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Abstract— As neural networks are increasingly deployed on 

mobile and distributed computing platforms, there is a need to 

lower latency and increase computational speed while decreasing 

power and memory usage. Rather than using FPGAs as 

accelerators in tandem with CPUs or GPUs, we directly encode 

individual neural network layers as combinational logic within 

FPGA hardware. Utilizing binarized neural networks minimizes 

the arithmetic computation required, shrinking latency to only the 

signal propagation delay. We evaluate size-optimization strategies 

and demonstrate network compression via weight quantization 

and weight-model unification, achieving 96% of the accuracy of 

baseline MNIST digit classification models while using only 3% of 

the memory. We further achieve 86% decrease in model footprint, 

8mW dynamic power consumption, and <9ns latency, validating 

the versatility and capability of feature-strength-based pruning 

approaches for binarized neural networks to flexibly meet 

performance requirements amid application resource constraints.  
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I. INTRODUCTION 

In recent years, the increased utilization of artificial 
intelligence in everyday technologies has necessitated advances 
in computer architectures for both training and running machine 
learning models. A main limitation of neural edge-computing 
infrastructures is the memory- and computation-intensive nature 
of conventional models. Thus, it is of increasing interest to 
investigate reduction of computational requirements for neural 
networks [1]. Some recent efforts have explored the use of field-
programmable gate arrays (FPGAs) as hardware accelerators for 
specific elements of neural network training and evaluation [2]. 
Logic blocks within FPGAs can be dynamically reconfigured to 
adjust to different computational tasks, allowing for more 
efficient, task-specific logic circuitry, such as accelerating 
image processing while reducing power consumption compared 
to conventional embedded system platforms [3], [4], [5], [6].  

However, when applied to neural network computation, 
FPGAs are conventionally utilized in tandem with CPUs and 
GPUs [7]. Because basic neural functionalities can be replicated 
with transistor arrangements [8], there have been efforts to 
fabricate neural network-specific hardware components [9], 
[10]. However, the intrinsic reconfigurability of FPGAs can be 
further utilized to maximize functionality: dynamic memory 

reallocation has allowed hardware footprint minimization in 
various data processing tasks [11], and there has been recent 
interest in architectures that embed neural networks within 
FPGAs [12], [13], [14]. Such approaches have multiple benefits: 
not only can FPGA floating-point hardware accelerate neural 
network arithmetic [15], the large number of logic gates 
available in FPGA fabric allows pipelining and duplication of 
network segments to simultaneously perform computations on 
separate data [16]. Indeed, FPGAs outperform mobile platforms 
on machine learning benchmarks and real-time computer vision 
with higher efficiency [17], [18], and have been utilized for 
applications like particle physics experimentation to analyze 
collision byproducts that disappear within nanoseconds [19]. 

Such latency-reduction approaches are relevant to meet ever-
tightening latency and performance requirements for computing 
needs like artificial intelligence-based services [20]. This has 
even led to the pursuit of alternative hardware, such as optical 
neural networks, to decrease latency [21]. Additional motivation 
for latency reduction arises from a need for data encryption for 
privacy: Even while leveraging parallel processing for improved 
throughput, performing predictions on encrypted data can 
require high latencies of up to 250 seconds [22], and networks 
that achieve 290ms latency on encrypted handwritten digits are 
constrained by limitations of transfer learning [23]. Recent work 
on secure inference has achieved 30ms latency for MNIST digit 
classification [24], and demand for near-instant predictions 
urges a search for strategies to reduce latency further. 

Advancements toward making neural networks intrinsically 
more efficient have include compressing models by pruning the 
parameters that are invoked, quantizing weights, and distilling 
internal knowledge representations [25], [26]. Large-scale 
commercial approaches have demonstrated 8-bit hybrid 
calculations capable of similar performance as 32-bit floating 
point operations [27]. Some approaches with FPGA hardware 
optimize model design for individual accelerators [28], while 
others build a physical network pipeline [29]. Other 
biologically-inspired architectures improve energy efficiency, 
achieving 95% accuracy with 20ms mean latency at 0.3 watts of 
board power, but require large specialized hardware [30]. 

II. OBJECTIVES 

Building upon the existing literature, we identify the need to 
explore novel approaches to hardware implementations of 
neural networks that can achieve high accuracy with low latency 
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and low power consumption, maintaining the seamless user 
experiences of mobile and wearable platforms [31]. Techniques 
like weight binarization have shown promise in reducing the 
number of calculations required in computing results, enabling 
acceleration with minimal impact on accuracy [32], [33], [34], 
and are uniquely adaptable to implementation in hardware logic 
gates. By minimizing memory transfers and instruction-based 
computations, computational load significantly decreases and 
model latency can be reduced to merely the signal propagation 
delays through sequential binary logic. 

The goal of this work was thus to propose and explore a novel 
FPGA architecture approach for machine learning computation 
on low-power platforms, demonstrating binarized neural 
networks and comparing the efficacy of size-optimization 
strategies, specifically with regard to the continuous tradeoff 
between algorithm compression and key performance indicators 
of accuracy, latency, network size, and power efficiency.  

III. METHODS / APPROACH 

To evaluate classification capability on a well-validated 
computational task, strategies were developed for FPGA-based 
handwritten digit classification on the MNIST dataset, a 
longstanding benchmark for machine learning [35]. Within the 
original dataset, each image has a 28x28 resolution (784 pixels 
per image) in 8-bit grayscale (values 0 to 255). In order to 
process MNIST digits in binarized neural networks, the input 
data were converted from grayscale to binary representations. A 
fixed threshold of 50% grayscale (8-bit value 128/256) was used 
as the threshold to determine binary representation for each pixel 
(<128 = “0”, >128 = “1”). Each converted image thus contained 
784 bits, with each pixel corresponding to background (binary 
“0”) or digit (binary “1”). This binary-converted dataset was 
used to train and evaluate multiple network implementations.   

First, we created and tested a set of minimal hardware 
implementations (Section IV), benchmarking the potential for 
basic pattern-matching algorithms-in-hardware to successfully 
classify handwritten digits. The results from these pattern-
recognition algorithms were used to determine the functional 
characteristics of the binarized dataset, and inform the 
subsequent, progressively more advanced algorithms.  

Next, we created a baseline single-layer neural network 
(Section V) by taking a neural network architecture that is well-
validated for handwritten digit detection and adapting it for 
direct deployment on an FPGA, then evaluating performance of 
the modified algorithm. We further optimized and evaluated the 
model with weight quantization and strategic simplifications to 
reduce memory usage and computational requirements.  

In our final approach, we developed a binarized neural 
network (Section VI) that utilizes binary pixel weights rather 
than integer weights, decreasing integer arithmetic operations. 
We compare multiple pixel-weight selection and pruning 
strategies and evaluate their impacts on model size and 
accuracy. Additionally, we pursue further model compression 
through weight-model unification, condensing network logic to 
include weights in computational logic rather than in memory. 
We then evaluate key performance indicators and resource 
utilization of the pruned models, and demonstrate the ability of 

such approaches to optimize binarized neural networks. 
In order to create these hardware-embedded neural networks, 

all algorithms were first simulated with Python 3.7.3 and 
TensorFlow 2.0 [36] to verify and evaluate model functionality, 
then implemented on a Xilinx Artix-7 FPGA development board 
(XC7A100T, Digilent Nexys 4 DDR) using SystemVerilog and 
the Xilinx Vivado HLx design suite. Additional performance 
metrics and hardware layout are derived from Xilinx Vivado.  

IV. MINIMAL HARDWARE IMPLEMENTATIONS 

Statistical approaches to parsing handwritten digits include 
multinomial lassos to identify pixel predictance values and 
sparse principal components analysis to identify key component 
pixels for different handwritten digits [37]. While both of these 
methods require lengthy mathematical instruction sets, they 
offer a starting point for a minimal classification algorithm, 
without the need for computationally expensive convolutions. 

A. Digit Predictor Pixels 

Combining these approaches, we first develop a hardware 
implementation based on digit “predictor pixels”. Fig. 1 contains 
heatmaps corresponding to the pixel occurrence frequency in 
each of ten MNIST digits, from the first 1000 and the full 50,000 
training images. Different digits have primary locations in which 
pixels are active; the location of active pixels in a test image is 
utilized as a proxy for the digit contained within the image. Fig. 
2a demonstrates an initial predictor-pixel matrix, constrained to 
pixels with only positive values. We observe that some digits are 
significantly over-represented; for example, “4” has far fewer 
active pixels than “0” or “7”. To compensate for this, an 
activation threshold was implemented to remove low-intensity 

 

Fig. 2. Matrix of predictor pixels.  

a) 0 threshold, b) 100 threshold, c) 170 threshold, d) 190 threshold.  

 

Fig. 1. Digit heatmaps generated from training dataset.  
a) 1000 images, b) 50,000 images. Upper row = 0-4, Lower row = 5-9 



 

 

pixels. Fig. 2b, 2c, and 2d show the predictor-pixel matrix with 
activation thresholds of 100, 170, and 190 (out of 28 = 256).  

In this method, the final classification result was determined 
to be the digit (0-9) with the largest number of activated pixels, 
given a binarized input image. The accuracy across the test 
dataset was observed to be 28.07%. While 3x better than chance, 
the predictive power is hampered by the many cases in which 
the number of activated pixels within the designated regions is 
identical across multiple candidate digits. In other words, having 
a low activation threshold leads to low accuracy, as inputs are 
preferentially classified as the digits with more predictor pixels; 
increasing the activation threshold results in low discrimination 
capability between multiple potential classifications. 

B. Limitations and Extensions 

While the predictor-pixel method is appealing from a simplicity 
standpoint (as all inputs can be matched against one aggregate 
reference), we observe that this approach has limited accuracy and 
multiple limitations. For instance, the presence of positive-valued 
pixels that are common across multiple digits decreases the 
predictive power of those individual pixels. When one digit has a 
slightly higher average activation within one pixel compared to 
other digits, selecting a small number of predictor pixels to 
determine digit classifications amplifies those slight distinctions 
might falsely skew results toward certain digits over others.  

V. SINGLE-LAYER NEURAL NETWORK 

A. Structuring, Training, and Validation 

Network architecture plays a large role in determining 
performance and accuracy, especially with compact models or 
small datasets [38]. In order to establish a baseline neural 
network architecture for binarization and optimization, we adapt 
the LeNet architecture [39], which is both compact (~6-7 layers) 
and accurate (>90%), and has been adapted to a variety of 
classification tasks, such as image recognition and facial 
recognition [40]. To traverse the complexity-accuracy tradeoff, 
we pared down model parameters to evaluate performance in 
progressively minimal models. All models were constructed and 
evaluated using Python and Tensorflow, dividing the 60,000 
images in the dataset into a training-testing split of 90%/10%.  

Condensing the network to two convolutional layers and one 
fully-connected dense layer 1024 neurons wide facilitates a 
classification accuracy of 98.6%, while a version of the same 
network without the dense layer is able to achieve 97.9% 
accuracy. With the removal of the second convolutional layer 
(leaving one convolutional layer and one dense layer), we 
achieve 96.2% MNIST accuracy. Next, we eliminated the 
convolutional layer entirely, in order to form direct parallels 
between a conventional single-layer implementation and single-

layers implemented in FPGA hardware. This model (Appendix 
Fig. 1) successfully achieves 91.5% accuracy, showing that even 
a single-layer implementation can offer significant predictive 
power without the need for costly convolution operations. 

As shown in Fig. 3, the single-layer neural network operates 
on ten sets of 784 weights, one set per digit and one weight per 
pixel. Blue pixels indicate strong predictors of a particular digit, 
while red pixels imply that the presence of pixels in that region 
reduce the likelihood that that is the correct digit. Functioning 
essentially as a linear classifier, not only does this single-layer 
neural network provide a simple way to rapidly recognize 
MNIST handwritten digits with minimal calculations, this 
method also retains higher accuracy than convolutional neural 
networks (CNNs) trained on subsets of the MNIST dataset [41]. 
Hence, our single-layer classifier shows good performance 
while minimizing the computational hardware footprint.  

B. Model Optimization 

For implementation into FPGA fabric, we consider both the 
operations required to execute the model, as well as the 
connections between logic blocks necessary to facilitate the 
operations. We begin optimizing the neural network itself by 
distilling the architecture into a single layer, which allows us to 
treat the entire prediction-serving region as a single hardware 
module. Next, we identify two areas of optimization: the weights 
within the model, and the activation functions for the output.  

A primary source of computational overhead during 
execution of neural networks is due to the mathematical 
operations necessary when multiplying input data by sequences 
of weights and summing inputs into activation functions, 
especially since floating-point mathematics requires additional 
hardware resources and clock cycles. Weight quantization can 
address these problems [25], [27]. We quantize the weights in 
our single-layer classifier from 32-bit floating point decimals to 
8-bit integers, resulting in a 75% decrease in weight size from 
10 ⋅ 784 ⋅ 32 	 250,880  bits, to 10 ⋅ 784 ⋅ 8 	 62,720  bits, 
with only a 0.3% decrease in accuracy (91.5% to 91.2%).  

C. Implementation Architecture 

The second aspect of computational overhead involves the 
mathematical activation functions utilized to compile results 
from each layer. The base neural network utilized a softmax 
activation function, which has been approximated in FPGA 
hardware [42]. However, mirroring the simplicity inherent to a 
single-layer slice of a model, we implement a maximum-value 
evaluator, which allows us to retain full accuracy while 
eliminating the need to instantiate additional arithmetic 
computation modules, minimizing hardware footprint. 

Once deployed in FPGA hardware, the single-layer neural 
network comprises a single set of parallel pipelines. The weights 
for each of the ten digit nodes are stored in a set of registers, and 
the input image is simultaneously routed and matched against 
the 784x8 arrays containing the 8-bit weights. Because the input 
image is binary, the multiplication operation consists of a set of 
AND operations between each input pixel and its corresponding 
weight. The selected weights are added to create the output sum 
for a particular digit. The output sums are compared across digit 
nodes, and the node with maximum value is the digit output. 

 

Fig. 3. Pixel weight heatmaps for each digit.  



 

 

This single-layer, 8-bit quantized neural network (Appendix Fig. 
2) achieves minimal latency, with a signal propagation delay of 
under 7ns per pixel, and high energy-efficiency, with a Vivado-
estimated 0.007W of dynamic power consumption.  

VI. BINARIZED NEURAL NETWORK 

To pursue a more tightly-coupled neural network within 
FPGA hardware, we binarize the neural network, with binary 
weights that can be represented as transistorized logic rather 
than arithmetic operations. Replacing arithmetic computation 
with bitwise operations has been shown to improve power 
efficiency and computational speed, and reduce memory use and 
number of memory accesses required to calculate each layer 
within a model [33]. Direct binarization of the 8-bit quantized 
neural network yields almost 88% reduction in weight size; we 
additionally explore further reductions in size to evaluate 
performance of highly compact models-in-hardware. 

A. Weight Conversion and Implementation 

Previous works have selectively binarized portions of 
networks [43]; this work sought to characterize multiple points 
in the model accuracy-size space. Multiple approaches have 
been taken to forming and pruning binarized neural networks, 
such as isolating and trimming vacillatory weights that flip 
polarity many times near the end of model training completion 
[44] or removing clusters of weights that have smaller effects on 
output accuracy [45]. Unique biomolecular “winner-take-all” 
systems have also been created for DNA pattern recognition 
[46]; this can be reframed as a form of binary logic with each 
input corresponding to a certain “pixel” of the desired signal and 
the classifier as a series of logic operations reaching a 
deterministic outcome based on certain combinations of inputs. 

Based on these strategies, we binarize our quantized single-
layer neural network by identifying the strongest “predictor 
pixels” as the top-N largest values given a number of pixels to 
be calculated (N) for each digit map. Each set of predictor pixels 
is stored in a 784-bit variable in which each pixel position is 
denoted with a 0 or 1 if that pixel is a designated predictor for 
that digit. The model iterates through each index at a rate of one 
input pixel per clock cycle, then tallies and compares the sums 
across digits to determine the final digit classification. 

B. Multi-Strategy Performance Comparison 

We further evaluate and interpret different strategies to select 
the top “predictor pixels” within our binarized neural network. 
First, it is possible to create models of varying size and accuracy 
by changing the number of pixels referenced in each layer (i.e. 
nonzero weight). Second, because weights in a trained model do 
not form a symmetric distribution (e.g. there are different 
amounts and magnitudes of positive weights vs. negative 
weights), there are different classification accuracies when 
referencing the presence of a certain number N of pixels with 
positive-valued weights, versus the absence of N pixels with 
negative-valued weights. Out of a possible 784 pixels in an 
image, we evaluate the accuracy performance of binary matchup 
strategies referencing a total number of pixels ranging from N=2 
to N=512. In addition to positive and negative predictors, we 
also evaluate a mixed strategy, in which the pixel reference 
count is evenly divided between positively-weighted pixels and 
negatively-weighted pixels. Fig. 4 shows the characteristic 
curves observed with such binary matchup strategies. 

We observe a few relevant details from the characteristic 
curves that provide insight into optimal binarization strategies. 
First, we note the diminishing return of referencing larger 
numbers of pixels; this is because the weights of lower-ranked 
pixels have smaller absolute values and contribute less to gains 
in accuracy, while still commanding computational overhead. 
Next, the absence of negative predictors is significantly more 
accurate than the presence of positive predictors in small values 
of N. This may be because high-valued positive predictors are 
more likely to be similarly placed across digits (see similarly-
positioned blue regions in 0, 2, 3, 7 in Fig. 3), as opposed to more 
unique positioning of strong negative predictors across digits. 
Lastly, the predictive capability of the mixed-strategy dual 
matchup is consistently more accurate than either positive or 
negative predictors alone, with a maximum accuracy of 87.5% 
using N=256 reference pixels (128 positive, 128 negative).  

C. Further Optimization: Weight-Model Unification 

Significant improvements in computational and power 
efficiency can be achieved by reducing the number of memory 
accesses required to execute a model [47], [48]. We utilize 
Boolean logic minimization to consolidate weights and logic 
within our binarized neural network. Weights stored in memory 
already take the form of binary flags, which must be retrieved, 
multiplied with an input datum, and summed to reach a final 
output value. In an FPGA, such binary weights can simply be 
instantiated as part of the hardware algorithm logic, translating 
binary flags into AND operations through which input data pass 
and are filtered before summing. We utilize this to create an 
optimized representation in FPGA hardware (Appendix Fig. 3), 
that utilizes transistorized logic without having to reference 
separate memory registers for each operation.  

VII. RESULTS AND DISCUSSION 

A. Latency Minimization and Resource Efficiency 

Our 8-bit quantized single-layer neural network dedicates 
one clock cycle to sum each pixel, reaching a final result in 785 
cycles. The condensed architecture allows the use of clock cycle 
periods as low as 7ns, allowing a result to be reached in only 

 

Fig. 4. Binarized Neural Network Accuracy vs. Binarization Strategy.  



 

 

5495ns (under 6 microseconds), while retaining an accuracy of 
91.2% - only 0.3% less than the 91.5% accuracy of the reference 
network with 32-bit floating-point integers. Our binarized neural 
network, however, is implemented entirely in combinational 
logic, and yields final determinations in under 10ns. When 
clocked, Vivado signal timing analysis confirms a stable result 
in only 8.465ns, demonstrating a near-instantaneous result. With 
just a 4.1% drop in accuracy, we are able to achieve over 800x 
faster speeds than the 8-bit quantized network and 1.5 million 
times faster than other state-of-the-art systems [24].  

Further, both implementations are extremely compact 
hardware representations of neural networks. The quantized 
network uses a total of 2276 slice lookup tables (LUTs) (3.6% 
of the 63400 available on this FPGA), 288 slice registers 
(0.23%), and 690 slices (4.4%), and has a dynamic power 
consumption of only 0.007 W. The binarized network uses a 
total of 333 LUTs (0.53%), 4 slice registers (0.003%), and 101 
slices (0.64%), with a dynamic power consumption of only 
0.008 W. This extremely minimal resource utilization represents 
multiple orders of magnitude of space savings and resource 
conservation compared to conventional networks that may take 
up the majority of an FPGA fabric [49]. 

Prior researchers have observed that while binary logic can 
improve latency, unoptimized representations can exponentially 
increase model complexity [46], [50], or require additional 
weights and activations to reach similar accuracies [51]. Our 
model performance demonstrates that feature-strength-based 
pruning allows for effective retention of significant contributors 
to accuracy, and implementation on FPGA allows significant 
gains in speed and compression of models while minimizing 
power consumption and on-chip resource utilization. 

B. Functional Comparison 

To contextualize the performance of our models, we compare 
performance against benchmark performance and recent 
research. Conventional MNIST classification systems often take 

significantly longer times per image; some convolutional neural 
networks (CNNs) require as long as 7-12 seconds per image 
[52]. With <9ns latency, our methods are over 109x faster than 
such algorithms. Even specialized FPGA platforms emulating 
spiking neural networks only achieve 20ms latencies for MNIST 
digits [30]; our system is over six orders of magnitude faster. In 
the high-performance regime, this work exhibits superb speed 
and energy efficiency, achieving low-latency and low-power 
objectives critical to real-time applications. 

Table 1 compares our quantized and binarized networks with 
other state-of-the-art MNIST classification implementations. 
We explore the tradeoff between accuracy and performance by 
targeting 90% of the accuracy of comparison algorithms, but 
with <10% of the latency and using only <10% of the on-chip 
resources. The impact of this is high throughout and ultra-low 
power consumption, resulting in 3-4 orders of magnitude greater 
power efficiency than the next most efficient alternative [53].  

Our minimal implementations far exceed the efficiency of 
prior literature in terms of dynamic power consumption. When 
considering total power consumption, our 8-bit quantized 
network offers a slight (~4%) power efficiency improvement 
over Umuroglu et al. [53], and our binarized network offers 
more than 500x greater power efficiency, while also achieving 
nearly 40x faster latency. We also observe that total power 
efficiency would further increase if FPGA fabric utilization was 
increased with multiple instances running in parallel for greater 
throughput, as the static chip power consumption overhead 
currently accounts for 92-93% of the total power consumption. 

Notably, our system yields significantly better overall results 
than the most recent implementations of MNIST-classifying 
convolutional neural networks on the same FPGA platform. Our 
quantized implementation achieves greater accuracy than 
Giardino et al. [54] with more than a 90% decrease in resource 
utilization, 99.2% decrease in dynamic power consumption, and 
94% reduction in latency (>15x acceleration), while our 
binarized approach exhibits 590,680x greater dynamic power 

TABLE 1:  PERFORMANCE COMPARISON 

 

-- indicates values were not available. * indicates values are estimated based on provided metrics. 1 indicates values calculated using the dynamic power 
consumption of the implemented algorithm;  2 indicates values calculated using the sum of both dynamic power consumption + static chip power consumption. 

[54],[55],[56],[53],[49],[57],[58]. 



 

 

efficiency and 45,000x greater total power efficiency (frames 
per second per watt). This further supports the assessment of this 
approach as a novel contribution enabling low-latency artificial 
intelligence in hardware and significantly improving hardware 
performance compared to state-of-the-art research. 

C. Cost/Performance Analysis and Applications 

The pursuit of higher-accuracy machine-learning models 
coupled with the conventional intuition that model acceleration 
is not worth decreases in accuracy, has yielded an underexplored 
performance envelope for networks with slightly reduced 
accuracy but far lower latency. Prior approaches have seen 
accuracy decrease under compression (e.g. 98.81% at 16-bit, to 
95.53% at 6-bit, to 43.30% at 5-bit) [58], but our methods allow 
for accuracy retention even with significant compression from 
7840 8-bit weights (91.2% accuracy), to 2560 binary yes/no 
decisions (87.5% accuracy), demonstrating that the performance 
envelope can be successfully expanded to ultra-low-latency and 
ultra-low-power implementations, without sacrificing accuracy: 
4% lower accuracy here enables 99.85% lower latency (650x 
acceleration) and 86% lower hardware resource utilization.  

This low resource utilization also enables versatility in 
applications. For instance, this architecture could be scaled up to 
facilitate the implementation of multi-layered networks all 
within a single FPGA, as opposed to having to spread networks 
out between multiple devices [29]. Additionally, strategic design 
pipelining could be utilized to increase throughput for individual 
networks, by allowing multiple operations to be conducted in 
parallel. Latency increases can be offset by higher clock speeds 
due to decreased module depth / propagation distance, and the 
flexibility from small modules facilitates deployment on 
integrated circuits conducting other operations, like leveraging 
unused sections of registers occupied by other algorithms to 
minimize additional on-chip resource utilization.  

The low power requirements and resource utilization of our 
methods also make such strategies well-suited for ubiquitous 
computation and smaller form factors, and opens new avenues 
for cost-effective advanced computation on inexpensive chips. 
The use of individual, compact networks for specialized tasks 
can improve efficiency and safety in electromechanical systems 
that must make safety-critical decisions in fractions of a second 
[59]. By detecting potentially hazardous scenarios in near-real-
time, safety equipment can be primed before a full-confidence 
determination is reached, improving reaction time and resultant 
safety. Since these designs are so compact, basic neural 
networks could feasibly and economically be deployed on low-
quality silicon, low-speed processors, or on small ASIC die 
areas. With the energy stored in a single alkaline AA battery 
[60], our binarized FPGA network could continuously classify 
images for 20 days. Such efficiency is key for long-duration 
deployments for biosensors [61], on-body electronics [62], and 
brain-computer interfaces for prosthetics [63] or for decoding 
and digitizing of mental handwriting in paralyzed patients [64]. 

VIII. CONCLUSION 

As the prevalence and role of neural networks in mobile and 
edge computing continues to increase, there is a growing drive 
to lower latency and increase throughput while decreasing 

power and resource utilization. Wielgosz and Karwatowski’s 
review of FPGA latency optimization concludes that “in some 
application domains, such as…anomaly detection, the response 
time of the system is more critical to ensure quality of service 
than the quality of the answer” [65]. Indeed, Sze et al.’s survey 
of machine learning hardware notes that “the key metrics for 
embedded machine learning are accuracy, energy consumption, 
throughput/latency, and cost” [66]. By encoding neural network 
layers as combinational logic within FPGA hardware, we 
minimize expensive memory access operations and arithmetic 
computation, shrinking latency to only the signal propagation 
delay through FPGA fabric. We implement and compare size-
optimization strategies and demonstrate network compression 
via weight quantization and weight-model unification, 
achieving up to 96% of the accuracy of baseline MNIST digit 
classification using only 3% of the memory. We further achieve 
an 86% decrease in model footprint, 8mW power consumption, 
and ultra-low <9ns latency, validating the versatility and 
capability of feature-strength-based pruning approaches for 
binarized neural networks to flexibly meet performance 
requirements depending on application resource constraints. 

Not only does this work have critical implications in a variety 
of use cases where low latency and low power usage are crucial, 
it also demonstrates a significant advancement in terms of 
strategies for neural network construction and complex input 
classification leveraging FPGA logic. Low-latency, resource-
efficient neural network computation is critical for high-
performance edge computing, moving beyond mobile devices 
and wearables to on-body electronics and ubiquitous computing 
ecosystems in which these resource constraints are key [31]. Our 
architecture and method of compressing and implementing 
binarized networks can also be extended and applied to more 
complex tasks ranging from process control and safety measures 
to human-computer interfaces and biomedical devices.  
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Appendix Fig. 1. Single-layer neural network model architecture. Preliminary 
data transforms (yellow) include binarization of MNIST digits and casting 
into a linear pixel array, then a single fully-connected layer (blue) determines 
image classification out of ten potential digits. 

 

Appendix Fig. 2. Implemented 8-bit Quantized Neural Network.  
a) Network structure, b) FPGA die floorplan coverage,  
c) simulated power consumption, d) module resource utilization  

 

Appendix Fig. 3. Implemented Binarized Neural Network  
a) Network structure, b) FPGA die floorplan coverage,  
c) simulated power consumption, d) module resource utilization  


