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Abstract—Simulating quantum circuits using classical 

computers can accelerate the development and validation of 

quantum algorithms. Our newly developed algorithm, variational 

quantum search (VQS), has shown an exponential advantage over 

Grover’s algorithm in the range from 5 to 26 qubits, in terms of 

circuit depth, for searching unstructured databases. We need to 

further validate the VQS for more than 26 qubits. Numerous 

simulators have been developed. However, it is not clear which 

simulator is most suitable for executing VQS with many qubits. To 

solve this issue, we implement a typical quantum circuit used in 

VQS on eight mainstream simulators. Results show that the time 

and memory required by most simulators increase exponentially 

with the number of qubits and that Pennylane with GPU and 

Qulacs are the most suitable simulators for executing VQS 

efficiently. Our results aid researchers in selecting suitable 

quantum simulators without the need for exhaustive 

implementation, and we have made our codes available for 

community contributions. 
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I. INTRODUCTION 

Quantum computing (QC) shows great promise for 

revolutionizing various fields by offering enhanced 

computational capabilities compared to classical computers. 

However, the accessibility of real quantum computers is limited, 

often resulting in long wait times. Moreover, the finite 

entanglement time of qubits imposes constraints on the 

achievable circuit depth.  

As a result, simulators play a crucial role in accelerating the 

development and validation of quantum algorithms, providing a 

valuable platform for algorithm exploration and noise 

simulation, and insights into the behavior of real quantum 

systems. However, choosing the right simulator can be 

challenging, especially for beginners, as there are multiple 

options available, each with its features and limitations. This 

exploration process can be time-consuming and may lead to the 

selection of a simulator that is not well-suited to the specific 

requirements of the research. 

In this paper, we focus on the Variational Quantum Search 

(VQS) algorithm [1], which has demonstrated exponential 

advantage over Grover's search algorithm and has been 

successfully verified up to 26 input qubits. However, an 

important question remains: can this exponential advantage be 

scaled up to around 50 qubits [2]? To address this question, we 

investigate various simulators to determine if there is one that 

can simulate the VQS with many qubits. 

Our first contribution is a comprehensive comparison of 

commonly used simulators, providing recommendations on 

which simulators to choose based on their respective strengths 

and limitations. We assess computational time and memory 

usage to guide researchers, particularly beginners, in selecting 

the most suitable simulator for their simulations. 

Furthermore, we explore the performance of different 

simulators and find that all of them encounter challenges related 

to exponentially increasing time or memory requirements as the 

number of qubits grows.  

II. PROBLEM AND SIMULATOR DESCRIPTION 

In this study, we execute a typical quantum circuit used in 

VQS on different simulators, i.e., calculate the expectation value 

of the observable Z1, denoted as 〈Z1〉, as shown in Fig. 1a of Ref 

[1]. Note that this paper uses type-II Ansatz with three layers for 

the VQS. Calculating the 〈Z1〉 is the most time and memory-

consuming part of executing VQS on a classical computer. The 

maximum memory required for simulating VQS is exactly the 

memory needed for calculating 〈Z1〉.  
We have executed the quantum circuit on eight common 

simulators which are briefly described below. 

Qiskit: An open-source framework by IBM for QC research, 

offering a user-friendly interface, versatile functionality, and 

support for both simulation and execution on real quantum 

hardware [3]. 

Pennylane: An open-source library that combines classical 

machine learning with QC, enabling the construction and 

training of quantum neural networks. It integrates with popular 

frameworks and supports CPU and GPU computation [4]. 

TensorCircuit: A Python-based QC framework emphasizing 

speed and flexibility. It provides efficient simulations of 

quantum circuits and seamless integration with machine 

learning frameworks like TensorFlow and JAX [5]. 

Qulacs: A powerful and versatile QC framework with high-

performance simulation capabilities. It supports both CPU and 

GPU computing, offering a user-friendly interface and a variety 

of quantum gates and operations [6]. 

ProjectQ: An open-source software framework with 

compilation and simulation capabilities. It allows running 

quantum programs on IBM Quantum Experience chip, AWS 

Bracket, Azure Quantum, or IonQ service provided devices [7]. 

Cirq: An open-source Python framework for writing, 

manipulating, and optimizing quantum circuits. It focuses on 

near-term quantum algorithms, offering fine-grained control 

over circuits and compatibility with quantum computers and 

simulators [8]. 

III. RESULTS 

We calculated the exact expectation value described above 

for the VQS on various simulators using the NCSA Delta high 
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performance computer (A100x8). We adopt the most 

appropriate configuration for implementing VQS in each 

simulator. Fig. 1 displays the computational time and memory 

usage for different qubit numbers. 

We mainly focus on simulating larger systems, particularly 

those with more than 26 qubits. As shown in Fig. 1, we compare 

the performance of different simulators in terms of resource 

consumption. The results demonstrate that Pennylane using 

GPU exhibits the lowest time consumption, followed by Qulacs 

(see Fig. 1a). In terms of memory usage, Qulacs requires the 

least amount, followed by Pennylane using GPU (see Fig. 1b). 

Figure 1 shows that the time consumption of each simulator 

increases exponentially as the number of qubits increases. 

Specifically, adding one qubit roughly doubles the time 

consumption. On the other hand, except for Qulacs with the 

“CasualConeSimulator” backend, the memory consumption of 

all simulators increases exponentially with the number of 

qubits. Notably, the Qulacs simulator consistently requires only 

0.02 MiB across all cases involving 24-30 qubits, primarily 

because it selectively extracts only the necessary gates linked 

to a specific observable by reversing the circuit traversal [6].  

 

 
Figure 1: Time (top panel) and memory (bottom panel) consumed by different 

simulators to obtain the expectation value of observable 〈Z1〉 in the VQS for 

different numbers of qubits. Note: Pennylane (CPU), Pennylane (GPU), and 
TensorCircuit (CPU) reached their memory limit for more than 29, 30, and 28 

qubits, respectively.  Qiskit (CPU) and Cirq encounter errors when calculating 

the exact expectation value for more than 15 and 28 qubits, respectively.  
Qulacs and Project Q encounter time limits when calculating the exact 

expectation value for more than 30 and 16 qubits, respectively.  

Another notable observation is that TensorCircuit with GPU 

has the best performance in terms of time consumption (refer to 

table results in [10]) while ranking second in memory 

consumption (behind Qulacs) for up to 26 qubits. Although 

TensorCircuit with GPU encounters tensor limitations for 

circuits larger than 26 qubits, its potential as a simulator for 

superior simulation of larger quantum circuits is evident. 

Based on our findings, we recommend using Qulacs for 

optimal memory efficiency and Pennylane with GPU for 

optimal time efficiency.  

IV. CONCLUSION AND FUTURE WORK 

Our benchmarking of quantum simulators for VQS provides 

valuable insights into their scalability and efficiency. Most 

simulators exhibit exponential growth in time and memory 

consumption with the number of qubits, except for Qulacs. This 

necessitates the exploration of alternative techniques, such as 

circuit cutting or Matrix Product State, to enable simulations of 

VQS on a larger scale. Pennylane with GPU is the optimal 

choice for time-constrained scenarios, while Qulacs excels in 

minimizing memory usage. 

The results presented above focus on calculating the exact 

expectation value without considering noise and sampling 

effects. The exact simulation serves the purpose of validating 

the correctness of quantum algorithms, rather than assessing 

their performance on real quantum hardware. We plan to 

explore sampling-based simulations, where noise and sampling 

effects are considered, in future research. 

Our findings have revealed that TensorCircuit with GPU is 

highly efficient in time and memory usage for up to 26 qubits. 

However, GPU memory allocation becomes challenging for 

more qubits. To overcome this, we plan to utilize multiple 

GPUs and leverage CUDA-specific instructions [9] for 

effective GPU memory management. 

We have shared our codes on GitHub [10], enabling 

community contributions to expand the comparison of quantum 

simulators. This establishes our work as a foundation for an 

ongoing project to benchmark diverse simulators. 
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