
GPU-Based Space-Time Adaptive

Processing for Radar

Thomas M. Benson, GTRI

Ryan K. Hersey, GTRI

Edwin Culpepper, AFRL

•Moving radar platform Ą clutter spread in Doppler

•Detecting targets with speeds similar to background
clutter requires clutter suppression

•STAP applies an adaptive 2D filter to suppress clutter
and other sources of interference

•Adaptively optimal solutions are currently
computationally impractical, but families of more efficient
STAP algorithms have been developed

•We focus here on the extended factored algorithm (EFA)

What is STAP?

Ground
Clutter

Noise
Jamming

Power Spectral Density

STAP Filter Response

Clutter Null

Jammer
Nulls

STAP Overview

•Space and slow-time adaptivity
enables simultaneous clutter
and noise jammer suppression

•Detection of weak and/or slow-
moving targets

Covariance
Matrix

Estimation

Adaptive
Weight

Calculation

Adaptive
Weight

Application

ἠ
ρ

ὑ
ὀὀ

Ἷ ἠ Ἶ

ώ
Ἷ ὀ

Ἶἠ Ἶ

Notional EFA Data Flow

Legend
M ς # spatial channels
L ς # range bins/pulse
NCPI - # pulses
ND - # Doppler bins
B - # range bins/training block
P - # steering vectors
TDOF - # temporal degrees
 of freedom

╞╜Ͻ╛Ͻ╝╓ϽἴἷἯ╝╓)

╞╛Ͻ╝╓Ͻ╜Ͻ╣╓╞╕)

╞ ╛Ⱦ║ Ͻ╝╓Ͻ ╜Ͻ╣╓╞╕ ╟Ͻ╜Ͻ╣╓╞╕))

╞╛Ͻ╝╓Ͻ╟Ͻ╜Ͻ╣╓╞╕)

Complexity

EFA Complexity Analysis

Legend
M ς # spatial channels
L ς # range bins/pulse
NCPI - # pulses
ND - # Doppler bins
B - # range bins/training block
P - # steering vectors
TDOF - # temporal degrees
 of freedom

╜Ͻ╣╓╞╕

╜Ͻ╣╓╞╕ ╟Ͻ╜Ͻ╣╓╞╕
║

╟

ἴἷἯ╝╓
╣╓╞╕

Typically, ὄ ὓϽὝ .

For the values of ὄȟὓ, and
Ὕ presented later, the
weighting step exceeds the
system solver for ὖ ψ, with
the caveat that we have ignored
constants.

9ƭƛƳƛƴŀǘƛƴƎ ŎƻƳƳƻƴ ǘŜǊƳǎΧ

•Applies windowing + FFT along the pulse (N) dimension

•Can utilize efficient FFT libraries (e.g., CUFFT), but
requires a corner turn for FFTs over contiguous arrays

•May involve zero-padding prior to the FFT

Summary: Doppler Processing

•Goal: Estimate the background covariance for each
range-Doppler pair

•As a computational savings, range is split into blocks of
B range bins with one covariance estimate for all B bins

•Covariance is then estimated as the mean of two
neighboring blocks in range (local block is a guard)

•The estimate for each range block is the sum of B outer
products, xxH, where x is an M x TDOF length vector

•Equivalently, each covariance entry can be viewed as a
B-length inner product

Summary: Covariance Estimation

•Covariance matrices are Hermitian and positive semi-
definite by construction

•Given sufficient training, linear independence due to
noise, and potential diagonal loading, positive
definiteness is typical and assumed for this work

•Many small linear systems to solve (i.e. batch mode)

•Can utilize Cholesky factorization, Gauss-Jordan
elimination, QR decomposition, etc.

Summary: Linear System Solver

•Applies the generated adaptive weights to Doppler-
processed data cube to obtain an output power map
as a function of Doppler, range, steering vector

•Weights applied to same M x TDOF snapshots used for
outer products in covariance estimation

•Every output point requires a M x TDOF length complex
inner product and normalization

•Adaptive weights are re-used for all B range bins in a
range block

•Workload scales ~linearly with number of steering
vectors

Summary: Weight Application

Data Set Parameters

Parameter Variable Value

Spatial channels M 4

Pulses per CPI NCPI 128

Doppler bins ND 256

Range bins L 512

Training block size B 32

Training blocks LB 16

Temporal DoF TDOF 3

Steering Vectors P 32

Implementation: Doppler Processing

Z
e

ro
 P

a
d
d
in

g

Range

Pulse Range-major order
Window, corner
turn, and zero pad

Pulse-
major order

Batched FFTs
(CUFFT)

Doppler-
major order

•Threads map to pulse indices with a block for each
range bin and channel pair

•No smem usage currently; could likely improve corner
turn performance using smem as a staging area, but
that kernel’s performance is not a bottleneck

•FFTs performed via CUFFT

Implementation: Covariance Estimation

Doppler

Range

TDOF (3)

B (32)

Snapshot extraction

=

ὓϽὝ x ὓϽὝ

range bin 0

=

range bin 1

+

Χ

=

range bin B-1

+

Outer
product
summation

Covariance estimate
for Doppler bin k
and range block Bt.

Doppler bin k

R
a

n
g

e
 b

lo
c
k B

t

•We have Cholesky and Gauss-Jordan implementations;
G-J is ~30% faster for our parameter set

•Applying G-J to the augmented system matrix yields the
identity matrix in place of C and the adaptive weights in
place of the steering vectors

Implementation: Linear System Solver (1)

Covariance
matrix C
(12 x 12)

Steering vectors
(12 x 32)

Augmented system matrix

• Load augmented system matrix into shared memory (4224 bytes)

• Each thread block notionally assigns one thread per element (528), but
we add a blocking factor to manage multiple elements per thread

• Optimal blocking factor determined empirically (3 in this case)

• No pivoting needed, so applying G-J elimination is straightforward

• Workload imbalance: lower diagonal entries in C become zero

Implementation: Linear System Solver (2)

Covariance
matrix C
(12 x 12)

Steering vectors
(12 x 32)

Augmented system matrix

Implementation: Weight Application

Doppler

Range

TDOF (3)

B (32)

Snapshot extraction

range bin b

Doppler bin k

R
a

n
g

e
 b

lo
c
k B

t

= y(0,k,b)

= y(1,k,b)

= y(P-1,k,b)

space-Doppler snapshot (k,b)

Χ

weight vector (0, k, Bt)

weight vector (1, k, Bt)

weight vector (P-1, k, Bt)

Χ

• Each block includes B threads
• Steering vectors stored in shared memory; each thread applies all steering

vectors to the same space-Doppler snapshot (producing P output values)
• B is a small block size, but enables storing the space-Doppler snapshot vector

in registers

GPU
Model

Peak FP32
GFLOPS

Peak
Memory BW

TDP Peak
GFLOPS/W

Compute
Capability

Tesla
M2090

1331 155* GB/s 250W 5.32 2.0

Tesla K20c 3519 182* GB/s 225 W 15.64 2.1

Quadro
Q3000M

432 80 GB/s 75 W 5.76 3.5

GPU Test Platforms

* ECC enabled, which reduces peak memory BW.

• All tests utilize driver version 310.44 with CUDA 5.0 on Linux
• Code is generated for the highest supported compute capability
• Timings are averaged over 32 data sets
• All code was originally tuned for the M2090 with no specific re-

tuning for the K20c or Q3000M

Absolute Performance Results

M2090 K20c Q3000M

Doppler
Processing

0.30 ms 0.24 ms 0.80 ms

Covariance
Estimation

0.82 ms 0.52 ms 2.24 ms

Linear System
Solves

1.21 ms 0.88 ms 5.20 ms

Adaptive
Weighting

1.75 ms 1.31 ms 7.69 ms

Total 4.07 ms 2.95 ms 15.93 ms

Relative Perf 0.7x 1.0x 0.2x

Absolute timing performance on the GPU test platforms.

Relative Performance Results

The linear system solves and adaptive weighting are relatively
more expensive on the Q3000M than the M2090/K20c.

•To estimate relative power efficiency, we use the
thermal design power (TDP) as a surrogate for power
consumption and compute data sets processed per
second per Watt

Relative Power Efficiency Results

M2090 K20c Q3000M

Data sets /
second / W

0.98 1.51 0.84

The Kepler-generation hardware (K20c) offers ~1.5x better
power efficiency than Fermi for this particular application.

Theoretical peak power efficiency for the K20c relative to the
M2090 is 3x higher: 15.64 GFLOPS/W versus 5.32 GFLOPS/W.

•Modern GPUs offer a compelling platform for STAP and
are available in rugged form factors

•Shared memory utilization and our thread mapping
strategies sensitize the linear system solver and adaptive
weighting implementations to parameter changes

•Such optimizations challenge cross-architecture perf portability

•The Kepler-generation hardware exhibited ~1.5x improved
power efficiency relative to Fermi

Conclusions & Summary

