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Abstract—Achieving high performance in large-scale graph 

analytics using conventional processing systems generally involves 

excessive runtimes. In response to this, we present a language for 

graph analytics that allows users to write in a familiar, vertex-

centric API while leveraging the computational power of many-

core accelerators. Our prototype toolchain automatically employs 

abstract sparse linear algebra (ASLA) operations using custom 

semi-rings in order to maximize performance. 

Our implementation presents an API similar to Pregel without 

requiring the user to write explicit combiners. We map the user’s 

algorithm to an efficient, fused ASLA-based approach at compile 

time with no runtime overhead. Using this technique, we have 

implemented several algorithms, including single-source shortest 

path and PageRank. With a GPU-accelerated linear algebra 

backend, we can achieve better than 500% speedup over a multi-

core ASLA library, using real and synthetic datasets. 
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I. INTRODUCTION  

Graph analytics is a key component in identifying emerging 

trends and threats in many real-world applications in that it 

allows the analysis of interconnected systems such as social 

networks, commercial relationships, computer networks, 

logistics, and more. Large-scale graph analytics frameworks, 

such as Apache Giraph and Pregel, provide a convenient means 

of developing algorithms for distributed analytics on extremely 

large datasets. The “think like a vertex” programming model 

used by these frameworks allows algorithm developers to base 

their software on an intuitive understanding of relationships in 

the graph. These frameworks allow the user to process large 

graphs by using many processors and machines; however, to 

truly scale to exascale systems and achieve low energy usage 

and run time, graph algorithms need to leverage the 

computational power of many-core accelerators such as 

Graphics Processing Units (GPUs). 

 

One area that has been able to successfully leverage these 

systems is sparse linear algebra, which is used in many areas of 

scientific and high-performance computing. Because of this, a 

new graph-computing paradigm has emerged for performing 

graph calculations as sparse matrix calculations using the 

abstract algebra concept of semirings. This paradigm, known as 

GraphBLAS, is very powerful, but requires a new way of 

thinking from analysts. 

 

In this paper we present an embedded domain-specific language 

in C++ for creating vertex-centric graph algorithms. This 

language, while vertex-centric, is transformed automatically at 

compile time into whole-graph operations. These graph 

operations are then further optimized for many-core 

acceleration by transforming them into abstract sparse linear 

algebra operations. 

 

These resultant linear algebra operations can then be run on a 

GPU, leveraging the existing body of GPU-accelerated sparse 

linear algebra algorithms. We demonstrate this technique on 

several algorithms, using both real-world and simulated 

datasets, and show the benefits of both GPU acceleration and 

conversion of vertex-centric operations to abstract sparse linear 

algebra. 

II. METHODOLOGY 

A. Vertex-Centric EDSL 

We have created an embedded domain-specific language 

(EDSL) for implementing many-core accelerated graph 

algorithms. With this EDSL, a user can create a graph algorithm 

from within C++ that is limited only to using those operations 

supported within the EDSL. This technique offers us the benefit 

of full insight into and control of any data accesses, allowing us 

to implement and transform operations as we see fit. This EDSL 

is based on Google’s Pregel [1] system for graph processing. 
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As in Pregel, a user defines a vertex that sends and receives 

messages to define their computation. A user-defined vertex 

can currently contain one or more properties, as well as 

methods. In the case of PageRank, a vertex contains a single 

method to handle incoming messages. Within the user-defined 

methods, the user can define their operation in terms of graph-

specific operations (reduce, send messages, etc.) to form an 

expression. It should be noted that the internals of this method 

make use of operations of our own implementation provided by 

our EDSL for graph computations. These operations are heavily 

templated, and represent a use of expression templates [2], 

which  encode operations in their types. For example, to add an 

integer and single-precision floating point number in a C++ 

expression template framework, the resultant type would be 

something like Plus<int, float>, where Plus is a class. 

 

Given a vertex type and input data, the user can instantiate a 

graph. Once the graph has been constructed, the user then writes 

their code that performs operations on the graph. If the user 

wants to access a vertex property before, during, or after 

iterating, we provide a macro for the user to retrieve this 

property from the graph. This information is received as a 

vector of the property for each vertex in the graph and remains 

resident on the GPU, where it can be manipulated, copied to the 

host, or set with data from the host. 

 

 

When constructing the graph, we automatically invoke a 

BuildIteration function. This function essentially extracts the 

expression template from the user-defined method, which 

encodes the intent of the function, and converts the method into 

a runnable form. Below is the expression template associated 

with the previously-shown HandleMessages function for 

PageRank. 

 

The outermost type is SendMessages, which represents the 

terminating (returned) statement in the HandleMessages 

function of PageRankVertex. Internally, the BuildIteration 

function will recursively break down the expression until it is 

completely decomposed into its fundamental expressions, 

which is accomplished through the use of function template 

overloads for each of the fundamental types. Each of these 

overloads returns a lambda function that invokes the underlying 

implementation of the function. Expressions that are composed 

of one or more sub-expressions will be built from their 

constituent lambda functions that result from independent 

conversions. In this way, an aggregate function will be built. 

B. GPU Accelerating GraphBLAS Operations 

We created a GPU-accelerated library for both GraphBLAS-

style operations on custom semirings and elementwise 

operations. We implemented scalar-vector multiplication and 

vector addition using the scal, and axpy families of BLAS calls 

of the cuBLAS library, respectively. 

 

For matrix-vector products we used NVIDIA’s CUB library, 

which has a fast sparse matrix-vector product, which employs 

a merge-based parallel decomposition [3]. To leverage this 

feature so as to allow matrix-vector multiplication on custom 

semirings, we created a wrapper type containing only the 

original type (e.g. double) that is templated on the addition (+) 

and multiplication (*) operators. We then used the CUB matrix-

vector product with the original matrix and vector types being 

interpreted as this new type. This results in our semiring 

addition and multiplication operations being used instead of the 

standard addition and multiplication operators. We also used 

CUB’s SegmentedReduce functions for performing operations 

such as reductions on messages sent from neighboring vertices. 

This research was developed with funding from the Defense Advanced 
Research Projects Agency (DARPA). The views, opinions, and/or findings 

expressed are those of the author(s) and should not be interpreted as 

representing the official views or policies of the Department of Defense or the 
U.S. Government.  

GraphType g{AdjacencyMatrixCSC}; 
const int nIterations = 10; 
 
for (int i = 0; i < nIterations; ++i) 
{ 
    // Perform Iteration 
    const auto& result = g.Iterate(); 
 
    // Fetch results if desired... 
} 

 

auto& props = GETPROPERTY(g, VertexType::pageRank); 
auto mostImportantVertex = MaxElementIndex(props); 

ops::BinaryOp<operators::Divides< 
    ops::SetProperty_< 
        ops::Property<double, 0ul>, 
        ops::BinaryOp<operators::Adds< 
            double, 
            ops::Reduction< 
                ops::BinaryOp<operators::Times< 
                    double, 
                    ops::Messages<double>  
                > >, 
                ops::Adds<double, double> 
            > 
        > > 
    >, 
    ops::OutDegree_ 
> > 

template <template <typename> class Graph> 
struct PageRankVertex { 
    using MessageType = double; 
    using GraphType = Graph<PageRankVertex>; 
    PROPERTIES((double, pageRank)) 
 
    auto HandleMessages( Messages<MessageType> msgs) { 
        const double r = .85; 
        auto update = Reduce(r, (1-r)*msgs); 
        auto prop = SetProperty(pageRank, update);  
        auto toSend = prop/OutDegree(); 
        return SendMessages(toSend); 
    } 
    OutDegree_ OutDegree() { 
        return OutDegree_{}; 
    } 
}; 

Figure 3 – Retrieval of property values from graph 

Figure 4 - Expression template derived from PageRankVertex's 

HandleMessages function 

Figure 1 - Example PageRank vertex type 

Figure 2 - PageRank example (calling code) 
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An example of constructing an optimized Single-Source 

Shortest Path algorithm using this library is shown below. 

 

 

C. Fusing Graph Operations to Linear Algebra Operations 

By recursively breaking down the type constructed using our 

EDSL described in the above section, we can directly translate 

vertex-centric operations to matrix and vector operations, 

where the graph is represented as an adjacency matrix and 

vertex properties are represented for the whole graph as a 

vector. In the case of many Pregel functions, a different 

message is sent to each vertex, resulting in generation of a 

temporary matrix to hold the messages. Often, however, the 

receiving vertex is only interested in a reduced form of the 

messages, such as the minimum in the case of single-source 

shortest path. In Pregel, this is exploited by having the user 

define explicit combiners. Because of the nature of our 

language, we have found that we are able to perform this 

optimization automatically. Additionally, in performing this 

operation we are often able to convert the operation into a linear 

algebra operation on a semiring. 

 

Often, a single graph operation does not directly translate to a 

linear algebra operation, and so we must fuse several operations 

to phrase the problem in terms of abstract sparse linear algebra. 

The act of fusion can result in operations that not only 

parallelize better, but can also represent an overall reduction in 

operation count and temporary data. The first step in this 

process is to transform the EDSL operations into element-wise 

operations on the graph structure. An example transformation 

result for our PageRank test is shown in Figure 6. 

 

After this transformation, we iterate through the graph, looking 

for opportunities to rearrange operations in order to facilitate 

fusion. We then iterate through the rearranged version, looking 

for fusion candidates. An example of a fusion candidate is an 

element-wise product followed by a reduction. 

In this case, the operation can be transformed into a matrix-

vector product on a semiring where the element-wise product 

operation becomes the multiplication operation and the 

reduction operation becomes the addition operation. The fusion 

of the type in Figure 6 can be seen in Figure 7. 

 

 
Figure 6 - PageRank Iteration type after transformation 

 
Figure 7 - Fused PageRank iteration type 

III. EVALUATION 

A. Experimental Setup 

To test the efficacy of both our frontend language and our 

backend library, we created implementations of three common 

graph algorithms. We tested these algorithms on three real-

world datasets as well as on synthetic data of 9 different sizes. 

 

B. Experimental Platform 

We benchmarked our software on the following hardware: 

 CPU: Intel Core i7-5930K CPU @ 3.50GHz (6 Cores, 

12 Threads) 

 RAM: 16 GB DDR4 2133 MHz 

 GPU: Nvidia GeForce GTX Titan X with CUDA 7.5 

 Software: Ubuntu 14.04, g++ 5.3, mpich2 3.0.4-6, 

CombBLAS 1.5.0 

// The user can read in the matrix from an mtx file 
auto adjMat = ReadCsrFromMatrixMarket<double>( 
    matrixPath); 
 
auto inf = std::numeric_limits<double>::infinity(); 
 
CudaCsrMatrix<double> gpuAdjMat(adjMat); 
CudaVector<double> minDistD(adjMat.m(), inf); 
minDistD[5] = 0.0; 
 
auto addition = Min<double, double>{}; 
auto multiplication = Adds<double, double>{}; 
minDistD = Transform( 
    MvProd(trans(gpuAdjMat), minDistD, addition, 

multiplication), minDistD, addition); 

ops::BinaryOp<operators::Divides< 
    ops::SetProperty_< 
    ops::Property<double, 0ul>, 
        ops::BinaryOp<operators::Adds< 
            double,  
            ops::BinaryOp<operators::Times< 
                double,  
                ops::MvProduct< 
                    ops::Adds<double, double>,  
                    ops::Times<double, double>,  
                    ops::AdjMatTransposed<double>,  
                    ops::MessageMember<double>  
                > 
            > >  
        > > 
    >,  
    ops::OutDegree_ 
> > 

ops::BinaryOp<operators::Divides< 
    ops::SetProperty_< 
        ops::Property<double, 0ul>,  
        ops::BinaryOp<operators::Adds< 
            double,  
            ops::BinaryOp<operators::Times< 
                double,  
                ops::Reduction< 
                    ops::ElementWiseProd< 
                        ops::AdjMatTransposed<double>,  
                        ops::MessageMember<double>  
                    >,  
                    ops::Adds< 
                        double, 
                        double>  
                    >  
                >  
            > >  
        >  
    >,  
    ops::OutDegree_ 
> > 

Figure 5 - Accelerated Single Source Shortest Path Algorithm using 

our GraphBLAS backend 
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C. Algorithms 

The three algorithms that we created were: Page Rank, Single-

Source Shortest Path, and Single-Source Widest Path. Page 

Rank, which involves finding the most important node in a 

graph, was chosen due to its utility in several fields and its ease 

of implementation in several different graph programming 

paradigms. Next, we chose Single-Source Shortest Path. In 

addition to its simplicity, this algorithm was chosen because it 

lends itself easily to direct implementation with abstract sparse 

linear algebra. Single-Source Widest Path is very similar to 

Single-Source Shortest Path, but is special in that, when 

implemented in terms of abstract sparse linear algebra, neither 

of its operations are standard arithmetic operations. 

D. Reference Implementation 

CombBLAS was chosen as the reference as it was shown by 

Satish et al. [4] to have the highest performance among graph 

frameworks for the chosen algorithms. To make the fairest 

possible comparison, we chose high-end CPU hardware and 

used MPI to parallelize the CPU operations. Nine MPI 

processes were used because CombBLAS requires a square 

number of processes. 

 
Table 1 - Datasets used for benchmarking 

Data Set Vertices Edges 

Wikipedia 3,566,907 45,030,389 

LiveJournal 4,847,571 68,993,773 

cage15 5,154,859 99,199,551 

 

E. Real World Datasets 

We chose the LiveJournal and Wikipedia datasets as these were 

used by Satish et al. and represented real-world networks that 

were realistic applications for our algorithms (e.g. PageRank). 

The cage15 dataset was chosen as it is a large, directed, 

weighted graph which we believed would yield interesting 

results for both Single-Source Shortest Path and Single-Source 

Widest Path. For benchmarking purposes, we transformed this 

into a binary adjacency matrix for use with our PageRank 

implementation. 

F. Synthetic Datasets 

To analyze how our performance scales as the number of edges 

increases, we generated synthetic data using an approach 

similar to Satish et al. [4]. We used the Recursive-Matrix (R-

MAT) model [5] with the “a” parameter set to .57 and the “b” 

and “c” parameters set to .19. Using this model, we generated 

directed graphs with edge counts from 220 through 228, where 

there were 16 edges per vertex. To generate these datasets 

we used the PaRMAT multithreaded RMAT graph generator 

[6] with generation of duplicate edges disabled. 

G. Results 

Table 2 - PageRank Runtimes 

 Data Set 

Platform Wikipedia LiveJournal cage15 

CPU 0.160325 0.262824 0.129189 

GPU 0.0837797 0.12686 --- 

GPU w/Fusion 0.0266712 0.0264352 0.0100554 

 

 

 
Figure 8 – PageRank runtimes on synthetic data generated using the 

R-MAT model 

Figure 8 compares the runtime of our PageRank algorithm 

versus the CombBLAS runtime for each graph size. 
 

Table 3 – Single-Source Shortest Path Runtimes 

 DataSet 

Platform Wikipedia LiveJournal cage15 

CPU 0.201485 0.279654 0.15647 

GPU 0.0701992 0.0916699 --- 

GPU 

w/Fusion 

0.0244974 0.0234983 0.00801 

 

A similar plot for the Single Source Shortest Path algorithm is 

shown in Figure 9. Note that the x axis uses a logarithmic scale 

so we observe linear scaling with the number of edges. Using 

the same benchmark setup as previously discussed, we are able 

to outperform CombBLAS by nearly 1000% in many cases. 

 
Table 4 – Single-Source Widest Path Runtimes 

 DataSet 

Platform Wikipedia LiveJournal cage15 

CPU 0.220781 0.332494 0.135978 

GPU 0.0882223 --- --- 

GPU 

w/Fusion 

0.0271287 0.02976 0.0138946 
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Figure 9 – Single-Source Shortest Path runtimes on synthetic data 

generated using the R-MAT model 

For testing the Single-Source Widest Path algorithm on 

synthetic data we generated random edge weights distributed 

uniformly from 0.0 to 1.0. In this case again we see linear 

scaling with the number of edges and are able to outperform 

CombBLAS by nearly 1000%. 

 

 
Figure 10 – Singe-Source Widest Path runtimes on synthetic data 

generated using the R-MAT model 

IV. CONCLUSION 

We have created GPU-accelerated graph analytics toolchain 

based on a C++ EDSL that allows users to implement a variety 

of algorithms. Even without abstract sparse linear algebra-

backed operations, our GPU path is significantly faster than the 

CPU runtime; however, by automatically employing fusion and 

ASLA-based techniques within our tool, we achieve significant 

additional speedup. Additionally, we anticipate that further 

optimization will continue to improve performance. 
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