface with global
memory. Those resources would then be redistributed to build
more Smith Waterman processing elements.
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