
27th Annual IEEE High Performance Extreme Computing Conference (HPEC) 2023

Comparison of Quantum Simulators for Variational

Quantum Search: A Benchmark Study

Mohammadreza Soltaninia, Junpeng Zhan

Department of Electrical Engineering, Alfred University, Alfred, NY 14802, USA

Abstract—Simulating quantum circuits using classical

computers can accelerate the development and validation of

quantum algorithms. Our newly developed algorithm, variational

quantum search (VQS), has shown an exponential advantage over

Grover’s algorithm in the range from 5 to 26 qubits, in terms of

circuit depth, for searching unstructured databases. We need to

further validate the VQS for more than 26 qubits. Numerous

simulators have been developed. However, it is not clear which

simulator is most suitable for executing VQS with many qubits. To

solve this issue, we implement a typical quantum circuit used in

VQS on eight mainstream simulators. Results show that the time

and memory required by most simulators increase exponentially

with the number of qubits and that Pennylane with GPU and

Qulacs are the most suitable simulators for executing VQS

efficiently. Our results aid researchers in selecting suitable

quantum simulators without the need for exhaustive

implementation, and we have made our codes available for

community contributions.

Keywords—Quantum Computing, Quantum Simulator,

Variational Quantum Search, Variational Quantum Algorithm

I. INTRODUCTION

Quantum computing (QC) shows great promise for

revolutionizing various fields by offering enhanced

computational capabilities compared to classical computers.

However, the accessibility of real quantum computers is limited,

often resulting in long wait times. Moreover, the finite

entanglement time of qubits imposes constraints on the

achievable circuit depth.

As a result, simulators play a crucial role in accelerating the

development and validation of quantum algorithms, providing a

valuable platform for algorithm exploration and noise

simulation, and insights into the behavior of real quantum

systems. However, choosing the right simulator can be

challenging, especially for beginners, as there are multiple

options available, each with its features and limitations. This

exploration process can be time-consuming and may lead to the

selection of a simulator that is not well-suited to the specific

requirements of the research.

In this paper, we focus on the Variational Quantum Search

(VQS) algorithm [1], which has demonstrated exponential

advantage over Grover's search algorithm and has been

successfully verified up to 26 input qubits. However, an

important question remains: can this exponential advantage be

scaled up to around 50 qubits [2]? To address this question, we

investigate various simulators to determine if there is one that

can simulate the VQS with many qubits.

Our first contribution is a comprehensive comparison of

commonly used simulators, providing recommendations on

which simulators to choose based on their respective strengths

and limitations. We assess computational time and memory

usage to guide researchers, particularly beginners, in selecting

the most suitable simulator for their simulations.

Furthermore, we explore the performance of different

simulators and find that all of them encounter challenges related

to exponentially increasing time or memory requirements as the

number of qubits grows.

II. PROBLEM AND SIMULATOR DESCRIPTION

In this study, we execute a typical quantum circuit used in

VQS on different simulators, i.e., calculate the expectation value

of the observable Z1, denoted as 〈Z1〉, as shown in Fig. 1a of Ref

[1]. Note that this paper uses type-II Ansatz with three layers for

the VQS. Calculating the 〈Z1〉 is the most time and memory-

consuming part of executing VQS on a classical computer. The

maximum memory required for simulating VQS is exactly the

memory needed for calculating 〈Z1〉.
We have executed the quantum circuit on eight common

simulators which are briefly described below.

Qiskit: An open-source framework by IBM for QC research,

offering a user-friendly interface, versatile functionality, and

support for both simulation and execution on real quantum

hardware [3].

Pennylane: An open-source library that combines classical

machine learning with QC, enabling the construction and

training of quantum neural networks. It integrates with popular

frameworks and supports CPU and GPU computation [4].

TensorCircuit: A Python-based QC framework emphasizing

speed and flexibility. It provides efficient simulations of

quantum circuits and seamless integration with machine

learning frameworks like TensorFlow and JAX [5].

Qulacs: A powerful and versatile QC framework with high-

performance simulation capabilities. It supports both CPU and

GPU computing, offering a user-friendly interface and a variety

of quantum gates and operations [6].

ProjectQ: An open-source software framework with

compilation and simulation capabilities. It allows running

quantum programs on IBM Quantum Experience chip, AWS

Bracket, Azure Quantum, or IonQ service provided devices [7].

Cirq: An open-source Python framework for writing,

manipulating, and optimizing quantum circuits. It focuses on

near-term quantum algorithms, offering fine-grained control

over circuits and compatibility with quantum computers and

simulators [8].

III. RESULTS

We calculated the exact expectation value described above

for the VQS on various simulators using the NCSA Delta high

27th Annual IEEE High Performance Extreme Computing Conference (HPEC) 2023

performance computer (A100x8). We adopt the most

appropriate configuration for implementing VQS in each

simulator. Fig. 1 displays the computational time and memory

usage for different qubit numbers.

We mainly focus on simulating larger systems, particularly

those with more than 26 qubits. As shown in Fig. 1, we compare

the performance of different simulators in terms of resource

consumption. The results demonstrate that Pennylane using

GPU exhibits the lowest time consumption, followed by Qulacs

(see Fig. 1a). In terms of memory usage, Qulacs requires the

least amount, followed by Pennylane using GPU (see Fig. 1b).

Figure 1 shows that the time consumption of each simulator

increases exponentially as the number of qubits increases.

Specifically, adding one qubit roughly doubles the time

consumption. On the other hand, except for Qulacs with the

“CasualConeSimulator” backend, the memory consumption of

all simulators increases exponentially with the number of

qubits. Notably, the Qulacs simulator consistently requires only

0.02 MiB across all cases involving 24-30 qubits, primarily

because it selectively extracts only the necessary gates linked

to a specific observable by reversing the circuit traversal [6].

Figure 1: Time (top panel) and memory (bottom panel) consumed by different

simulators to obtain the expectation value of observable 〈Z1〉 in the VQS for

different numbers of qubits. Note: Pennylane (CPU), Pennylane (GPU), and
TensorCircuit (CPU) reached their memory limit for more than 29, 30, and 28

qubits, respectively. Qiskit (CPU) and Cirq encounter errors when calculating

the exact expectation value for more than 15 and 28 qubits, respectively.
Qulacs and Project Q encounter time limits when calculating the exact

expectation value for more than 30 and 16 qubits, respectively.

Another notable observation is that TensorCircuit with GPU

has the best performance in terms of time consumption (refer to

table results in [10]) while ranking second in memory

consumption (behind Qulacs) for up to 26 qubits. Although

TensorCircuit with GPU encounters tensor limitations for

circuits larger than 26 qubits, its potential as a simulator for

superior simulation of larger quantum circuits is evident.

Based on our findings, we recommend using Qulacs for

optimal memory efficiency and Pennylane with GPU for

optimal time efficiency.

IV. CONCLUSION AND FUTURE WORK

Our benchmarking of quantum simulators for VQS provides

valuable insights into their scalability and efficiency. Most

simulators exhibit exponential growth in time and memory

consumption with the number of qubits, except for Qulacs. This

necessitates the exploration of alternative techniques, such as

circuit cutting or Matrix Product State, to enable simulations of

VQS on a larger scale. Pennylane with GPU is the optimal

choice for time-constrained scenarios, while Qulacs excels in

minimizing memory usage.

The results presented above focus on calculating the exact

expectation value without considering noise and sampling

effects. The exact simulation serves the purpose of validating

the correctness of quantum algorithms, rather than assessing

their performance on real quantum hardware. We plan to

explore sampling-based simulations, where noise and sampling

effects are considered, in future research.

Our findings have revealed that TensorCircuit with GPU is

highly efficient in time and memory usage for up to 26 qubits.

However, GPU memory allocation becomes challenging for

more qubits. To overcome this, we plan to utilize multiple

GPUs and leverage CUDA-specific instructions [9] for

effective GPU memory management.

We have shared our codes on GitHub [10], enabling

community contributions to expand the comparison of quantum

simulators. This establishes our work as a foundation for an

ongoing project to benchmark diverse simulators.

ACKNOWLEDGMENTS

We acknowledge the support from the NSF ERI program,

under award number 2138702. This work used the Delta system

at the National Center for Supercomputing Applications

through ACCESS allocations CIS220136 and ELEC220008.

REFERENCES
[1] J. P. Zhan, “Variational Quantum Search with Shallow Depth for

Unstructured Database Search,” arXiv:2212.09505, 2022.
[2] J. P. Zhan, “Near-perfect Reachability of Variational Quantum Search with

Depth-1 Ansatz,” arxiv: 2301.13224, 2023.

[3] Qiskit contributors, “Qiskit: An Open-source Framework for Quantum
Computing.” 2023. doi: 10.5281/zenodo.2573505.

[4] V. Bergholm et al., “Pennylane: Automatic differentiation of hybrid

quantum-classical computations” arXiv:1811.04968, 2018.

[5] S.-X. Zhang et al., “Tensorcircuit: a quantum software framework for the

NISQ era,” Quantum, vol. 7, p. 912, 2023.

[6] Y. Suzuki et al., “Qulacs: a fast and versatile quantum circuit simulator for
research purpose,” Quantum, vol. 5, p. 559, 2021.

[7] D. Steiger, T. Häner, and M. Troyer, “ProjectQ: an open source software

framework for quantum computing” Quantum, vol. 2, p. 49, 2018.
[8] Cirq Developers. See full list of authors on Github, “Cirq.” 2021. doi:

10.5281/zenodo.5182845. https://quantumai.google/cirq

[9] NVIDIA, P. Vingelmann, and F. H. P. Fitzek, “CUDA, release: 10.2.89.”
2020. [Online]. Available: https://developer.nvidia.com/cuda-toolkit

[10] M. Soltaninia, https://github.com/natanil-m/benchmark_vqs (accessed Jul.

13, 2023).

(a)

(b)

https://quantumai.google/cirq
https://github.com/natanil-m/benchmark_vqs

