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Abstract—Double precision Floating Point (FP) arithmetic op-
erations are widely used in many applications such as image and
signal processing and scientific computing. Field Programmable
Gate Arrays (FPGAs) are a popular platform for accelerating
such applications due to their relative high performance, flexi-
bility and low power consumption compared to general purpose
processors and GPUs. Increasingly scientists are interested in
double precision FP operations implemented on FPGAs. FP
division and square root are much more difficult to implement
than addition and multiplication. In this paper we focus on a
fast divider design for double precision floating point that makes
efficient use of FPGA resources including embedded multipliers.
The design is table based; we compare it to iterative and digit
recurrence implementations. Our division implementation targets
performance with balanced latency and high clock frequency. Our
design has been implemented on both Xilinx and Altera FPGAs.
The table based double precision floating point divider provides a
good tradeoff between area and performance and produces good
results when targeting both Xilinx and Altera FPGAs.

I. INTRODUCTION

The IEEE 754 standard [7] specifies the common formats
for representing floating point numbers, including single and
double precision. Double precision is widely used in scientific
applications since it can represent a wider range of values
with greater precision than single precision. There are many
computations where a list of input values are summed and
then normalized. Even if the input values are single precision,
the accumulation and division are done in double precision
to retain accuracy. In hardware, double precision division
operates more slowly and requires more hardware resources
than single precision. Speed is measured in number of clock
cycles to produce a result (latency), clock cycle time, and total
time for a single operation. Many of these resource issues
compete with one another. For example, a subtractive divider,
similar to the long division taught in grade school, uses few
resources and can be implemented with a small clock cycle,
but has a long latency. In contrast, a multiplicative divider uses
more resources, a longer clock cycle, and has a shorter latency.
The ideal divider optimizes all three of these constraints.

In this paper we describe a double precision, IEEE com-
pliant floating point divider, adopted from [3], which uses
a combination of Look Up Tables (LUTs) and Taylor series
expansion, and thus tries to balance the competing design goals
of fast operation with a small amount of hardware. Due to
its use of LUTs and multipliers, this design is particularly
well suited for FPGA implementation with their embedded

multipliers and RAM. The divider that we implement consists
of a reciprocal unit followed by a multiplication unit, so the re-
ciprocal unit can be separated into an independent component
in the library.

Note that our implementation is designed to handle any
width of exponent and mantissa, and not just those formats
specified by the IEEE 754 floating point standard. To support
this, we make use of parameterized modules, including and
gates, or gates, adders and subtractors. In this paper we have
focused on the results for a double precision divider; hence
other formats are not covered here.

The rest of this paper is organized as follows. Background,
including the IEEE double precision format representation as
well as three famous methods for computing floating point
division are presented in Section II. Section III describes
the algorithm in detail and Section IV introduces how to
implement the divider. Section V presents the results of our
project and a comparison with other division implementations
on both Altera and Xilinx hardware. The paper ends with
conclusions and future work.

II. BACKGROUND

A. Double Precision Format Representation

The IEEE 754 double precision standard format is repre-
sented using one sign bit, 11 exponent bits, and 52 mantissa
bits, for a total of 64 bits. The exponent bias is 1023, and for
normalized numbers, the leading 1 is not explicitly stored. The
value represented is therefore:

(−1)sign ∗ 2exponent−1023 ∗ 1.mantissa

To implement the division of two floating point numbers,
Z = X/Y ; the sign bit, exponent and mantissa of Z must
be calculated and the result normalized. The sign is the XOR
of the sign bits of X and Y , while the resulting exponent
(before normalization) is the difference between the two input
exponents with the bias suitably handled. The bulk of the
computation is the division operation, which is the same as
integer division. We will focus on this part for the remainder
of the paper.

The IEEE standard also specifies other values, including
subnormal numbers, NaN, and ±∞. We do not consider these
values further.
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B. Methods For Computing Floating Point Division

There are three main methods used to implement floating
point division. They are digit recurrence or subtractive,
iterative or multiplicative and table-based. Each method is
discussed in more detail below.

1) Digit Recurrence: Digit recurrence algorithms compute
one digit of the result per clock cycle and are based on the
long division commonly taught in grade school for performing
division by hand. The most widely used digit recurrence
method is known as SRT after the three people, Sweeney,
Robertson, and Tocher who invented it [11]. The textbook
Digital Arithmetic [2] gives more details. Freiman [4] provides
a good example of the SRT method based on non-restoring
division; the radix of the example is 2. For binary arithmetic,
the approach used to obtain more than one bit per cycle
employs a radix higher than 2.

2) Iterative Method: Iterative methods are based on multi-
plications that gives you intermediate results that converge to
the highest number of bits of precision required. Two widely
used iterative methods for floating point division are Newton
Raphson and Goldschmidt [13], [14], [12], [5].

With Newton-Raphson, the inverse of the divisor is com-
puted and then multiplied with the dividend using a double
precision multiplier. In order to find 1/Y , the iteration is
seeded with S0, an estimate to 1/Y ; the iteration is: Si+1 =
Si ∗ (2− Y ∗ Si). The algorithm iterates until S approximates
the required precision.

Goldschmidt’s algorithm also uses an iterative loop to
calculate the quotient. The difference between this and
Newton-Raphson is that Goldschmidt’s algorithm multiplies
both the dividend and the divisor. The iteration completes
when the divisor is approximately equal to one and the
required precision is reached. The value by which the
dividend and divisor are multiplied in each iteration is 2 -
current value of the divisor.

3) Table based Method: Two table based methods are dis-
cussed here. The first is currently used to implement variable
precision dividers in the VFLOAT library [9], [16], [15]. The
second is an improved algorithm whose table size grows more
slowly as the bit width of the inputs grows. These methods
use a stored value for the initial guess to a result. They use
Taylor series expansion to obtain the required number of bits
of precision.

The first approach, from [6], is the divider currently used
in VFLOAT. It makes use of two multipliers and one look up
table to implement division. In the single precision floating
point divider implementation, the size of the first multiplier
is 24× 24 bits of input with 48 bits of output 48; the second
multiplier has input 28×28 bits with an output of 56 bits. The
look up table has 12 bits for input, 28 for output, for a total
size of approximately 16K bytes. However, the disadvantage
of this algorithm is that the size of the look up table increases
exponentially with the bit width of the input. It is therefore
impractical to implement a double precision divider with this
approach since the LUT would be prohibitively large. For this

reason we have changed to a different divider algorithm that
scales better as the size of the division operation grows [3]
. This algorithm requires a smaller look up table and several
small multipliers. The remainder of this paper covers details
of this algorithm and its implementation. The next section
explains the algorithm that we use. Section IV covers the
implementation of the divider using VHDL. Experimental
results obtained from this implementation and a comparison
to previous methods are presented in Section V. Finally we
conclude and present future work.

III. ALGORITHM DESCRIPTION

The algorithm we use is from [3]. The discussion below is
taken from that paper and more details can be found there. This
approach finds X/Y by first finding the reciprocal of Y and
then multiplying by X . The approach is based on a Taylor
series expansion and makes use of LUTs and multipliers,
resources readily available in FPGAs. To ensure growth of
the look up table is slow, a reduction step is used.

A. Reciprocal Operation

To find the reciprocal 1/Y the algorithm uses three steps:
reduction, evaluation, and post-processing. The top level is
shown in Figure 1.

a) The reduction step: From the IEEE standard, we
know that for Y normalized, 1 ≤ Y < 2. Assume Y has an m
bit significand and k is b(m+ 2)/4c+ 1; Y (k) represents the
truncation of Y to k bits. In the reduction step, define R̂ as
the reciprocal of Y (k). R̂ can be determined using a look up
table with a 14 bit address for double precision. This is due
to the fact that the mantissa is 53 bits with the leading one
represented, so k = 14. The number of bits used for R̂ is 16.

B is defined as the Taylor series expansion of

f(A) = 1/(1 +A)

where A is defined as (Y ×R̂)−1. Note that −2−k < A < 2k.
For Z = 2−k, A can be represented as:

A = A2z
2 +A3z

3 +A4z
4 + ...

where |Ai| ≤ 2k − 1. We ignore the smaller terms that do not
contribute to the double precision result.

b) In the evaluation step: using the Taylor series ex-
pansion,

f(A) = C0 + C1A+ C2A
2 + C3A

3 + C4A
4 + · · ·

≈ C0 + C1(A2z
2 +A3z

3 +A4z
4)

+C2(A2z
2 +A3z

3 +A4z
4)

+C3(A2z
2 +A3z

3 +A4z
4)3

+C4(A2z
2 +A3z

3 +A4z
4)4

≈ C0 + C1A+ C2A
2
2z

4 + 2C2A2A3z
5 + C3A

3
2z

6

Here, Ci = 1 when i is even, Ci = −1 when i is odd.
Simplifying we get:

B ≈ 1−A2z
2 −A3z

3 + (−A4 +A2
2)z

4+
2A2S3z

5 −A3
2z

6

≈ (1−A) +A2
2z

4 + 2A2A3z
5 −A3

2z
6

The above equation is the one used in the implementation.



Fig. 1. Reciprocal block diagram

Fig. 2. Black box of design

c) In the post-processing step: , the result of the recip-
rocal of Y is given by the product of R̂ and B: 1/Y = R̂B.

B. Multiplying Reciprocal by Dividend

After obtaining the reciprocal of the divisor, the final step is
to multiply the reciprocal with X which is the dividend. In our
implementation, this is done before the number is normalized.
Another multiplier is generated for this operation. The final
result of division is obtained by combining the result of X/Y
with the sign and exponent; after X/Y is normalized and
rounded the resulting exponent is appropriately adjusted.

IV. DIVIDER IMPLEMENTATION

The double precision divider is designed as part of the
VFLOAT library available for download from Northeastern
University [9], [16]. Components in the VFLOAT library are
designed to be joined together as a pipeline. Thus they have
inputs READY, STALL, ROUND and EXCEPTION IN and
outputs DONE and EXCEPTION OUT specifically to handle
pipelining. The READY and DONE signals are used for
knowing when the inputs are ready and when the results are
available for use. STALL allows a bubble to be inserted into
the pipeline if needed. Round has two modes: round to zero or
truncate, and round to nearest. The exception signals propagate
an exception flag with the value that may be incorrect through
the pipeline. For division, an exception is identified if the
divisor is zero. Otherwise, the exception input is propagated
to the exception output. The complete list of input ports is:

Fig. 3. Top level components of divider

CLK, RESET, STALL, OP1, OP2, READY, ROUND and
EXCEPTION IN. The output ports are DONE, RESULT, and
EXCEPTION OUT, as shown in Figure 2.

Our implementation of the division algorithm for double
precision floating point is written in VHDL and targets the
two most popular families of commercial FPGAs: Altera and
Xilinx. For tools we use Altera Quartus II 13.0 and the Xilinx
ISE Design Suite 13.4. The designs make use of embedded
multipliers and RAMs, which require using the intellectual
property components provided with each set of tools. For
Altera these are called Megacores; for Xilinx they are called
IP Cores. The two manufacturers also use different simulators;
Altera ships a version of Modelsim called ModelSim-Altera
10.1d while Xilinx has its own simulator, ISim, that is inte-
grated with its tool suite. Both simulators were used to validate
these designs.

Figure 3 shows the top level components of the divider.
The top level divider consists of computation to denormalize
the floating point input (explicitly represent the hidden one),
divider computation which includes a reciprocal and a multipli-
cation of the dividend with the reciprocal, and round to normal
for adjusting the result to standard floating point format.

A. Denormalizer

A normalized floating point number in IEEE 754 standard
format has a sign bit, exponent bits and mantissa bits. As
described in Section II, the stored part of the mantissa does
not include the leading ‘1’; however, this bit is necessary
for computation. All normalized floating point inputs to a
component are sent through a denormalizer which adds this
‘1’ to the head of the mantissa. For the divider, two such steps
are needed, one for the dividend and one for the divisor.

B. Divider

After obtaining the denormalized number, we need to
calculate the sign bit, exponent and quotient of the result. The



Fig. 4. Reciprocal components

sign bit is obtained by XORing the sign bits of the inputs. The
exponent of the result is the exponent of the dividend minus
the exponent of the divisor with the bias suitably handled. Note
that the output of this subtraction might not be the exponent
of the final result, because we still need to normalize the result
after the division operation. The following subsections describe
the computation of the reciprocal and the multiplication with
the dividend to obtain the final mantissa.

1) Reciprocal Operation: Figure 4 shows the hierarchy
of structural components used to implement the reciprocal
algorithm described in Section III-A. The design uses the
reciprocal table to calculate R̂ and 4 multipliers. The lookup
table has 14 address bits and 16 output bits for a total of 32K
bytes. The four multipliers are the following sizes. Multiplier
YR has 17 bit and 58 bit inputs and a 71 bit output; its purpose
is to multiply Y and R̂ in order to get A. Multiplier S has two
14 bit inputs and a 28 bit output; its purpose is to compute
A2 ∗A2 and A2 ∗A3. Multiplier M has 28 bit and 14 bit inputs
and a 42 bit output; it computes the cube of A2. Multiplier L
has one 16 bit and one 58 bit input and a 74 bit output; it
computes R̂ ∗ B. In addition, parameterized adders and logic
gates from the VFLOAT library are used.

2) Multiplier: After determining the reciprocal of the di-
visor, the next step is to multiply this reciprocal with the
mantissa of the dividend. This multiplier is called the mantissa
multiplier. The inputs are 53 bits and 57 bits, and the output
is 110 bits. The number of pipeline stages for this and the
other multipliers in the implementation can be adjusted using
the parameters available in Xilinx Core Generator or Altera
Megacores. After this multiplication, the last component will
round an renormalize the output.

C. Round to Normal

The IEEE standard specifies four rounding modes: Round
to zero, round to nearest, round to negative infinity and round
to positive infinity. In the VFLOAT library, two rounding
options are supported: round to zero or truncation and round to
nearest. Each component has an input signal, round. If Round
is 0, truncation is implemented, else round to nearest. This
operation may change the exponent as well as the mantissa of
the result. The round component also removes the leading ‘1’
from the mantissa of the result for storage in IEEE floating
point format. After this step, the normalized, double precision

floating point result represented in IEEE standard notation will
be on the output port.

V. RESULTS AND COMPARISON

We have implemented our double precision floating point
divider and compared it to other, popular designs. Results are
shown in Table I for designs mapped to Xilinx and Table II
for designs mapped to Altera. As mentioned above, we used
Altera Quartus II 13.0 and the Xilinx ISE Design Suite 13.4
to implement our design. CC is the number of clock cycles
latency. All designs can be pipelined with a throughput of
one clock cycle. Our design has the advantage of working on
both Altera and Xilinx FPGAs. In contrast, the IP cores in
Xilinx and Megacores from Altera are vendor specific. Our
designs allow the user to adjust the number of clock cycles of
latency by adjusting the level of pipelining for each multiplier.
Xilinx allows the designer to choose the latency of the divider
as a parameter in Core Generator. We chose to compare to
latencies of 8, 14 and 20 clock cycles. For Altera Megacores,
the designer is offered a handful of latencies from which to
choose.

The latency of our first implementation is 14 clock cy-
cles on both vendor’s hardware. The maximum frequency
on a Stratix V device(5SGXB6) from Altera is 121MHz.
Implemented on a Xilinx Virtex 6 device (XC6VLX75T), the
maximum frequency is 148MHz. Note that a faster clock
frequency does not necessarily make a better design. Since
our goal is to fit the divider into larger pipelines, the goal is to
balance the clock speeds across all components. In addition,
there is often a tradeoff between high clock frequency and
number of clock cycles latency, as can be seen in these results.
Computing the result in the same total time with a lower clock
frequency dissipates less energy, another design goal. However,
too slow of a latency can slow down the entire pipeline.

We compared our design to several popular methods for
implementing division, including the floating point cores pro-
vided from each manufacturer. Table I shows the synthesis
results of several methods using the Xilinx IDE. Note that
given the same latency, our design provides a better maximum
frequency. This faster frequency comes at the cost of more
hardware resources being used. The last design is reported
from a paper that presents a multiplicative divider [8]. This
design can only support double precision with an error of
2 units in the last place (ulps) while our error is one ulp.
Also, this design has long latency although a fast maximum
frequency. These numbers are reported by the authors; we did
not implement their design.

Table II shows the synthesis results of several methods
using the Altera IDE. The Megacore from Altera has only
three fixed latencies that you can choose from: 10, 24 and
61 clock cycles. In this case, the Altera Megacores provide
the best overall latency. Note that these designs use more
DSP blocks than our design. Also note that we can change
the latency, as our second implementation shows, by adjusting
the pipeline parameter of the MegaCore multipliers. Thus our
divider design is more flexible compared to the one available
from Altera. The last two designs repeat results previously
published in [10]. The Radix 4 digit recurrence implemented
by FloPoCo has larger maximum frequency but also longer



Method Device Latency Max Frequency Total Latency Resource
Our Implementation Virtex 6 14 Clk Cycles 148 MHz 95 ns 934 Registers, 6957 Slice LUTs
IP Core from Xilinx Virtex 6 8 Clk Cycles 74 MHz 108 ns 722 Registers, 3210 Slice LUTs
IP Core from Xilinx Virtex 6 14 Clk Cycles 117 MHz 120 ns 1188 Registers, 3234 Slice LUTs
IP Core from Xilinx Virtex 6 20 Clk Cycles 192 MHz 104 ns 2035 Registers, 3216 Slice LUTs

Multiplicative Virtex 6 36 Clk Cycles 275 MHz 131 ns 2097 Slices, 118K BRAM, 28 18*18
TABLE I. RESULTS AND COMPARISON WITH XILINX

Method Device Latency Max Frequency Total Latency Resource
Our Implementation 1 Stratix V 14 Clk Cycles 121 MHz 116 ns 818 ALMs, 931 Logic Register, 11 DSP block
Our Implementation 2 Stratix V 16 Clk Cycles 145 MHz 110 ns 1004 ALMs, 1105 Logic Register, 13 DSP block
MegaCore from Altera Stratix V 10 Clk Cycles 176 MHz 57 ns 525 ALMs, 1247 Logic Register, 14 DSP block
MegaCore from Altera Stratix V 24 Clk Cycles 237 MHz 101 ns 849 ALMs, 1809 Logic Register, 14 DSP block
MegaCore from Altera Stratix V 61 Clk Cycles 332 MHz 184 ns 9379 ALMs, 13493 Logic Register

Radix 4 Digit Recurrence Stratix V 36 Clk Cycles 219 MHz 164 ns 2605 ALMs, 5473 Logic Register
Polynomial Approx d =2 Stratix V 18 Clk Cycles 268 MHz 67 ns 444 ALMs, 823 Logic Register, 2 M20K,

+ Newton Raphson 9 DSP block
TABLE II. RESULTS AND COMPARISON WITH ALTERA

latency [1]. The method with Polynomial Approximation (d=2)
plus Newton Raphson algorithm [10] has the fastest overall
latency. It also uses significant memory resources compared
to the other designs.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a double precision floating point divider
implementation that produces hardware with a good tradeoff
of frequency, latency and resource usage and that can be
implemented on both Altera and Xilinx FPGAs. Our design
makes use of the embedded multipliers and embedded RAMs
commonly found in modern FPGA fabric. It is flexible, with
the designer able to adjust the maximum number of clock
cycles.

In the future, we plan to investigate our divider further. In
particular, we will focus on improving the frequency by focus-
ing on optimizing the critical path and trying different levels of
pipelining. In addition we plan to adapt our implementation to
support variable precision division on both Altera and Xilinx
FPGAs, and to make it available as part of the VFLOAT library
[9], [16].
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