
Embedded domain specific language for GPU-

accelerated graph operations with automatic

transformation and fusion

Stephen T. Kozacik, Aaron L. Paolini, Paul Fox, James L. Bonnett, Eric Kelmelis

EM Photonics

Newark, DE

Dennis W. Prather

Department of Electrical and Computer Engineering

University of Delaware

Newark, DE

Abstract—Achieving high performance in large-scale graph

analytics using conventional processing systems generally involves

excessive runtimes. In response to this, we present a language for

graph analytics that allows users to write in a familiar, vertex-

centric API while leveraging the computational power of many-

core accelerators. Our prototype toolchain automatically employs

abstract sparse linear algebra (ASLA) operations using custom

semi-rings in order to maximize performance.

Our implementation presents an API similar to Pregel without

requiring the user to write explicit combiners. We map the user’s

algorithm to an efficient, fused ASLA-based approach at compile

time with no runtime overhead. Using this technique, we have

implemented several algorithms, including single-source shortest

path and PageRank. With a GPU-accelerated linear algebra

backend, we can achieve better than 500% speedup over a multi-

core ASLA library, using real and synthetic datasets.

Keywords—Graph Analytics, GPU Acceleration, Linear Algebra

I. INTRODUCTION

Graph analytics is a key component in identifying emerging

trends and threats in many real-world applications in that it

allows the analysis of interconnected systems such as social

networks, commercial relationships, computer networks,

logistics, and more. Large-scale graph analytics frameworks,

such as Apache Giraph and Pregel, provide a convenient means

of developing algorithms for distributed analytics on extremely

large datasets. The “think like a vertex” programming model

used by these frameworks allows algorithm developers to base

their software on an intuitive understanding of relationships in

the graph. These frameworks allow the user to process large

graphs by using many processors and machines; however, to

truly scale to exascale systems and achieve low energy usage

and run time, graph algorithms need to leverage the

computational power of many-core accelerators such as

Graphics Processing Units (GPUs).

One area that has been able to successfully leverage these

systems is sparse linear algebra, which is used in many areas of

scientific and high-performance computing. Because of this, a

new graph-computing paradigm has emerged for performing

graph calculations as sparse matrix calculations using the

abstract algebra concept of semirings. This paradigm, known as

GraphBLAS, is very powerful, but requires a new way of

thinking from analysts.

In this paper we present an embedded domain-specific language

in C++ for creating vertex-centric graph algorithms. This

language, while vertex-centric, is transformed automatically at

compile time into whole-graph operations. These graph

operations are then further optimized for many-core

acceleration by transforming them into abstract sparse linear

algebra operations.

These resultant linear algebra operations can then be run on a

GPU, leveraging the existing body of GPU-accelerated sparse

linear algebra algorithms. We demonstrate this technique on

several algorithms, using both real-world and simulated

datasets, and show the benefits of both GPU acceleration and

conversion of vertex-centric operations to abstract sparse linear

algebra.

II. METHODOLOGY

A. Vertex-Centric EDSL

We have created an embedded domain-specific language

(EDSL) for implementing many-core accelerated graph

algorithms. With this EDSL, a user can create a graph algorithm

from within C++ that is limited only to using those operations

supported within the EDSL. This technique offers us the benefit

of full insight into and control of any data accesses, allowing us

to implement and transform operations as we see fit. This EDSL

is based on Google’s Pregel [1] system for graph processing.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

As in Pregel, a user defines a vertex that sends and receives

messages to define their computation. A user-defined vertex

can currently contain one or more properties, as well as

methods. In the case of PageRank, a vertex contains a single

method to handle incoming messages. Within the user-defined

methods, the user can define their operation in terms of graph-

specific operations (reduce, send messages, etc.) to form an

expression. It should be noted that the internals of this method

make use of operations of our own implementation provided by

our EDSL for graph computations. These operations are heavily

templated, and represent a use of expression templates [2],

which encode operations in their types. For example, to add an

integer and single-precision floating point number in a C++

expression template framework, the resultant type would be

something like Plus<int, float>, where Plus is a class.

Given a vertex type and input data, the user can instantiate a

graph. Once the graph has been constructed, the user then writes

their code that performs operations on the graph. If the user

wants to access a vertex property before, during, or after

iterating, we provide a macro for the user to retrieve this

property from the graph. This information is received as a

vector of the property for each vertex in the graph and remains

resident on the GPU, where it can be manipulated, copied to the

host, or set with data from the host.

When constructing the graph, we automatically invoke a

BuildIteration function. This function essentially extracts the

expression template from the user-defined method, which

encodes the intent of the function, and converts the method into

a runnable form. Below is the expression template associated

with the previously-shown HandleMessages function for

PageRank.

The outermost type is SendMessages, which represents the

terminating (returned) statement in the HandleMessages

function of PageRankVertex. Internally, the BuildIteration

function will recursively break down the expression until it is

completely decomposed into its fundamental expressions,

which is accomplished through the use of function template

overloads for each of the fundamental types. Each of these

overloads returns a lambda function that invokes the underlying

implementation of the function. Expressions that are composed

of one or more sub-expressions will be built from their

constituent lambda functions that result from independent

conversions. In this way, an aggregate function will be built.

B. GPU Accelerating GraphBLAS Operations

We created a GPU-accelerated library for both GraphBLAS-

style operations on custom semirings and elementwise

operations. We implemented scalar-vector multiplication and

vector addition using the scal, and axpy families of BLAS calls

of the cuBLAS library, respectively.

For matrix-vector products we used NVIDIA’s CUB library,

which has a fast sparse matrix-vector product, which employs

a merge-based parallel decomposition [3]. To leverage this

feature so as to allow matrix-vector multiplication on custom

semirings, we created a wrapper type containing only the

original type (e.g. double) that is templated on the addition (+)

and multiplication (*) operators. We then used the CUB matrix-

vector product with the original matrix and vector types being

interpreted as this new type. This results in our semiring

addition and multiplication operations being used instead of the

standard addition and multiplication operators. We also used

CUB’s SegmentedReduce functions for performing operations

such as reductions on messages sent from neighboring vertices.

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). The views, opinions, and/or findings

expressed are those of the author(s) and should not be interpreted as

representing the official views or policies of the Department of Defense or the
U.S. Government.

GraphType g{AdjacencyMatrixCSC};
const int nIterations = 10;

for (int i = 0; i < nIterations; ++i)
{
 // Perform Iteration
 const auto& result = g.Iterate();

 // Fetch results if desired...
}

auto& props = GETPROPERTY(g, VertexType::pageRank);
auto mostImportantVertex = MaxElementIndex(props);

ops::BinaryOp<operators::Divides<
 ops::SetProperty_<
 ops::Property<double, 0ul>,
 ops::BinaryOp<operators::Adds<
 double,
 ops::Reduction<
 ops::BinaryOp<operators::Times<
 double,
 ops::Messages<double>
 > >,
 ops::Adds<double, double>
 >
 > >
 >,
 ops::OutDegree_
> >

template <template <typename> class Graph>
struct PageRankVertex {
 using MessageType = double;
 using GraphType = Graph<PageRankVertex>;
 PROPERTIES((double, pageRank))

 auto HandleMessages(Messages<MessageType> msgs) {
 const double r = .85;
 auto update = Reduce(r, (1-r)*msgs);
 auto prop = SetProperty(pageRank, update);
 auto toSend = prop/OutDegree();
 return SendMessages(toSend);
 }
 OutDegree_ OutDegree() {
 return OutDegree_{};
 }
};

Figure 3 – Retrieval of property values from graph

Figure 4 - Expression template derived from PageRankVertex's

HandleMessages function

Figure 1 - Example PageRank vertex type

Figure 2 - PageRank example (calling code)

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

An example of constructing an optimized Single-Source

Shortest Path algorithm using this library is shown below.

C. Fusing Graph Operations to Linear Algebra Operations

By recursively breaking down the type constructed using our

EDSL described in the above section, we can directly translate

vertex-centric operations to matrix and vector operations,

where the graph is represented as an adjacency matrix and

vertex properties are represented for the whole graph as a

vector. In the case of many Pregel functions, a different

message is sent to each vertex, resulting in generation of a

temporary matrix to hold the messages. Often, however, the

receiving vertex is only interested in a reduced form of the

messages, such as the minimum in the case of single-source

shortest path. In Pregel, this is exploited by having the user

define explicit combiners. Because of the nature of our

language, we have found that we are able to perform this

optimization automatically. Additionally, in performing this

operation we are often able to convert the operation into a linear

algebra operation on a semiring.

Often, a single graph operation does not directly translate to a

linear algebra operation, and so we must fuse several operations

to phrase the problem in terms of abstract sparse linear algebra.

The act of fusion can result in operations that not only

parallelize better, but can also represent an overall reduction in

operation count and temporary data. The first step in this

process is to transform the EDSL operations into element-wise

operations on the graph structure. An example transformation

result for our PageRank test is shown in Figure 6.

After this transformation, we iterate through the graph, looking

for opportunities to rearrange operations in order to facilitate

fusion. We then iterate through the rearranged version, looking

for fusion candidates. An example of a fusion candidate is an

element-wise product followed by a reduction.

In this case, the operation can be transformed into a matrix-

vector product on a semiring where the element-wise product

operation becomes the multiplication operation and the

reduction operation becomes the addition operation. The fusion

of the type in Figure 6 can be seen in Figure 7.

Figure 6 - PageRank Iteration type after transformation

Figure 7 - Fused PageRank iteration type

III. EVALUATION

A. Experimental Setup

To test the efficacy of both our frontend language and our

backend library, we created implementations of three common

graph algorithms. We tested these algorithms on three real-

world datasets as well as on synthetic data of 9 different sizes.

B. Experimental Platform

We benchmarked our software on the following hardware:

 CPU: Intel Core i7-5930K CPU @ 3.50GHz (6 Cores,

12 Threads)

 RAM: 16 GB DDR4 2133 MHz

 GPU: Nvidia GeForce GTX Titan X with CUDA 7.5

 Software: Ubuntu 14.04, g++ 5.3, mpich2 3.0.4-6,

CombBLAS 1.5.0

// The user can read in the matrix from an mtx file
auto adjMat = ReadCsrFromMatrixMarket<double>(
 matrixPath);

auto inf = std::numeric_limits<double>::infinity();

CudaCsrMatrix<double> gpuAdjMat(adjMat);
CudaVector<double> minDistD(adjMat.m(), inf);
minDistD[5] = 0.0;

auto addition = Min<double, double>{};
auto multiplication = Adds<double, double>{};
minDistD = Transform(
 MvProd(trans(gpuAdjMat), minDistD, addition,

multiplication), minDistD, addition);

ops::BinaryOp<operators::Divides<
 ops::SetProperty_<
 ops::Property<double, 0ul>,
 ops::BinaryOp<operators::Adds<
 double,
 ops::BinaryOp<operators::Times<
 double,
 ops::MvProduct<
 ops::Adds<double, double>,
 ops::Times<double, double>,
 ops::AdjMatTransposed<double>,
 ops::MessageMember<double>
 >
 > >
 > >
 >,
 ops::OutDegree_
> >

ops::BinaryOp<operators::Divides<
 ops::SetProperty_<
 ops::Property<double, 0ul>,
 ops::BinaryOp<operators::Adds<
 double,
 ops::BinaryOp<operators::Times<
 double,
 ops::Reduction<
 ops::ElementWiseProd<
 ops::AdjMatTransposed<double>,
 ops::MessageMember<double>
 >,
 ops::Adds<
 double,
 double>
 >
 >
 > >
 >
 >,
 ops::OutDegree_
> >

Figure 5 - Accelerated Single Source Shortest Path Algorithm using

our GraphBLAS backend

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

C. Algorithms

The three algorithms that we created were: Page Rank, Single-

Source Shortest Path, and Single-Source Widest Path. Page

Rank, which involves finding the most important node in a

graph, was chosen due to its utility in several fields and its ease

of implementation in several different graph programming

paradigms. Next, we chose Single-Source Shortest Path. In

addition to its simplicity, this algorithm was chosen because it

lends itself easily to direct implementation with abstract sparse

linear algebra. Single-Source Widest Path is very similar to

Single-Source Shortest Path, but is special in that, when

implemented in terms of abstract sparse linear algebra, neither

of its operations are standard arithmetic operations.

D. Reference Implementation

CombBLAS was chosen as the reference as it was shown by

Satish et al. [4] to have the highest performance among graph

frameworks for the chosen algorithms. To make the fairest

possible comparison, we chose high-end CPU hardware and

used MPI to parallelize the CPU operations. Nine MPI

processes were used because CombBLAS requires a square

number of processes.

Table 1 - Datasets used for benchmarking

Data Set Vertices Edges

Wikipedia 3,566,907 45,030,389

LiveJournal 4,847,571 68,993,773

cage15 5,154,859 99,199,551

E. Real World Datasets

We chose the LiveJournal and Wikipedia datasets as these were

used by Satish et al. and represented real-world networks that

were realistic applications for our algorithms (e.g. PageRank).

The cage15 dataset was chosen as it is a large, directed,

weighted graph which we believed would yield interesting

results for both Single-Source Shortest Path and Single-Source

Widest Path. For benchmarking purposes, we transformed this

into a binary adjacency matrix for use with our PageRank

implementation.

F. Synthetic Datasets

To analyze how our performance scales as the number of edges

increases, we generated synthetic data using an approach

similar to Satish et al. [4]. We used the Recursive-Matrix (R-

MAT) model [5] with the “a” parameter set to .57 and the “b”

and “c” parameters set to .19. Using this model, we generated

directed graphs with edge counts from 220 through 228, where

there were 16 edges per vertex. To generate these datasets

we used the PaRMAT multithreaded RMAT graph generator

[6] with generation of duplicate edges disabled.

G. Results

Table 2 - PageRank Runtimes

 Data Set

Platform Wikipedia LiveJournal cage15

CPU 0.160325 0.262824 0.129189

GPU 0.0837797 0.12686 ---

GPU w/Fusion 0.0266712 0.0264352 0.0100554

Figure 8 – PageRank runtimes on synthetic data generated using the

R-MAT model

Figure 8 compares the runtime of our PageRank algorithm

versus the CombBLAS runtime for each graph size.

Table 3 – Single-Source Shortest Path Runtimes

 DataSet

Platform Wikipedia LiveJournal cage15

CPU 0.201485 0.279654 0.15647

GPU 0.0701992 0.0916699 ---

GPU

w/Fusion

0.0244974 0.0234983 0.00801

A similar plot for the Single Source Shortest Path algorithm is

shown in Figure 9. Note that the x axis uses a logarithmic scale

so we observe linear scaling with the number of edges. Using

the same benchmark setup as previously discussed, we are able

to outperform CombBLAS by nearly 1000% in many cases.

Table 4 – Single-Source Widest Path Runtimes

 DataSet

Platform Wikipedia LiveJournal cage15

CPU 0.220781 0.332494 0.135978

GPU 0.0882223 --- ---

GPU

w/Fusion

0.0271287 0.02976 0.0138946

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Figure 9 – Single-Source Shortest Path runtimes on synthetic data

generated using the R-MAT model

For testing the Single-Source Widest Path algorithm on

synthetic data we generated random edge weights distributed

uniformly from 0.0 to 1.0. In this case again we see linear

scaling with the number of edges and are able to outperform

CombBLAS by nearly 1000%.

Figure 10 – Singe-Source Widest Path runtimes on synthetic data

generated using the R-MAT model

IV. CONCLUSION

We have created GPU-accelerated graph analytics toolchain

based on a C++ EDSL that allows users to implement a variety

of algorithms. Even without abstract sparse linear algebra-

backed operations, our GPU path is significantly faster than the

CPU runtime; however, by automatically employing fusion and

ASLA-based techniques within our tool, we achieve significant

additional speedup. Additionally, we anticipate that further

optimization will continue to improve performance.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. . Bik, J. C. Dehnert, I. Horn, N.

Leiser, and G. Czajkowski, “Pregel: A System for Large-scale Graph

Processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 2010, pp.

135–146.

[2] T. Veldhuizen, “C++ Gems,” S. B. Lippman, Ed. New York, NY, USA:

SIGS Publications, Inc., 1996, pp. 475–487.

[3] D. Merrill and M. Garland, “Merge-based Sparse Matrix-vector

Multiplication (SpMV) Using the CSR Storage Format,” in Proceedings
of the 21st ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, New York, NY, USA, 2016, p. 43:1–43:2.

[4] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A.
Hassaan, S. Sengupta, Z. Yin, and P. Dubey, “Navigating the Maze of

Graph Analytics Frameworks Using Massive Graph Datasets,” in

Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, 2014, pp. 979–990.

[5] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A Recursive

Model for Graph Mining,” in Proceedings of the 2004 SIAM
International Conference on Data Mining, 0 vols., Society for Industrial

and Applied Mathematics, 2004, pp. 442–446.

[6] “farkhor/PaRMAT,” GitHub. [Online]. Available:
https://github.com/farkhor/PaRMAT. [Accessed: 06-May-2016].

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

