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•Moving radar platform Ą clutter spread in Doppler 

•Detecting targets with speeds similar to background 
clutter requires clutter suppression 

•STAP applies an adaptive 2D filter to suppress clutter 
and other sources of interference 

•Adaptively optimal solutions are currently 
computationally impractical, but families of more efficient 
STAP algorithms have been developed 

•We focus here on the extended factored algorithm (EFA) 

 

What is STAP? 
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STAP Overview 

•Space and slow-time adaptivity 
enables simultaneous clutter 
and noise jammer suppression 

•Detection of weak and/or slow-
moving targets 
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Notional EFA Data Flow 

Legend 
M ς # spatial channels 
L ς # range bins/pulse 
NCPI - # pulses 
ND - # Doppler bins 
B - # range bins/training block 
P - # steering vectors 
TDOF - # temporal degrees 
             of freedom 
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EFA Complexity Analysis 

Legend 
M ς # spatial channels 
L ς # range bins/pulse 
NCPI - # pulses 
ND - # Doppler bins 
B - # range bins/training block 
P - # steering vectors 
TDOF - # temporal degrees 
             of freedom 
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Typically, ὄ ὓϽὝ . 
 
For the values of ὄȟὓ, and 
Ὕ  presented later, the 
weighting step exceeds the 
system solver for ὖ ψ, with 
the caveat that we have ignored 
constants. 
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•Applies windowing + FFT along the pulse (N) dimension 

•Can utilize efficient FFT libraries (e.g., CUFFT), but 
requires a corner turn for FFTs over contiguous arrays 

•May involve zero-padding prior to the FFT 

 

Summary: Doppler Processing 



•Goal: Estimate the background covariance for each 
range-Doppler pair 

•As a computational savings, range is split into blocks of 
B range bins with one covariance estimate for all B bins 

•Covariance is then estimated as the mean of two 
neighboring blocks in range (local block is a guard) 

•The estimate for each range block is the sum of B outer 
products, xxH, where x is an M x TDOF length vector 

•Equivalently, each covariance entry can be viewed as a 
B-length inner product 

Summary: Covariance Estimation 



•Covariance matrices are Hermitian and positive semi-
definite by construction 

•Given sufficient training, linear independence due to 
noise, and potential diagonal loading, positive 
definiteness is typical and assumed for this work 

•Many small linear systems to solve (i.e. batch mode) 

•Can utilize Cholesky factorization, Gauss-Jordan 
elimination, QR decomposition, etc. 

Summary: Linear System Solver 



 

•Applies the generated adaptive weights to Doppler-
processed data cube to obtain an output power map 
as a function of Doppler, range, steering vector 

•Weights applied to same M x TDOF snapshots used for 
outer products in covariance estimation 

•Every output point requires a M x TDOF length complex 
inner product and normalization 

•Adaptive weights are re-used for all B range bins in a 
range block 

•Workload scales ~linearly with number of steering 
vectors 

 

Summary: Weight Application 



Data Set Parameters 

Parameter Variable Value 

Spatial channels M 4 

Pulses per CPI NCPI 128 

Doppler bins ND 256 

Range bins L 512 

Training block size B 32 

# Training blocks LB 16 

Temporal DoF TDOF 3 

Steering Vectors P 32 



Implementation: Doppler Processing 
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•Threads map to pulse indices with a block for each 
range bin and channel pair 

•No smem usage currently; could likely improve corner 
turn performance using smem as a staging area, but 
that kernel’s performance is not a bottleneck 

•FFTs performed via CUFFT 



Implementation: Covariance Estimation 
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•We have Cholesky and Gauss-Jordan implementations; 
G-J is ~30% faster for our parameter set 

 

 

 

 

 

 

•Applying G-J to the augmented system matrix yields the 
identity matrix in place of C and the adaptive weights in 
place of the steering vectors 

Implementation: Linear System Solver (1) 
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• Load augmented system matrix into shared memory (4224 bytes) 

• Each thread block notionally assigns one thread per element (528), but 
we add a blocking factor to manage multiple elements per thread 

• Optimal blocking factor determined empirically (3 in this case) 

• No pivoting needed, so applying G-J elimination is straightforward 

• Workload imbalance: lower diagonal entries in C become zero 

Implementation: Linear System Solver (2) 
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Implementation: Weight Application 
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space-Doppler snapshot (k,b) 
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Χ 

• Each block includes B threads  
• Steering vectors stored in shared memory; each thread applies all steering 

vectors to the same space-Doppler snapshot (producing P output values) 
• B is a small block size, but enables storing the space-Doppler snapshot vector 

in registers 



GPU 
Model 

Peak FP32 
GFLOPS 

Peak 
Memory BW 

TDP Peak 
GFLOPS/W 

Compute 
Capability 

Tesla 
M2090 

1331 155* GB/s 250W 5.32 2.0 

Tesla K20c 3519 182* GB/s 225 W 15.64 2.1 

Quadro 
Q3000M 

432 80 GB/s 75 W 5.76 3.5 

GPU Test Platforms 

* ECC enabled, which reduces peak memory BW. 

• All tests utilize driver version 310.44 with CUDA 5.0 on Linux 
• Code is generated for the highest supported compute capability 
• Timings are averaged over 32 data sets 
• All code was originally tuned for the M2090 with no specific re-

tuning for the K20c or Q3000M 



Absolute Performance Results 

M2090 K20c Q3000M 

Doppler 
Processing 

0.30 ms 0.24 ms 0.80 ms 

Covariance 
Estimation 

0.82 ms 0.52 ms 2.24 ms 

Linear System 
Solves 

1.21 ms 0.88 ms 5.20 ms 

Adaptive 
Weighting 

1.75 ms 1.31 ms 7.69 ms 

Total 4.07 ms 2.95 ms 15.93 ms 

Relative Perf 0.7x 1.0x 0.2x 

Absolute timing performance on the GPU test platforms. 



Relative Performance Results 

The linear system solves and adaptive weighting are relatively 
more expensive on the Q3000M than the M2090/K20c. 



•To estimate relative power efficiency, we use the 
thermal design power (TDP) as a surrogate for power 
consumption and compute data sets processed per 
second per Watt 

 

 

 

 

 

 

 

Relative Power Efficiency Results 

M2090 K20c Q3000M 

Data sets / 
second / W 

0.98 1.51 0.84 

The Kepler-generation hardware (K20c)  offers ~1.5x better 
power efficiency than Fermi for this particular application. 
 
Theoretical peak power efficiency for the K20c relative to the 
M2090 is 3x higher:  15.64 GFLOPS/W versus 5.32 GFLOPS/W. 



•Modern GPUs offer a compelling platform for STAP and 
are available in rugged form factors 

•Shared memory utilization and our thread mapping 
strategies sensitize the linear system solver and adaptive 
weighting implementations to parameter changes 

•Such optimizations challenge cross-architecture perf portability 

•The Kepler-generation hardware exhibited ~1.5x improved 
power efficiency relative to Fermi 

Conclusions & Summary 


