A Nested Dissection Partitioning Method for Parallel Sparse Matrix-Dense Vector Multiplication

HPEC 2013
9/11/2013

Erik Boman, Michael Wolf*
Sandia National Laboratories

*Now at MIT Lincoln Laboratory
Sparse Matrix Partitioning Motivation

• Sparse matrix-dense vector multiplication (SpMV) is common kernel in many numerical computations
 – Iterative methods for solving linear systems
 – PageRank computation
 – Anomaly detection in graphs (spectral methods)

• Need to make parallel SpMV kernel as fast as possible

• Finding good data to processor mapping (partitioning) can greatly improve parallel performance
Parallel Sparse Matrix-Dense Vector Multiplication

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
y_6 \\
y_7 \\
y_8 \\
\end{bmatrix}
\begin{bmatrix}
1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 \\
0 & 8 & 1 & 7 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 \\
4 & 0 & 0 & 0 & 3 & 1 & 3 & 0 \\
0 & 0 & 0 & 6 & 0 & 9 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
4 \\
3 \\
1 \\
4 \\
2 \\
1 \\
\end{bmatrix}
\]

\[y = \mathbf{A}x\]

- Partition matrix nonzeros
- Partition vectors
Objective

- Ideally we minimize total run-time of SpMV
- Settle for “easier” objective
 - Work balanced
 - Minimize total communication volume
 - NP-hard to find optimal solution (polynomial time heuristic algorithms)
- Can partition matrices in different ways
 - 1D
 - 2D
- Can model problem in different ways
 - Graph
 - Bipartite graph
 - Hypergraph
Parallel SpMV

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
y_6 \\
y_7 \\
y_8 \\
\end{bmatrix}
\begin{bmatrix}
1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 \\
0 & 8 & 1 & 7 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 \\
4 & 0 & 0 & 0 & 3 & 1 & 3 & 0 \\
0 & 0 & 0 & 6 & 0 & 9 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
4 \\
3 \\
1 \\
4 \\
2 \\
1 \\
\end{bmatrix}
\]

\[y = Ax\]

- Alternative way of visualizing partitioning
Parallel SpMV Communication

- x_j sent to remote processes that have nonzeros in column j
- Partial inner-products sent to process that owns vector element y_i
1D Partitioning

Each process assigned nonzeros for set of columns

1D Column

Each process assigned nonzeros for set of rows

1D Row
When 1D Partitioning is Inadequate

- For any 1D bisection of nxn arrowhead matrix:
 - nnz = 3n-2
 - Volume ≈ (3/4)n

“Arrowhead” matrix
n=12
nnz=34 (18,16)
volume = 9

1D partitioning of arrowhead matrix yields high volume for SpMV
When 1D Partitioning is Inadequate

• 2D partitioning
• $O(k)$ volume partitioning possible

“Arrowhead” matrix

$n=12$
$nnz=34$ (16,18)
$volume = 2$

2D partitioning of arrowhead matrix reduces volume for SpMV
1D is Inadequate

![Bar chart showing volume (words) vs. number of parts (k=4, k=16, k=64) for 1D hypergraphs and 2D models.](image)

c-73: nonlinear optimization (Schenk)
- UF sparse matrix collection
- n=169,422 nnz=1,279,274
asic680ks: Xyce circuit simulation (Sandia)
- $n=682,712$ \ nnz=2,329,176
1D vs 2D: Strong Scaling for “Scale Free” Networks

Runtime (relative to 16 processor/1D runtime) for SpMV using Trilinos with 1D and 2D distributions

SpMV with 1D distributions not scalable

Source: Boman, Devine, Rajamanickam; “Scalable Matrix Computations on Large Scale-Free Graphs using 2D Graph Partitioning,” Sparse Days, CERFACS, 2013.
2D Partitioning

- More flexibility: no particular part for entire row or column
- More general sets of nonzeros assigned parts
2D Partitioning

- Fine-grain hypergraph
- Graph model for symmetric 2D partitioning
- **Nested dissection symmetric partitioning method**
 - New 2D method
Fine-Grain (FG) Hypergraph Model

- Catalyurek and Aykanat (2001)
- Each nonzero partitioned independently
- Good quality partitions
- Significantly slower than 1D methods

Nonzeros represented by vertices in hypergraph
Fine-Grain Hypergraph Model

- Rows represented by hyperedges
- Hyperedge - set of one or more vertices

<table>
<thead>
<tr>
<th></th>
<th>h1</th>
<th>h2</th>
<th>h3</th>
<th>h4</th>
<th>h5</th>
<th>h6</th>
<th>h7</th>
<th>h8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

16
Fine-Grain Hypergraph Model

• Columns represented by hyperedges
Fine-Grain Hypergraph Model

- 2n hyperedges
Fine-Grain Hypergraph Model

- Partition vertices into k equal sets
- For $k=2$
 - Volume = number of hyperedges cut
- Minimum volume partitioning when optimally solved
- Larger NP-hard problem than 1D

<table>
<thead>
<tr>
<th>h1</th>
<th>h2</th>
<th>h3</th>
<th>h4</th>
<th>h5</th>
<th>h6</th>
<th>h7</th>
<th>h8</th>
<th>h9</th>
<th>h10</th>
<th>h11</th>
<th>h12</th>
<th>h13</th>
<th>h14</th>
<th>h15</th>
<th>h16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

$k=2$, volume = cut = 2

Objective: minimize hyperedge cut, subject to load balance constraint
Graph Model for Symmetric 2D Partitioning

• Exact model of communication for symmetric matrix partitioning
• Given matrix A with symmetric nz structure
• Symmetric partition
 – $a(i,j)$ and $a(j,i)$ assigned same part
 – Input and output vectors have same distribution
• Corresponding graph $G(V,E)$
 – Vertices correspond to vector elements, diagonal nonzero
 – Edges correspond to off-diagonal nonzeros
Graph Model for Symmetric 2D Partitioning

- Corresponding graph $G(V,E)$
 - Vertices correspond to vector elements, diagonal nonzeros
 - Edges correspond to off-diagonal nonzeros
Graph Model for Symmetric 2D Partitioning

• Symmetric 2D partitioning
 – Partition both V and E
 – Gives partitioning of both matrix and vectors
Communication in Graph Model

• Communication is assigned to vertices
• Vertex incurs communication iff incident edge is in different part
• Want small vertex separator -- $S=\{V_8\}$
• For bisection, volume $= 2 |S|$
Nested Dissection Partitioning - Bisection

• Suppose A is structurally symmetric
• Let $G(V,E)$ be graph of A
• Find small, balanced separator S
 – Yields vertex partitioning $V = (V_0, V_1, S)$
• Partition the edges such that
 – $E_0 = \{\text{edges incident to a vertex in } V_0\}$
 – $E_1 = \{\text{edges incident to a vertex in } V_1\}$
Nested Dissection Partitioning - Bisection

- Vertices in S and corresponding edges
 - Can be assigned to either part
 - Can use flexibility to maintain balance

- Communication Volume = 2*|S|
 - Regardless of S partitioning
 - |S| in each phase
Nested Dissection (ND) Partitioning Method

- Recursive bisection to partition into >2 parts
- Use nested dissection!

Nested dissection used to obtain symmetric 2D partitioning
Extension to Nonsymmetric Matrices

• Bipartite graph gives exact model of communication volume
• Apply nested dissection method to A'
 (adjacency matrix for bipartite graph)
 – Use same algorithm as for symmetric case

$$A' = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$$

Nested dissection partitioning easily extended to nonsymmetric matrices
Numerical Experiments

- Structurally symmetric matrices
- $k = 4, 16, 64$ parts using
 - 1D hypergraph partitioning
 - Fine-grain hypergraph partitioning (2D)
 - Good quality partitions but slow
 - Nested dissection partitioning (2D)
- Hypergraph partitioning for all methods
 - Zoltan (Sandia) with PaToH (Catalyurek)
 - Allows “fair” comparison between methods
- Vertex separators derived from edge separators
 - MatchBox (Purdue: Pothen, et al.)
- Heuristic used to partition separators
Test matrices from Rob Bisseling (Utrecht)
Runtimes of Partitioning Methods

- **cage10**
 - 1D
 - Fine-grain
 - Nested dissection
 - **seconds**
 - k=4
 - k=16
 - k=64

- **finan512**
 - 1D
 - Fine-grain
 - Nested dissection
 - **seconds**
 - k=4
 - k=16
 - k=64

- **bcsstk32**
 - 1D
 - Fine-grain
 - Nested dissection
 - **seconds**
 - k=4
 - k=16
 - k=64

- **bcsstk30**
 - 1D
 - Fine-grain
 - Nested dissection
 - **seconds**
 - k=4
 - k=16
 - k=64
Communication Volume: 1D is Inadequate

c-73: nonlinear optimization

- 1D
- Fine-grain
- Nested dissection

![Bar chart showing communication volume for different settings of k (4, 16, 64).](chart.png)
Communication Volume: 1D is Inadequate

c-73: nonlinear optimization

- Fine-grain
- Nested dissection

Words

k=4
k=16
k=64

Values:
- k=4: 0
- k=16: 2000
- k=64: 16000
Communication Volume: 1D is Inadequate

asic680ks: Xyce circuit simulation

- **1D**
- **Fine-grain**
- **Nested dissection**

<table>
<thead>
<tr>
<th>k</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>
Another Important Metric: Messages Sent/Received

cage10

- 1D
- Fine-grain
- Nested dissection

Messages:
- k=4
- k=16
- k=64

finan512

- 1D
- Fine-grain
- Nested dissection

Messages:
- k=4
- k=16
- k=64

bcsstk32

- 1D
- Fine-grain
- Nested dissection

Messages:
- k=4
- k=16
- k=64

bcsstk30

- 1D
- Fine-grain
- Nested dissection

Messages:
- k=4
- k=16
- k=64
Summary

- New 2D matrix partitioning algorithm
 - Nested dissection used in new context
 - Good trade-off between communication volume and partitioning time
 - Communication volume (comparable to fine-grain)
 - Partitioning time (comparable to 1D)
 - Also, fewer messages than fine-grain
- ND method partitioning effective for some matrices
Future Work

• Integrate ND partitioning algorithm into parallel numerical software framework (e.g., Trilinos)
 – Boman, et al. (SNL)
 – Isorropia, Zoltan2 packages

• Analysis of runtimes of SpMV using ND partitioning method

• Partitioning of scale-free networks with ND method
 – 2D methods are important for these problems
 – Finding balanced separator challenging