

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Pruning Binarized Neural Networks Enables Low-Latency,
Low-Power FPGA-Based Handwritten Digit Classification

Syamantak Payra
Dept. of Electrical Engineering,

Stanford University
(formerly Dept. of Electrical

Engineering and Computer

Science, Massachusetts Institute
of Technology)

spayra1@stanford.edu

Gabriel Loke
Dept. of Materials Science and

Engineering, Massachusetts
Institute of Technology

gabloke@mit.edu

Yoel Fink
Dept. of Materials Science and

Engineering, Dept. of Electrical

Engineering and Computer

Science, and Institute for Soldier

Nanotechnologies, Massachusetts
Institute of Technology

yoel@mit.edu

Joseph D. Steinmeyer
Dept. of Electrical Enigneering

and Computer Science,

Massachusetts Institute of
Technology

jodalyst@mit.edu

Abstract— As neural networks are increasingly deployed on

mobile and distributed computing platforms, there is a need to

lower latency and increase computational speed while decreasing

power and memory usage. Rather than using FPGAs as

accelerators in tandem with CPUs or GPUs, we directly encode

individual neural network layers as combinational logic within

FPGA hardware. Utilizing binarized neural networks minimizes

the arithmetic computation required, shrinking latency to only the

signal propagation delay. We evaluate size-optimization strategies

and demonstrate network compression via weight quantization

and weight-model unification, achieving 96% of the accuracy of

baseline MNIST digit classification models while using only 3% of

the memory. We further achieve 86% decrease in model footprint,

8mW dynamic power consumption, and <9ns latency, validating

the versatility and capability of feature-strength-based pruning

approaches for binarized neural networks to flexibly meet

performance requirements amid application resource constraints.

Keywords: Algorithms Implemented in Hardware,

Combinational Logic, Cost/Performance, Neural Nets, Optical

Character Recognition

I. INTRODUCTION

In recent years, the increased utilization of artificial
intelligence in everyday technologies has necessitated advances
in computer architectures for both training and running machine
learning models. A main limitation of neural edge-computing
infrastructures is the memory- and computation-intensive nature
of conventional models. Thus, it is of increasing interest to
investigate reduction of computational requirements for neural
networks [1]. Some recent efforts have explored the use of field-
programmable gate arrays (FPGAs) as hardware accelerators for
specific elements of neural network training and evaluation [2].
Logic blocks within FPGAs can be dynamically reconfigured to
adjust to different computational tasks, allowing for more
efficient, task-specific logic circuitry, such as accelerating
image processing while reducing power consumption compared
to conventional embedded system platforms [3], [4], [5], [6].

However, when applied to neural network computation,
FPGAs are conventionally utilized in tandem with CPUs and
GPUs [7]. Because basic neural functionalities can be replicated
with transistor arrangements [8], there have been efforts to
fabricate neural network-specific hardware components [9],
[10]. However, the intrinsic reconfigurability of FPGAs can be
further utilized to maximize functionality: dynamic memory

reallocation has allowed hardware footprint minimization in
various data processing tasks [11], and there has been recent
interest in architectures that embed neural networks within
FPGAs [12], [13], [14]. Such approaches have multiple benefits:
not only can FPGA floating-point hardware accelerate neural
network arithmetic [15], the large number of logic gates
available in FPGA fabric allows pipelining and duplication of
network segments to simultaneously perform computations on
separate data [16]. Indeed, FPGAs outperform mobile platforms
on machine learning benchmarks and real-time computer vision
with higher efficiency [17], [18], and have been utilized for
applications like particle physics experimentation to analyze
collision byproducts that disappear within nanoseconds [19].

Such latency-reduction approaches are relevant to meet ever-
tightening latency and performance requirements for computing
needs like artificial intelligence-based services [20]. This has
even led to the pursuit of alternative hardware, such as optical
neural networks, to decrease latency [21]. Additional motivation
for latency reduction arises from a need for data encryption for
privacy: Even while leveraging parallel processing for improved
throughput, performing predictions on encrypted data can
require high latencies of up to 250 seconds [22], and networks
that achieve 290ms latency on encrypted handwritten digits are
constrained by limitations of transfer learning [23]. Recent work
on secure inference has achieved 30ms latency for MNIST digit
classification [24], and demand for near-instant predictions
urges a search for strategies to reduce latency further.

Advancements toward making neural networks intrinsically
more efficient have include compressing models by pruning the
parameters that are invoked, quantizing weights, and distilling
internal knowledge representations [25], [26]. Large-scale
commercial approaches have demonstrated 8-bit hybrid
calculations capable of similar performance as 32-bit floating
point operations [27]. Some approaches with FPGA hardware
optimize model design for individual accelerators [28], while
others build a physical network pipeline [29]. Other
biologically-inspired architectures improve energy efficiency,
achieving 95% accuracy with 20ms mean latency at 0.3 watts of
board power, but require large specialized hardware [30].

II. OBJECTIVES

Building upon the existing literature, we identify the need to
explore novel approaches to hardware implementations of
neural networks that can achieve high accuracy with low latency

This work was supported in part by the Massachusetts Institute of
Technology Department of Electrical Engineering and Computer Science, and
in part by the National Science Foundation under Grant No. 1828993.

and low power consumption, maintaining the seamless user
experiences of mobile and wearable platforms [31]. Techniques
like weight binarization have shown promise in reducing the
number of calculations required in computing results, enabling
acceleration with minimal impact on accuracy [32], [33], [34],
and are uniquely adaptable to implementation in hardware logic
gates. By minimizing memory transfers and instruction-based
computations, computational load significantly decreases and
model latency can be reduced to merely the signal propagation
delays through sequential binary logic.

The goal of this work was thus to propose and explore a novel
FPGA architecture approach for machine learning computation
on low-power platforms, demonstrating binarized neural
networks and comparing the efficacy of size-optimization
strategies, specifically with regard to the continuous tradeoff
between algorithm compression and key performance indicators
of accuracy, latency, network size, and power efficiency.

III. METHODS / APPROACH

To evaluate classification capability on a well-validated
computational task, strategies were developed for FPGA-based
handwritten digit classification on the MNIST dataset, a
longstanding benchmark for machine learning [35]. Within the
original dataset, each image has a 28x28 resolution (784 pixels
per image) in 8-bit grayscale (values 0 to 255). In order to
process MNIST digits in binarized neural networks, the input
data were converted from grayscale to binary representations. A
fixed threshold of 50% grayscale (8-bit value 128/256) was used
as the threshold to determine binary representation for each pixel
(<128 = “0”, >128 = “1”). Each converted image thus contained
784 bits, with each pixel corresponding to background (binary
“0”) or digit (binary “1”). This binary-converted dataset was
used to train and evaluate multiple network implementations.

First, we created and tested a set of minimal hardware
implementations (Section IV), benchmarking the potential for
basic pattern-matching algorithms-in-hardware to successfully
classify handwritten digits. The results from these pattern-
recognition algorithms were used to determine the functional
characteristics of the binarized dataset, and inform the
subsequent, progressively more advanced algorithms.

Next, we created a baseline single-layer neural network
(Section V) by taking a neural network architecture that is well-
validated for handwritten digit detection and adapting it for
direct deployment on an FPGA, then evaluating performance of
the modified algorithm. We further optimized and evaluated the
model with weight quantization and strategic simplifications to
reduce memory usage and computational requirements.

In our final approach, we developed a binarized neural
network (Section VI) that utilizes binary pixel weights rather
than integer weights, decreasing integer arithmetic operations.
We compare multiple pixel-weight selection and pruning
strategies and evaluate their impacts on model size and
accuracy. Additionally, we pursue further model compression
through weight-model unification, condensing network logic to
include weights in computational logic rather than in memory.
We then evaluate key performance indicators and resource
utilization of the pruned models, and demonstrate the ability of

such approaches to optimize binarized neural networks.
In order to create these hardware-embedded neural networks,

all algorithms were first simulated with Python 3.7.3 and
TensorFlow 2.0 [36] to verify and evaluate model functionality,
then implemented on a Xilinx Artix-7 FPGA development board
(XC7A100T, Digilent Nexys 4 DDR) using SystemVerilog and
the Xilinx Vivado HLx design suite. Additional performance
metrics and hardware layout are derived from Xilinx Vivado.

IV. MINIMAL HARDWARE IMPLEMENTATIONS

Statistical approaches to parsing handwritten digits include
multinomial lassos to identify pixel predictance values and
sparse principal components analysis to identify key component
pixels for different handwritten digits [37]. While both of these
methods require lengthy mathematical instruction sets, they
offer a starting point for a minimal classification algorithm,
without the need for computationally expensive convolutions.

A. Digit Predictor Pixels

Combining these approaches, we first develop a hardware
implementation based on digit “predictor pixels”. Fig. 1 contains
heatmaps corresponding to the pixel occurrence frequency in
each of ten MNIST digits, from the first 1000 and the full 50,000
training images. Different digits have primary locations in which
pixels are active; the location of active pixels in a test image is
utilized as a proxy for the digit contained within the image. Fig.
2a demonstrates an initial predictor-pixel matrix, constrained to
pixels with only positive values. We observe that some digits are
significantly over-represented; for example, “4” has far fewer
active pixels than “0” or “7”. To compensate for this, an
activation threshold was implemented to remove low-intensity

Fig. 2. Matrix of predictor pixels.

a) 0 threshold, b) 100 threshold, c) 170 threshold, d) 190 threshold.

Fig. 1. Digit heatmaps generated from training dataset.
a) 1000 images, b) 50,000 images. Upper row = 0-4, Lower row = 5-9

pixels. Fig. 2b, 2c, and 2d show the predictor-pixel matrix with
activation thresholds of 100, 170, and 190 (out of 28 = 256).

In this method, the final classification result was determined
to be the digit (0-9) with the largest number of activated pixels,
given a binarized input image. The accuracy across the test
dataset was observed to be 28.07%. While 3x better than chance,
the predictive power is hampered by the many cases in which
the number of activated pixels within the designated regions is
identical across multiple candidate digits. In other words, having
a low activation threshold leads to low accuracy, as inputs are
preferentially classified as the digits with more predictor pixels;
increasing the activation threshold results in low discrimination
capability between multiple potential classifications.

B. Limitations and Extensions

While the predictor-pixel method is appealing from a simplicity
standpoint (as all inputs can be matched against one aggregate
reference), we observe that this approach has limited accuracy and
multiple limitations. For instance, the presence of positive-valued
pixels that are common across multiple digits decreases the
predictive power of those individual pixels. When one digit has a
slightly higher average activation within one pixel compared to
other digits, selecting a small number of predictor pixels to
determine digit classifications amplifies those slight distinctions
might falsely skew results toward certain digits over others.

V. SINGLE-LAYER NEURAL NETWORK

A. Structuring, Training, and Validation

Network architecture plays a large role in determining
performance and accuracy, especially with compact models or
small datasets [38]. In order to establish a baseline neural
network architecture for binarization and optimization, we adapt
the LeNet architecture [39], which is both compact (~6-7 layers)
and accurate (>90%), and has been adapted to a variety of
classification tasks, such as image recognition and facial
recognition [40]. To traverse the complexity-accuracy tradeoff,
we pared down model parameters to evaluate performance in
progressively minimal models. All models were constructed and
evaluated using Python and Tensorflow, dividing the 60,000
images in the dataset into a training-testing split of 90%/10%.

Condensing the network to two convolutional layers and one
fully-connected dense layer 1024 neurons wide facilitates a
classification accuracy of 98.6%, while a version of the same
network without the dense layer is able to achieve 97.9%
accuracy. With the removal of the second convolutional layer
(leaving one convolutional layer and one dense layer), we
achieve 96.2% MNIST accuracy. Next, we eliminated the
convolutional layer entirely, in order to form direct parallels
between a conventional single-layer implementation and single-

layers implemented in FPGA hardware. This model (Appendix
Fig. 1) successfully achieves 91.5% accuracy, showing that even
a single-layer implementation can offer significant predictive
power without the need for costly convolution operations.

As shown in Fig. 3, the single-layer neural network operates
on ten sets of 784 weights, one set per digit and one weight per
pixel. Blue pixels indicate strong predictors of a particular digit,
while red pixels imply that the presence of pixels in that region
reduce the likelihood that that is the correct digit. Functioning
essentially as a linear classifier, not only does this single-layer
neural network provide a simple way to rapidly recognize
MNIST handwritten digits with minimal calculations, this
method also retains higher accuracy than convolutional neural
networks (CNNs) trained on subsets of the MNIST dataset [41].
Hence, our single-layer classifier shows good performance
while minimizing the computational hardware footprint.

B. Model Optimization

For implementation into FPGA fabric, we consider both the
operations required to execute the model, as well as the
connections between logic blocks necessary to facilitate the
operations. We begin optimizing the neural network itself by
distilling the architecture into a single layer, which allows us to
treat the entire prediction-serving region as a single hardware
module. Next, we identify two areas of optimization: the weights
within the model, and the activation functions for the output.

A primary source of computational overhead during
execution of neural networks is due to the mathematical
operations necessary when multiplying input data by sequences
of weights and summing inputs into activation functions,
especially since floating-point mathematics requires additional
hardware resources and clock cycles. Weight quantization can
address these problems [25], [27]. We quantize the weights in
our single-layer classifier from 32-bit floating point decimals to
8-bit integers, resulting in a 75% decrease in weight size from
10 ⋅ 784 ⋅ 32 	 250,880 bits, to 10 ⋅ 784 ⋅ 8 	 62,720 bits,
with only a 0.3% decrease in accuracy (91.5% to 91.2%).

C. Implementation Architecture

The second aspect of computational overhead involves the
mathematical activation functions utilized to compile results
from each layer. The base neural network utilized a softmax
activation function, which has been approximated in FPGA
hardware [42]. However, mirroring the simplicity inherent to a
single-layer slice of a model, we implement a maximum-value
evaluator, which allows us to retain full accuracy while
eliminating the need to instantiate additional arithmetic
computation modules, minimizing hardware footprint.

Once deployed in FPGA hardware, the single-layer neural
network comprises a single set of parallel pipelines. The weights
for each of the ten digit nodes are stored in a set of registers, and
the input image is simultaneously routed and matched against
the 784x8 arrays containing the 8-bit weights. Because the input
image is binary, the multiplication operation consists of a set of
AND operations between each input pixel and its corresponding
weight. The selected weights are added to create the output sum
for a particular digit. The output sums are compared across digit
nodes, and the node with maximum value is the digit output.

Fig. 3. Pixel weight heatmaps for each digit.

This single-layer, 8-bit quantized neural network (Appendix Fig.
2) achieves minimal latency, with a signal propagation delay of
under 7ns per pixel, and high energy-efficiency, with a Vivado-
estimated 0.007W of dynamic power consumption.

VI. BINARIZED NEURAL NETWORK

To pursue a more tightly-coupled neural network within
FPGA hardware, we binarize the neural network, with binary
weights that can be represented as transistorized logic rather
than arithmetic operations. Replacing arithmetic computation
with bitwise operations has been shown to improve power
efficiency and computational speed, and reduce memory use and
number of memory accesses required to calculate each layer
within a model [33]. Direct binarization of the 8-bit quantized
neural network yields almost 88% reduction in weight size; we
additionally explore further reductions in size to evaluate
performance of highly compact models-in-hardware.

A. Weight Conversion and Implementation

Previous works have selectively binarized portions of
networks [43]; this work sought to characterize multiple points
in the model accuracy-size space. Multiple approaches have
been taken to forming and pruning binarized neural networks,
such as isolating and trimming vacillatory weights that flip
polarity many times near the end of model training completion
[44] or removing clusters of weights that have smaller effects on
output accuracy [45]. Unique biomolecular “winner-take-all”
systems have also been created for DNA pattern recognition
[46]; this can be reframed as a form of binary logic with each
input corresponding to a certain “pixel” of the desired signal and
the classifier as a series of logic operations reaching a
deterministic outcome based on certain combinations of inputs.

Based on these strategies, we binarize our quantized single-
layer neural network by identifying the strongest “predictor
pixels” as the top-N largest values given a number of pixels to
be calculated (N) for each digit map. Each set of predictor pixels
is stored in a 784-bit variable in which each pixel position is
denoted with a 0 or 1 if that pixel is a designated predictor for
that digit. The model iterates through each index at a rate of one
input pixel per clock cycle, then tallies and compares the sums
across digits to determine the final digit classification.

B. Multi-Strategy Performance Comparison

We further evaluate and interpret different strategies to select
the top “predictor pixels” within our binarized neural network.
First, it is possible to create models of varying size and accuracy
by changing the number of pixels referenced in each layer (i.e.
nonzero weight). Second, because weights in a trained model do
not form a symmetric distribution (e.g. there are different
amounts and magnitudes of positive weights vs. negative
weights), there are different classification accuracies when
referencing the presence of a certain number N of pixels with
positive-valued weights, versus the absence of N pixels with
negative-valued weights. Out of a possible 784 pixels in an
image, we evaluate the accuracy performance of binary matchup
strategies referencing a total number of pixels ranging from N=2
to N=512. In addition to positive and negative predictors, we
also evaluate a mixed strategy, in which the pixel reference
count is evenly divided between positively-weighted pixels and
negatively-weighted pixels. Fig. 4 shows the characteristic
curves observed with such binary matchup strategies.

We observe a few relevant details from the characteristic
curves that provide insight into optimal binarization strategies.
First, we note the diminishing return of referencing larger
numbers of pixels; this is because the weights of lower-ranked
pixels have smaller absolute values and contribute less to gains
in accuracy, while still commanding computational overhead.
Next, the absence of negative predictors is significantly more
accurate than the presence of positive predictors in small values
of N. This may be because high-valued positive predictors are
more likely to be similarly placed across digits (see similarly-
positioned blue regions in 0, 2, 3, 7 in Fig. 3), as opposed to more
unique positioning of strong negative predictors across digits.
Lastly, the predictive capability of the mixed-strategy dual
matchup is consistently more accurate than either positive or
negative predictors alone, with a maximum accuracy of 87.5%
using N=256 reference pixels (128 positive, 128 negative).

C. Further Optimization: Weight-Model Unification

Significant improvements in computational and power
efficiency can be achieved by reducing the number of memory
accesses required to execute a model [47], [48]. We utilize
Boolean logic minimization to consolidate weights and logic
within our binarized neural network. Weights stored in memory
already take the form of binary flags, which must be retrieved,
multiplied with an input datum, and summed to reach a final
output value. In an FPGA, such binary weights can simply be
instantiated as part of the hardware algorithm logic, translating
binary flags into AND operations through which input data pass
and are filtered before summing. We utilize this to create an
optimized representation in FPGA hardware (Appendix Fig. 3),
that utilizes transistorized logic without having to reference
separate memory registers for each operation.

VII. RESULTS AND DISCUSSION

A. Latency Minimization and Resource Efficiency

Our 8-bit quantized single-layer neural network dedicates
one clock cycle to sum each pixel, reaching a final result in 785
cycles. The condensed architecture allows the use of clock cycle
periods as low as 7ns, allowing a result to be reached in only

Fig. 4. Binarized Neural Network Accuracy vs. Binarization Strategy.

5495ns (under 6 microseconds), while retaining an accuracy of
91.2% - only 0.3% less than the 91.5% accuracy of the reference
network with 32-bit floating-point integers. Our binarized neural
network, however, is implemented entirely in combinational
logic, and yields final determinations in under 10ns. When
clocked, Vivado signal timing analysis confirms a stable result
in only 8.465ns, demonstrating a near-instantaneous result. With
just a 4.1% drop in accuracy, we are able to achieve over 800x
faster speeds than the 8-bit quantized network and 1.5 million
times faster than other state-of-the-art systems [24].

Further, both implementations are extremely compact
hardware representations of neural networks. The quantized
network uses a total of 2276 slice lookup tables (LUTs) (3.6%
of the 63400 available on this FPGA), 288 slice registers
(0.23%), and 690 slices (4.4%), and has a dynamic power
consumption of only 0.007 W. The binarized network uses a
total of 333 LUTs (0.53%), 4 slice registers (0.003%), and 101
slices (0.64%), with a dynamic power consumption of only
0.008 W. This extremely minimal resource utilization represents
multiple orders of magnitude of space savings and resource
conservation compared to conventional networks that may take
up the majority of an FPGA fabric [49].

Prior researchers have observed that while binary logic can
improve latency, unoptimized representations can exponentially
increase model complexity [46], [50], or require additional
weights and activations to reach similar accuracies [51]. Our
model performance demonstrates that feature-strength-based
pruning allows for effective retention of significant contributors
to accuracy, and implementation on FPGA allows significant
gains in speed and compression of models while minimizing
power consumption and on-chip resource utilization.

B. Functional Comparison

To contextualize the performance of our models, we compare
performance against benchmark performance and recent
research. Conventional MNIST classification systems often take

significantly longer times per image; some convolutional neural
networks (CNNs) require as long as 7-12 seconds per image
[52]. With <9ns latency, our methods are over 109x faster than
such algorithms. Even specialized FPGA platforms emulating
spiking neural networks only achieve 20ms latencies for MNIST
digits [30]; our system is over six orders of magnitude faster. In
the high-performance regime, this work exhibits superb speed
and energy efficiency, achieving low-latency and low-power
objectives critical to real-time applications.

Table 1 compares our quantized and binarized networks with
other state-of-the-art MNIST classification implementations.
We explore the tradeoff between accuracy and performance by
targeting 90% of the accuracy of comparison algorithms, but
with <10% of the latency and using only <10% of the on-chip
resources. The impact of this is high throughout and ultra-low
power consumption, resulting in 3-4 orders of magnitude greater
power efficiency than the next most efficient alternative [53].

Our minimal implementations far exceed the efficiency of
prior literature in terms of dynamic power consumption. When
considering total power consumption, our 8-bit quantized
network offers a slight (~4%) power efficiency improvement
over Umuroglu et al. [53], and our binarized network offers
more than 500x greater power efficiency, while also achieving
nearly 40x faster latency. We also observe that total power
efficiency would further increase if FPGA fabric utilization was
increased with multiple instances running in parallel for greater
throughput, as the static chip power consumption overhead
currently accounts for 92-93% of the total power consumption.

Notably, our system yields significantly better overall results
than the most recent implementations of MNIST-classifying
convolutional neural networks on the same FPGA platform. Our
quantized implementation achieves greater accuracy than
Giardino et al. [54] with more than a 90% decrease in resource
utilization, 99.2% decrease in dynamic power consumption, and
94% reduction in latency (>15x acceleration), while our
binarized approach exhibits 590,680x greater dynamic power

TABLE 1: PERFORMANCE COMPARISON

-- indicates values were not available. * indicates values are estimated based on provided metrics. 1 indicates values calculated using the dynamic power
consumption of the implemented algorithm; 2 indicates values calculated using the sum of both dynamic power consumption + static chip power consumption.

[54],[55],[56],[53],[49],[57],[58].

efficiency and 45,000x greater total power efficiency (frames
per second per watt). This further supports the assessment of this
approach as a novel contribution enabling low-latency artificial
intelligence in hardware and significantly improving hardware
performance compared to state-of-the-art research.

C. Cost/Performance Analysis and Applications

The pursuit of higher-accuracy machine-learning models
coupled with the conventional intuition that model acceleration
is not worth decreases in accuracy, has yielded an underexplored
performance envelope for networks with slightly reduced
accuracy but far lower latency. Prior approaches have seen
accuracy decrease under compression (e.g. 98.81% at 16-bit, to
95.53% at 6-bit, to 43.30% at 5-bit) [58], but our methods allow
for accuracy retention even with significant compression from
7840 8-bit weights (91.2% accuracy), to 2560 binary yes/no
decisions (87.5% accuracy), demonstrating that the performance
envelope can be successfully expanded to ultra-low-latency and
ultra-low-power implementations, without sacrificing accuracy:
4% lower accuracy here enables 99.85% lower latency (650x
acceleration) and 86% lower hardware resource utilization.

This low resource utilization also enables versatility in
applications. For instance, this architecture could be scaled up to
facilitate the implementation of multi-layered networks all
within a single FPGA, as opposed to having to spread networks
out between multiple devices [29]. Additionally, strategic design
pipelining could be utilized to increase throughput for individual
networks, by allowing multiple operations to be conducted in
parallel. Latency increases can be offset by higher clock speeds
due to decreased module depth / propagation distance, and the
flexibility from small modules facilitates deployment on
integrated circuits conducting other operations, like leveraging
unused sections of registers occupied by other algorithms to
minimize additional on-chip resource utilization.

The low power requirements and resource utilization of our
methods also make such strategies well-suited for ubiquitous
computation and smaller form factors, and opens new avenues
for cost-effective advanced computation on inexpensive chips.
The use of individual, compact networks for specialized tasks
can improve efficiency and safety in electromechanical systems
that must make safety-critical decisions in fractions of a second
[59]. By detecting potentially hazardous scenarios in near-real-
time, safety equipment can be primed before a full-confidence
determination is reached, improving reaction time and resultant
safety. Since these designs are so compact, basic neural
networks could feasibly and economically be deployed on low-
quality silicon, low-speed processors, or on small ASIC die
areas. With the energy stored in a single alkaline AA battery
[60], our binarized FPGA network could continuously classify
images for 20 days. Such efficiency is key for long-duration
deployments for biosensors [61], on-body electronics [62], and
brain-computer interfaces for prosthetics [63] or for decoding
and digitizing of mental handwriting in paralyzed patients [64].

VIII. CONCLUSION

As the prevalence and role of neural networks in mobile and
edge computing continues to increase, there is a growing drive
to lower latency and increase throughput while decreasing

power and resource utilization. Wielgosz and Karwatowski’s
review of FPGA latency optimization concludes that “in some
application domains, such as…anomaly detection, the response
time of the system is more critical to ensure quality of service
than the quality of the answer” [65]. Indeed, Sze et al.’s survey
of machine learning hardware notes that “the key metrics for
embedded machine learning are accuracy, energy consumption,
throughput/latency, and cost” [66]. By encoding neural network
layers as combinational logic within FPGA hardware, we
minimize expensive memory access operations and arithmetic
computation, shrinking latency to only the signal propagation
delay through FPGA fabric. We implement and compare size-
optimization strategies and demonstrate network compression
via weight quantization and weight-model unification,
achieving up to 96% of the accuracy of baseline MNIST digit
classification using only 3% of the memory. We further achieve
an 86% decrease in model footprint, 8mW power consumption,
and ultra-low <9ns latency, validating the versatility and
capability of feature-strength-based pruning approaches for
binarized neural networks to flexibly meet performance
requirements depending on application resource constraints.

Not only does this work have critical implications in a variety
of use cases where low latency and low power usage are crucial,
it also demonstrates a significant advancement in terms of
strategies for neural network construction and complex input
classification leveraging FPGA logic. Low-latency, resource-
efficient neural network computation is critical for high-
performance edge computing, moving beyond mobile devices
and wearables to on-body electronics and ubiquitous computing
ecosystems in which these resource constraints are key [31]. Our
architecture and method of compressing and implementing
binarized networks can also be extended and applied to more
complex tasks ranging from process control and safety measures
to human-computer interfaces and biomedical devices.

ACKNOWLEDGMENT

The authors acknowledge the Xilinx University Program for
facilitating educational access to FPGA development tools. S.P.
thanks the course staff in MIT’s 6.111 Digital Systems
Laboratory for their support and feedback on this work.

REFERENCES

[1] K. He and J. Sun, “Convolutional Neural Networks at Constrained Time
Cost,” ArXiv14121710 Cs, Dec. 2014, [Online]. Available:
http://arxiv.org/abs/1412.1710

[2] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-based Accelerators
of Deep Learning Networks for Learning and Classification: A Review,”
IEEE Access, vol. 7, pp. 7823–7859, 2019, doi:
10.1109/ACCESS.2018.2890150.

[3] D. G. Bailey, “Image Processing Using FPGAs,” J. Imaging, vol. 5, no.
5, p. 53, May 2019, doi: 10.3390/jimaging5050053.

[4] V. Secrieru, S. Zaporojan, and V. Dorogan, “A COST-
PERFORMANCE ANALYSIS OF EMBEDDED SYSTEMS FOR
LOW AND MEDIUM-VOLUMES APPLICATIONS,” Technical
University of Moldova, Chişinău, Moldova, Jan. 2012. [Online].
Available: http://repository.utm.md/handle/5014/741

[5] F. Siddiqui et al., “FPGA-Based Processor Acceleration for Image
Processing Applications,” J. Imaging, vol. 5, no. 1, p. 16, Jan. 2019, doi:
10.3390/jimaging5010016.

[6] H. Qi, O. Ayorinde, and B. H. Calhoun, “An Ultra-Low-Power FPGA
for IoT Applications,” presented at the 2017 IEEE SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), Burlingame,
CA, USA, Oct. 2017. doi: 10.1109/S3S.2017.8308753.

[7] C. Lammie, W. Xiang, and M. R. Azghadi, “Accelerating Deterministic
and Stochastic Binarized Neural Networks on FPGAs Using OpenCL,”
ArXiv190506105 Cs Stat, May 2019, doi: 10.1109/MWSCAS2019.1158.

[8] N. Farha, Ann Louisa Paul J, Naadiya Kousar L S, Devika S, and
Ruckmani Divakaran, “Design and Implementation of Logic Gates and
Adder Circuits on FPGA Using ANN,” Int. J. Res. Appl. Sci. Eng.
Technol. IJRASET, vol. 4, no. 5, pp. 623–629, May 2016.

[9] Y.-H. Chen, “Architecture Design for Highly Flexible and Energy-
Efficient Deep Neural Network Accelerators,” Massachusetts Institute of
Technology, 2018.

[10] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices,”
ArXiv180707928 Cs, May 2019, [Online]. Available:
http://arxiv.org/abs/1807.07928

[11] P. Garcia, D. Bhowmik, R. Stewart, G. Michaelson, and A. Wallace,
“Optimized Memory Allocation and Power Minimization for FPGA-
Based Image Processing,” J. Imaging, vol. 5, no. 1, p. 7, Jan. 2019, doi:
10.3390/jimaging5010007.

[12] A. R. Ormondi and J. C. Rajapakse, Eds., FPGA implementations of
neural networks. Dordrecht, The Netherlands: Springer, 2006.

[13] C. Kalbande and A. Bavaskar, “Implementation of FPGA-Based
General Purpose Artificial Neural Network,” ITSI Trans. Electr.
Electron. Eng., vol. 1, no. 3, pp. 99–103, 2013.

[14] Y. Hao, “A General Neural Network Hardware Architecture on FPGA,”
ArXiv171105860 Cs, Nov. 2017, [Online]. Available:
http://arxiv.org/abs/1711.05860

[15] G.-M. Lozito, A. Laudani, F. Riganti Fulginei, and A. Salvini, “FPGA
Implementations of Feed Forward Neural Network by using Floating
Point Hardware Accelerators,” Adv. Electr. Electron. Eng., vol. 12, no.
1, pp. 30–39, Mar. 2014, doi: 10.15598/aeee.v12i1.831.

[16] R. Gadea, J. Cerda, F. Ballester, and A. Macholi, “Artificial neural
network implementation on a single FPGA of a pipelined on-line
backpropagation,” in Proceedings 13th International Symposium on
System Synthesis, Madrid, Spain, 2000, pp. 225–230. doi:
10.1109/ISSS.2000.874054.

[17] G. D. S. Korol, “An FPGA Implementation for Convolutional Neural
Network,” Pontifical Catholic University of Rio Grande Do Sul, Porto
Alegre, 2019.

[18] C. Farabet, C. Poulet, and Y. LeCun, “An FPGA-based stream processor
for embedded real-time vision with Convolutional Networks,” in 2009
IEEE 12th International Conference on Computer Vision Workshops,
ICCV Workshops, Kyoto, Sep. 2009, pp. 878–885. doi:
10.1109/ICCVW.2009.5457611.

[19] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for
particle physics,” J. Instrum., vol. 13, no. 07, pp. P07027–P07027, Jul.
2018, doi: 10.1088/1748-0221/13/07/P07027.

[20] D. Crankshaw, “The Design and Implementation of Low-Latency
Prediction Serving Systems,” University of California at Berkeley,
UCB/EECS-2019-171, Dec. 2019. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-
171.html

[21] L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, and D. Englund,
“Freely scalable and reconfigurable optical hardware for deep learning,”
ArXiv200613926 Cs, Jun. 2020, [Online]. Available:
http://arxiv.org/abs/2006.13926

[22] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsing, “CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy,” in Proceedings of the 33rd
International Conference on Machine Learning, New York, NY, USA,
2016, vol. 48, p. 10.

[23] A. Brutzkus, O. Elisha, and R. Gilad-Bachrach, “Low Latency Privacy
Preserving Inference,” in Proceedings of the 36th International
Conference on Machine Learning, Long Beach, California, 2019, vol.
97, p. 10.

[24] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
Low Latency Framework for Secure Neural Network Inference,” p. 17,
Jan. 2018.

[25] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A Survey of Model
Compression and Acceleration for Deep Neural Networks,”
ArXiv171009282 Cs, Jun. 2020, [Online]. Available:
http://arxiv.org/abs/1710.09282

[26] W. Niu et al., “GRIM: A General, Real-Time Deep Learning Inference
Framework for Mobile Devices based on Fine-Grained Structured
Weight Sparsity,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1,
2021, doi: 10.1109/TPAMI.2021.3089687.

[27] J. Johnson, “Rethinking floating point for deep learning,” in 32nd
Conference on Neural Information Processing Systems, Montreal,
Canada, 2018, p. 8.

[28] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural

Networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey California
USA, Feb. 2015, pp. 161–170. doi: 10.1145/2684746.2689060.

[29] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-
Efficient CNN Implementation on a Deeply Pipelined FPGA Cluster,”
in Proceedings of the 2016 International Symposium on Low Power
Electronics and Design, San Francisco Airport CA USA, Aug. 2016, pp.
326–331. doi: 10.1145/2934583.2934644.

[30] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and S. Furber,
“Scalable energy-efficient, low-latency implementations of trained
spiking Deep Belief Networks on SpiNNaker,” in 2015 International
Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, Jul.
2015, pp. 1–8. doi: 10.1109/IJCNN.2015.7280625.

[31] P. Corcoran and S. K. Datta, “Mobile-Edge Computing and the Internet
of Things for Consumers: Extending cloud computing and services to
the edge of the network,” IEEE Consum. Electron. Mag., vol. 5, no. 4,
pp. 73–74, Oct. 2016, doi: 10.1109/MCE.2016.2590099.

[32] J. Lyu and S. Sheen, “A Channel-Pruned and Weight-Binarized
Convolutional Neural Network for Keyword Spotting,”
ArXiv190905623 Cs Stat, Sep. 2019, [Online]. Available:
http://arxiv.org/abs/1909.05623

[33] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks,” in 30th Conference on Neural
Information Processing Systems, Barcelona, Spain, 2016, p. 9.

[34] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,”
in Computer Vision – ECCV 2016, vol. 9908, B. Leibe, J. Matas, N.
Sebe, and M. Welling, Eds. Cham: Springer International Publishing,
2016, pp. 525–542. doi: 10.1007/978-3-319-46493-0_32.

[35] Y. LeCun, C. Cortes, and C. J. C. Burges, “The MNIST Database of
Handwritten Digits.” 1998. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[36] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems,” in OSDI’16, Savannah, GA, USA,
Mar. 2016, pp. 265–283. doi: doi:10.5555/3026877.3026899.

[37] T. Hastie, T. Robert, and M. Wainwright, Statistical Learning with
Sparsity, 1st ed. New York: Taylor & Francis Group, 2016. [Online].
Available: https://doi.org/10.1201/b18401

[38] R. N. D’Souza, P.-Y. Huang, and F.-C. Yeh, “Structural Analysis and
Optimization of Convolutional Neural Networks with a Small Sample
Size,” Sci. Rep., vol. 10, no. 1, p. 834, Dec. 2020, doi: 10.1038/s41598-
020-57866-2.

[39] Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code
Recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989,
doi: 10.1162/neco.1989.1.4.541.

[40] G. Wang and J. Gong, “Facial Expression Recognition Based on
Improved LeNet-5 CNN,” in 2019 Chinese Control And Decision
Conference (CCDC), Nanchang, China, Jun. 2019, pp. 5655–5660. doi:
10.1109/CCDC.2019.8832535.

[41] F. Chen, N. Chen, H. Mao, and H. Hu, “Assessing four Neural Networks
on Handwritten Digit Recognition Dataset (MNIST),” ArXiv181108278
Cs, Jul. 2019, [Online]. Available: http://arxiv.org/abs/1811.08278

[42] I. Kouretas and V. Paliouras, “Hardware Implementation of a Softmax-
Like Function for Deep Learning,” Technologies, vol. 8, no. 3, p. 46,
Aug. 2020, doi: 10.3390/technologies8030046.

[43] L. Guerra, B. Zhuang, I. Reid, and T. Drummond, “Automatic Pruning
for Quantized Neural Networks,” ArXiv200200523 Cs, Feb. 2020,
[Online]. Available: http://arxiv.org/abs/2002.00523

[44] Y. Li and F. Ren, “BNN Pruning: Pruning Binary Neural Network
Guided by Weight Flipping Frequency,” in 2020 21st International
Symposium on Quality Electronic Design (ISQED), Santa Clara, CA,
USA, Mar. 2020, pp. 306–311. doi:
10.1109/ISQED48828.2020.9136977.

[45] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
Filters for Efficient ConvNets,” presented at the International
Conference on Learning Representations (ICLR), Mar. 2017. [Online].
Available: http://arxiv.org/abs/1608.08710

[46] K. M. Cherry and L. Qian, “Scaling up molecular pattern recognition
with DNA-based winner-take-all neural networks,” Nature, vol. 559, no.
7714, pp. 370–376, Jul. 2018, doi: 10.1038/s41586-018-0289-6.

[47] M. Nazemi, G. Pasandi, and M. Pedram, “NullaNet: Training Deep
Neural Networks for Reduced-Memory-Access Inference,”
ArXiv180708716 Cs Stat, Aug. 2018, [Online]. Available:
http://arxiv.org/abs/1807.08716

[48] M. Kim and P. Smaragdis, “Bitwise Neural Networks,” presented at the
International Conference on Machine Learning (ICML) Workshop on
Resource-Efficient Machine Learning, Lille, France, Jan. 2016.
[Online]. Available: http://arxiv.org/abs/1601.06071

[49] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Petrot, “Ternary neural
networks for resource-efficient AI applications,” in 2017 International

Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA,
May 2017, pp. 2547–2554. doi: 10.1109/IJCNN.2017.7966166.

[50] M. Nazemi, G. Pasandi, and M. Pedram, “Energy-efficient, low-latency
realization of neural networks through boolean logic minimization,” in
Proceedings of the 24th Asia and South Pacific Design Automation
Conference, Tokyo Japan, Jan. 2019, pp. 274–279. doi:
10.1145/3287624.3287722.

[51] X. Lin, C. Zhao, and W. Pan, “Towards Accurate Binary Convolutional
Neural Network,” p. 9.

[52] A. Palvanov and Y. I. Cho, “Comparisons of Deep Learning Algorithms
for MNIST in Real-Time Environment,” Int. J. FUZZY Log. Intell. Syst.,
vol. 18, no. 2, pp. 126–134, Jun. 2018, doi:
10.5391/IJFIS.2018.18.2.126.

[53] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” Proc. 2017 ACMSIGDA Int. Symp. Field-
Program. Gate Arrays, pp. 65–74, Feb. 2017, doi:
10.1145/3020078.3021744.

[54] D. Giardino, M. Matta, F. Silvestri, S. Spanò, and V. Trobiani, “FPGA
Implementation of Hand-written Number Recognition Based on CNN,”
Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 1, p. 167, Feb. 2019, doi:
10.18517/ijaseit.9.1.6948.

[55] J. Ngadiuba et al., “Compressing deep neural networks on FPGAs to
binary and ternary precision with hls4ml,” Mach. Learn. Sci. Technol.,
vol. 2, no. 1, p. 015001, Dec. 2020, doi: 10.1088/2632-2153/aba042.

[56] R. B. Kent and M. S. Pattichis, “Design, Implementation, and Analysis
of High-Speed Single-Stage N-Sorters and N-Filters,” IEEE Access, vol.
9, pp. 2576–2591, 2021, doi: 10.1109/ACCESS.2020.3047594.

[57] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN: Binarized
neural network on FPGA,” Neurocomputing, vol. 275, pp. 1072–1086,
Jan. 2018, doi: 10.1016/j.neucom.2017.09.046.

[58] Z. Wang, “A Digits-Recognition Convolutional Neural Network on
FPGA,” p. 45.

[59] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and Decision-
Making for Autonomous Vehicles,” Annu. Rev. Control Robot. Auton.
Syst., vol. 1, no. 1, pp. 187–210, May 2018, doi: 10.1146/annurev-
control-060117-105157.

[60] M. Krause, “How Many AA Batteries Would it Take to Power a
Mercedes?,” NSF Center for Sustainable Nanotechnology, Apr. 29,
2016. https://sustainable-nano.com/2016/04/29/aa-batteries-mercedes/

[61] S. Payra, I. Wicaksono, J. Cherston, C. Honnet, V. Sumini, and J. A.
Paradiso, “Feeling Through Spacesuits: Application of Space-Resilient
E-Textiles to Enable Haptic Feedback on Pressurized Extravehicular
Suits,” in 2021 IEEE Aerospace Conference (50100), Big Sky, MT,
USA, Mar. 2021, pp. 1–12. doi: 10.1109/AERO50100.2021.9438515.

[62] G. Loke et al., “Digital electronics in fibres enable fabric-based
machine-learning inference,” Nat. Commun., vol. 12, no. 1, p. 3317,
Dec. 2021, doi: 10.1038/s41467-021-23628-5.

[63] S. Payra, G. Loke, and Y. Fink, “Enabling Adaptive Robot-Environment
Interaction and Context-Aware Artificial Somatosensory Reflexes
through Sensor-Embedded Fibers,” presented at the 2020 IEEE
Undergraduate Research Technology Conference, Massachusetts
Institute of Technology, Oct. 2020. [Online]. Available:
https://www.rle.mit.edu/wp-content/uploads/2020/10/PA20-
0081_URTC_Updated.pdf

[64] F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, and K.
V. Shenoy, “High-performance brain-to-text communication via
handwriting,” Nature, vol. 593, no. 7858, pp. 249–254, May 2021, doi:
10.1038/s41586-021-03506-2.

[65] M. Wielgosz and M. Karwatowski, “Mapping Neural Networks to
FPGA-Based IoT Devices for Ultra-Low Latency Processing,” Sensors,
vol. 19, no. 13, p. 2981, Jul. 2019, doi: 10.3390/s19132981.

[66] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for
Machine Learning: Challenges and Opportunities,” 2017 IEEE Cust.
Integr. Circuits Conf. CICC, pp. 1–8, Apr. 2017, doi:
10.1109/CICC.2017.7993626.

 APPENDICES

Appendix Figure 1:

Appendix Figure 2:

Appendix Figure 3:

Appendix Fig. 1. Single-layer neural network model architecture. Preliminary
data transforms (yellow) include binarization of MNIST digits and casting
into a linear pixel array, then a single fully-connected layer (blue) determines
image classification out of ten potential digits.

Appendix Fig. 2. Implemented 8-bit Quantized Neural Network.
a) Network structure, b) FPGA die floorplan coverage,
c) simulated power consumption, d) module resource utilization

Appendix Fig. 3. Implemented Binarized Neural Network
a) Network structure, b) FPGA die floorplan coverage,
c) simulated power consumption, d) module resource utilization

