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Abstract—This work aims to develop a framework for the
high-level and user-transparent distribution of calculations for
solving systems of partial differential equations. Framework
provides a simple high-level application programming interface
and automatically partitions problems into sub-problems that
are then executed on MPI-based clusters. Disposing of CUDA
accelerators is supported. The management of processes and
accelerators is performed by the framework using the MPI
services. The performance of the developed system was analyzed,
the influence of the data distribution scheme on performance was
investigated, and the performance of the CPU and GPU modes
of the framework was compared. Computational fluid dynamics
problems on the 2D unstructured mesh were used as a benchmark
task for the framework. Linear acceleration on a number of
available CPUs is observed, with several super-linear cases.

Index Terms—MPI, CUDA, high-performance computing,
C++, computational fluid dynamics, CFD, Finite Volume Method,
FVM

I. INTRODUCTION

The constant increase in the performance of modern com-
puters allows for performing more and more complex com-
puting tasks. However, currently, the growth of performance
of a single CPU is limited, and most progress is archived by
increasing the number of available CPUs [1], motivating to
search for more human-friendly methods in utilizing them for
solving problems [2].

There are several similar frameworks. OneAPI Threading
Building Blocks (oneTBB) is an excellent high-level frame-
work for efficient parallel computing [3]. However, oneAPI
works only with a single multiprocessor system, though het-
erogeneous – no provisioning for the distributed systems is
provided. It is also relatively low-level from the mathematical
point of view – the framework does not provide mathematical
abstractions and algorithms, which are important for solving
PDE systems. There are also dedicated packages for computa-
tional fluid dynamics (CFD) or for solving general systems of
differential equations. One of the biggest and most well-known
CFD frameworks, OpenFOAM [4], provides a large number of
tools useful for solving PDEs, supports MPI-based distributed
computations, and uses unstructured 3D mesh. Currently, it
provides limited GPU and multi-GPU support, mainly through

additional modules and third-party solutions. Additionally,
though being a great framework, it has a rather steep learning
curve. Similar frameworks are an active field of research, to
name a few: Manapy [5] allows solving finite volume PDE
on an unstructured mesh using MPI but does not support
accelerators such as CUDA; in [6], a multi-GPU using MPI
for OpenACC-based communications is proposed, and in [7],
similar work is done using native CUDA implementation.

This work describes a framework developed for automatic
distributed computing based on MPI, with an optional ability
to CUDA accelerators, for solving computational fluid dy-
namics (CFD) problems. This class of problems was chosen
because of its broad scope of application – medicine, geology,
construction, chemistry, physical research, etc [8]. Within the
framework, a scheme for the automatic distribution of work,
a scheme of communications, a mode of operation using
one or several GPUs, etc., were developed. The framework
provides the user with a high-level API to specify the problem
conditions, while parallelization and CUDA acceleration are
transparent to the user.

The performance of the developed system was investigated
for several typical use cases.

II. THE SAMPLE PROBLEM

This framework focuses on solving parabolic and hyperbolic
equations with time derivatives. A general form of second-
order linear PDE for the function of two variables u(x, y) can
be written as:

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu+G = 0, (1)

where uab = ∂2u
∂a∂b and ua = ∂u

∂a . When B2 − 4AC > 0, the
equation is hyperbolic, and when B2 − 4AC = 0 – parabolic.

The CFD problem described by the compressible Euler’s
equations [9], which are hyperbolic quasi-linear equations,
were chosen for performance measurements and testing. Their



conservative form is used for calculations:
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where ρ – density, vx, vy – velocity, P – pressure, γ – the
ideal gas adiabatic index, e – total energy.

The Finite Volume Method (FVM) [10], which uses the
integral form of these equations, on a two-dimensional un-
structured mesh [11] composed of arbitrary quadrilaterals, was
used to solve the problem. The cell-centered finite volume
scheme was used. It defines the volumes as the cells of the
mesh, limited by their faces. A 2D quadrangle unstructured
mesh was used [11]. The central-upwind scheme was used to
interpolate values on the interfaces:

ϕi = ϕC +∇ϕC · dCi (3)

where ϕC – value on the cell center, ∇ϕC – gradient of the
variable at this cell, dCi – vector in direction to the interface
center from node center.

Gradients are reconstructed using the Green-Gauss method.
The system of PDEs is solved using an explicit time-step
scheme [12]. Its stability is controlled using the Courant-
Friedrichs-Lewy (CFL) [13] condition.

III. THE FRAMEWORK DESCRIPTION

A. Framework goals

The framework goal is to solve numerically user-specified
PDE systems. For this, the framework should: work with the
problem geometry (mesh) provided by the user, create the
necessary entities on the mesh and use them to formulate a
system of equations, perform simulation, visualize, and save
the results. In addition, the framework should support distri-
bution and CUDA accelerators as transparently as possible.

The FVM method of solving systems of PDEs, as well
as other similar methods – finite elements methods, and
finite differences methods, are highly parallel and suitable for
parallel solving. So a developed framework was intended to
preserve this property while providing high-level, flexible, and
general API. Additionally, flexibly changing implementations
and extending them was implemented – one possible future
extension would be using oneAPI [14].

B. API

To use the framework, the user should perform the following
sequence of actions.

• Initialize the framework by calling

CFDArcoGlobalInit::initialize(
argc, argv, skip_history_flag);

• Create a mesh and set the geometry. There are several
ways to specify the geometry: reading the geometry file;
manual creation of vertices, edges, and nodes by adding
corresponding objects to mesh instance; creation of the

basic geometry of a uniform square mesh. Reading mesh
by:

auto mesh = read_mesh(file_path);

Creating geometry mesh:

mesh.init_basic_internals();

After creating the geometry, the user should generate
all the necessary structures for the current geometry by
calling the corresponding method:

mesh.compute();

• Next stage is decomposing and distributing the mesh:

CFDArcoGlobalInit::
make_node_distribution(
mesh, DistributionStrategy,
priorities);

Linear (naive approach) and Cluster distribution strategies
are supported. Also, a vector of priorities that sets the
relative parts of computation each domain should perform
can be passed.

• If necessary, initialize CUDA mode:

CFDArcoGlobalInit::enable_cuda(mesh,
num_of_cuda_nodes);

• Create variables on meshes:

auto var = Variable(mesh,
initial_values,
boundary_fn,
cuda_boundary_fn,
str_variable_name);

• Pass the initial conditions in the form of an Eigen::Vector
with values for each mesh node, as well as a boundary
condition wrapped in std::function. This function receives
mesh and variable data for each cell and returns updated
data. Several predefined boundary conditions are already
implemented in the framework. A user could provide a
CUDA version of this function to improve performance
in CUDA mode, but it is optional.

• Create a dt variable, which specifies timestep and its
updates:

auto dt = DT(mesh,
update_policy_fn,
cuda_update_policy_fn,
arguments);

• Specify a system of equations using the usual operators:
+, -, *, /, as well as differentiation functions: d1dx(),
d1dy(), d2dx(), d2dx(). Currently, the left part may
contain the actual variable or its first and second time
derivatives. Constants and value vectors can also be used.
Finally, the user specifies the time derivative. Example of
specification:



equation_system = {
{d1t(v1),’=’,d1dx(v2)*d1dy(v3)},
{d1t(v2),’=’,d1dx(v4*v1)-d1dy(v1)},

}

• Create a problem object and run the simulation:

auto equation = Equation(timesteps_num);
equation.evaluate(all_vars,

equation_system, &dt,
show_progress_bar,
vars_to_store_history);

• If necessary, visualize or save data after the simulation.

init_store_history_stepping(
vars_to_store_history,
mesh);

// ... simulation ...
finalize_history_stepping();

C. Framework core

To support the high-level interface, the framework builds a
directed acyclic graph (tree) for the mathematical equations
provided by the user. Operations act as nodes of a tree, while
operands act as edges. This method is ideologically similar
to using Template Expressions [15] for mathematical C++
libraries, such as Eigen [16]. This approach allows the user to
modify the problem flexibly while retaining control over the
computational complexity and allows mesh-based partitioning
and parallel execution transparently.

There are two approaches available for mesh distribution on
available computers. The first is a naive distribution depending
on the number of cells of the boundary between nodes –
it uses the linear index of the cell in the array of cells.
The second is the use of a clustering algorithm to take into
account the locality of cells and divide the mesh into local
subdomains. This algorithm uses a modified k-means with
constraints described in [17]. The main modification is that
the described algorithm uses a random selection of the initial
centroids, while in the proposed solution, the centroids are
selected depending on the linear indices for potentially faster
convergence. Clustering for complex geometry can reduce the
number of communications, in contrast to the simple division
of data without taking into account their locality.

Distributed computations are implemented by using Mes-
sage Passing Interface (MPI) [18]. This allows integrating the
solution into most modern cluster systems easily. The frame-
work uses Eigen matrix library [16], and performs calculations
using vector operations provided by the library, so calculations
are vectorized – SIMD [19] is used1, and calculations are
optimized for efficient cache usage.

The framework supports the optional usage of the CUDA
accelerators [20]. In this mode, the process will use the CUDA
accelerator available on the node to minimize host calculation
time. Most of the possible calculations will be performed on

1Though, the impact of it was not thoroughly measured in our work.

the accelerator, and if not explicitly requested, for example for
saving the simulation history, intermediate data would not be
copied to the host at all. When using CUDA, each cell of the
mesh is processed by a separate CUDA thread, preserving the
great scalability of the problem.

In the presence of several GPUs work optionally can be
distributed between them. In the current implementation, it
is allowed only when accelerators are installed on different
nodes. This provides the ability to simulate problems that are
limited by the amount of memory of a single GPU, as well as
speed up the execution of the simulation in general.

IV. BENCHMARKS

A. Methodology

The performance measurements were conducted using the
three setups, representing typical use cases:

• distributed system performance using CPU only,
• single node system using a single CUDA GPU,
• distributed system with a single CUDA GPU per node.

Additionally, the impact of the clustering algorithm on system
performance was measured.

To account for the impact of uncontrollable factors2 [21], all
experiments were carried out five times, and the corresponding
average values and standard deviation were calculated. For
CUDA GPU experiments, unless otherwise specified, the mode
of operation with complete avoidance of memory transfers
from the device to the host is selected to obtain and compare
the peak performance. Since the framework was tested using
AWS machines, testing was divided into several stages in order
to avoid switching between burst and normal modes of nodes
used.

B. Tests setup

The main measurements of the framework performance
were carried out on a cluster of 8 AWS t3a.xlarge machines,
each with four vCPUs and 16 GB of RAM. To compare
the performance of GPU and CPU modes of the framework
operations, a node with AMD Ryzen 7 6800H with 16 GB of
DDR5 4800 MHz was used for reference CPU performance
and Nvidia RTX 3060 (28 streaming multiprocessors, 3584
CUDA cores, 6 Gb RAM) with the same CPU and host RAM
size. To test the multi-GPU behavior, two nodes with Nvidia
T4s (40 streaming multiprocessors, 2560 CUDA cores, 16 GB
RAM) and four vCPU + 16 GB of RAM were used.

C. Results

1) CPU only distributed benchmark: The experiments were
performed for a uniform square mesh with the clustering
algorithm disabled. The behaviour of the framework with
different configurations of mesh sizes has been studied. The
results are presented in the Fig. 1.

The calculations show a linear speedup when the number
of nodes increases. There is also a small super-linear speedup

2Such as changes in the clock frequency of processors, uncontrolled number
of context switching, ISR execution, etc.
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Fig. 1. The speedup effect wrt. scaling the number of active nodes in the
cluster used for the task execution varying the mesh sizes: (a) Speedup ratio;
(b) Mean execution time measured in seconds, (with additional bars showing
the std. for the five-trials for each experiment).

when using a large number of nodes (≈ 8.3 for eight nodes
compared to one node), which is most likely due to better
use of caches because of reduced problem size per processor.
This shows a high level of framework scalability – it allows
the expansion of the cluster used while maintaining high
performance. Fig. 1 (b) also shows that the performance results
are stable and representative – the standard deviation of the
execution did not exceed 2.2 seconds or 3.3%.

2) Single node system using a single CUDA GPU bench-
mark: The benchmark was run in CUDA mode for a single
CUDA GPU, with all calculations performed on the GPU
while the single used CPU was responsible for system ini-
tialization and management. Additionally, effect of the saving
the system evolution, which causes excessive memory copies
between the accelerator and the host, was studied. Results of
the test for the different mesh sizes are presented in Fig. 2.
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Fig. 2. The speedup effect from the usage of CUDA wrt. the mesh size.
Experiment varying the usage of CUDA acceleration with and without
excessive memory copies or CPU for the task execution: (a) Speedup ratio;
(b) Mean execution time, (bars showing the std. for the five trials for each
experiment are less than the line width).

The results show an increasing relative speedup for CUDA
compared to the parallel CPU-only approach. A speedup of
more than ten times was observed. On average, copying from
memory adds 30-40% to the time spent compared to the non-
copying version. However, as the problem size increases, the
impact of these overheads decreases (from ≈ 40% to ≈ 28%).

The high performance of the CUDA mode was expected due
to the good fit of the problem to a large number of available
CUDA cores, but the main conclusion is that the framework
efficiently manages using GPU accelerators both for problems
without full-memory copying and with it. The performance
measurement results are highly stable and reproducible – time
fluctuations between experiments do not exceed 2%.

3) Distributed system with a single CUDA GPU per node:
The test was conducted using two GPUs, each on a remote
node in the cluster. To compare the results, similar tests were
also conducted for one of these cards, but with the mode of
memory copying between the host and the device enabled.
This is necessary due to the fact that when using the two
GPUs, copying is unavoidable – it is necessary to exchange the
edge values of each of the domains, so for the comparability of
the experiments for one card, similar copying was also carried
out.
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Fig. 3. The speedup effect from the usage of two GPUs wrt. the mesh
size. Experiment varying the usage of single-GPU or multi-GPU (two GPUs)
for compute acceleration: (a) Speedup ratio; (b) Mean execution time, (bars
showing the std. for the five trials for each experiment are less than the line
width).

Results are presented in Fig. 3. There is an increase in
speedup when the size of the problem increases, due to the
decreasing weight of communications compared to calcula-
tions. The speedup reaches the value of x1.83, which is close
enough to linear speedup when performed on two cards. Thus,
the framework scales well enough on several accelerators, even
in a distributed environment.

4) Clustering algorithm impact: This test was carried out
for meshes with different geometries, comparing the perfor-
mance for dividing the mesh into domains by the clustering
algorithm and by the naive approach, described in III-C. The
test was performed using an 8-node cluster to maximize the
impact of the distribution scheme. Fig. 4 shows the time and
speedup for this approach.

Results show that the division into domains with accounting
for locality has a certain advantage, which can be explained
by the reduction of the size of communication between nodes.
However, the effect of this algorithm is not very stable – it
highly depends on the shape of the mesh and varies between
0% and 12% – for some mesh types, naive distribution is good
enough.
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Fig. 4. The speedup effect from the naive distribution algorithm wrt. the
different mesh variants. Experiment with varying the naive or clustering
distribution approaches on the 8-node cluster: (a) Speedup ratio; (b) Mean
execution time.

V. CONCLUSIONS

A framework for automatic distributed parallel computa-
tions for solving systems of PDEs was developed, and its
properties were investigated. The framework allows optional
utilization of CUDA accelerators.

Performance measurements for the model problem showed
that the framework preserves close to linear scalability of the
numerical solving of systems of linear PDEs both while using
CPU and CUDA GPUs.

Future work could include providing additional compu-
tational backends, more thorough performance assessments
including the microarchitecture benchmarks, writing the doc-
umentation, providing additional examples, and so on.

The code of the framework and examples of its use can be
found in the repository on GitHub [22].
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