
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2023 IEEE

Modeling and Analyzing Wind Velocity at Entrance
Doors to Avoid Accidents

Abu Asaduzzaman, Luke Mercer, Md Raihan Uddin
Department of Electrical and Computer Engineering

Wichita State University

Wichita, Kansas, USA
abu.asaduzzaman@wichita.edu

Yoel Woldeyes
School of Computing

Wichita State University

Wichita, Kansas, USA
yswoldeyes@shockers.wichita.edu

Abstract—There are safety threats due to unexpected uncontrolled

sudden opens and shuts of entrance doors. This work aims to

develop a computer-simulated wind velocity model to study the

doors’ risky behavior by analyzing the relationship between wind

velocity and the corresponding door movements. We develop a

microcontroller-based system to detect when a door is opened, and

record the wind velocity and door open distance when the door is

opened and closed. This process is completed using an anemometer

to measure the wind velocity, a magnetic door switch to detect

when the door opens, using an ultrasonic sensor to measure the

door distance, and calculating the time the door was open using

the Arduino timer. The experiments are conducted inside a room,

where wind speed and maximum door open distance can be

controlled. The preliminary results show that the door open speed

and distance increases significantly with increased wind speed.

The proposed model can be extended as a potential remedy to

dangerous threats for buildings and building occupants.

Keywords—modeling and analyzing, wind velocity,

microcontrollers, air-door

I. INTRODUCTION

Predicting wind velocity involves forecasting the speed and
direction of airflow in a specific region. Approaches to modeling
this phenomenon include mathematical, physical, and
computational models. Mathematical models recreate wind’s
physical features, whereas physical models deploy replicas that
simulate wind flow through an environment. Computational
methods generate computer simulations that project the behavior
of air movement within a designated zone. Practical prediction
measures employ multiple computing techniques, such as
prediction error [1]. This technique generates randomly
produced white noise with no set means or unit variance while
constructing power system applications related to modeling

wind velocity.

The modeling of wind velocity has led to the development
of a vital technology that enables the detection of open doors
and records both wind velocity and door open distance.
Specifically, this technology finds application in creating
systems for detecting instances where doors are opened due to
wind power. By accurately measuring the range of windspeeds
capable of opening doors, buildings can be fortified against any

possible damage from such occurrences [2].

The system comprises distinct components like
anemometers that capture wind velocity data alongside
magnetic door switches responsible for detecting door
openings. Additionally, ultrasonic sensors measure open
distances while timers capture every instance when a door
opens [3]. An Arduino board then analyzes all accumulated data
appropriately while storing it effectively for future reference.
Mainly designed to collect data on the actual weather conditions
or scenarios leading to open doors due to unlikely challenges
like high-speed winds, this refined technology determines if an
uncontrollable limit makes the door susceptible under given
environmental conditions requiring processing and action
underway fast.

In this work, we set up a microcontroller with components to
measure the wind velocity, door opening and closing, and the
door open distance. We use an anemometer to measure wind
velocity, a magnetic door switch to determine when the door is
opened (and closed), and an ultrasonic sensor to calculate the
distance between the sensor and the door. The data collected are
analyzed to develop a clear and concise graphic. The system is
relatively portable with a simple setup, easy data collection

process, and a system to graph this data.

II. RELATED WORK

Timely identification of the door opening and closing in a
building is critical for fire prevention and control [4-6]. An air-
door opening and closing identification algorithm is proposed
by Shang et al. using a single wind-velocity sensor [7]. The air-
door is a device that is used for adjusting the volume and
direction of air flow in a mine ventilation system. Studies show
that the wind-velocity data in a mine are not smooth lines under
the action of turbulent pulsation. As shown in Figure 1, the
abnormal fluctuation time of the wind-velocity data appears
outside the air-door opening and closing time. It is observed that
there is no obvious correlation between the multiple abnormal
fluctuations in the wind-velocity data and the air-door opening
and closing time monitored by the switching sensor. The wind-
velocity data can be used to avoid safety accidents and
production activities caused by ignoring the abnormal

fluctuation of the wind speed.

Part of this work is funded by the Mentorship 360 program.

In this work, a computer-based wind velocity model is
developed to explore the relationship between wind velocity
and the corresponding door movements.

Figure 1. Wind velocity from an air-door in a mine [7]

III. SIMULATED SYSTEM

In this section, we describe the system developed to
conduct the experiments.

A. Hardware Used

Important hardware components used are:

• Microcontroller: Arduino Uno [8]

• Wind velocity sensor: Anemometer [9]

• Door switch: Magnetic switch [10]

• Distance sensor: Ultrasound distance sensor [11]

Figure 2 illustrates how the components are connected. The
Arduino Uno is chosen as it provides enough input/output pins,
supports for connection and communication with a computer,
and good timing processing. The Uno does not have on-board
storage, so it must be connected to a computer for the entire
time of operation. The Uno is programmed in C++ with a

plethora of supported libraries and additional functions.

Figure 2. System component connection

The Uno has a setup function that is called when a program
is first started to run code that is only needed to run once. This
is where input/output (I/O) pins are setup using pinMode(#,
Mode) with # representing what pin is being setup and Mode
being how the pin is setup. The pins (see Figure 3) used in this
project are pin 2, 4, 12, and 13. An Arduino Uno is very
versatile so the specific pin for each usage does not matter if it
is an I/O pin. The pin modes used in this project are
INPUT_PULLUP, which uses code to access 20k Ohm pullup
resistors that are connected to +5V. This brings the assigned pin
to a default HIGH reading when digitalRead() is used, and when
the pin is connected to ground it will read LOW when

digitalRead() is called.

To start with usage for the anemometer and door switch, one
of the wires coming from the device (device being anemometer
or door switch) is connected to a digital pin; in this case, the
anemometer is connected to Pin 2 and the door switch is
connected to Pin 4. The other wire from the device is connected
to a ground on the Arduino Uno. In the Arduino code using
pinMode() Pins 2 and 4 are set to INPUT_PULLUP. Then
command digitalRead() is used to determine the voltage on the
pin. If the voltage is 5V, or the pin is not connected to ground
then digitalRead() returns HIGH, if the pin is connected to
ground via the device then digitalRead() will return LOW. This
is used to determine when the switches in the device(s) are
closed and grounding the pin.

Figure 3. Arduino pin-mode pullup diagram

The anemometer, i.e., wind velocity measurement sensor, is
connected to Pin 2 and ground of the Arduino. The device is bi-
directional, so it does not matter which wire is connected to
which pin. When the anemometer is rotating due to wind, the
switch closes and Pin 2 goes to low, which triggers an interrupt
as attachInterrupt() was set on Pin 2 to go off when the pin goes
from HIGH to LOW. The interrupt adds 1 to a counter that was
set to 0, so that every time the anemometer makes a rotation
count increments by one. After 1 second the count is divided by

Magnetic

Door Switch

Ultrasonic Sensor
Arduino

Uno

Anemometer

1.492 to get the wind velocity in miles per hour. After every
second the wind speed is put into the serial monitor window
after one comma, and the count variable is reset.

The magnetic door switch is on Pin 4. The door switch is bi-
directional like the anemometer, so one pin just needs
connected to Pin 4 and the other connected to ground. When the
two parts of the door switch are close together, roughly 0.5
inches, the switch is closed and Pin 4 is connected to ground
and the pin reads LOW in the code. The door switch piece with
the wires is setup on the door frame, and the loose piece is setup
on the edge of the door such that when the door is closed they
are within 0.5 inches. The code uses digitalRead() to measure if
the door is open or closed, and when it is opened a Boolean is
set indicating such so that the door opening distance will start
recording, and “opened” is put in the serial monitor window.
When the door is closed, this Boolean is flipped and “closed” is

put in the serial monitor window.

Finally, the door opening distance measurement system uses
the ultrasonic sensor HC-SR04. This works slightly differently
from the other sensors. This uses Pin 12 on the Arduino as the
output connected to the Trig on the ultrasonic sensor, Pin 13
connected to the Echo pin on the ultrasonic sensor, then +5V to
Pin VCC and ground to Pin GND. When the code indicates the
door is opened, the ultrasonic sensor puts the trig pin to the high
for 10 microseconds, then puts it to low. Then it uses pulseIn on
the Echo pin to measure how long until the 10-microsecond
signal takes to return to the sensor. It takes that time value and
converts it to centimeters by dividing by 29 then dividing by 2
per the device specs. This value gets posted to the serial monitor
after two commas. We set this up so that when the door is closed
it goes past the door, but when the door opens it swings into the

ultrasonic sensor line of sight.

The data is all read into the Serial Monitor window using
Serial.print(). This is the serial communication between the
Arduino and the computer it is connected to. The formatting of
the data is crucial to how the graphing system works. The
Python script is discussed more later, but for now the important
part is that the data is put into an Excel using comma delimiting
format, so commas are used to space the data into columns
based on what data it is. The opening/closing markers are placed
without a comma before, the time data is placed without a
comma before as well, the wind speed data is placed after one
comma, and the door distance data is placed after two commas.

A sample of the serial monitor window is shown below.

Opened This flag shows the door is opened.
6886 Time in milliseconds since start
,,26 Door distance measurement
6999
,,24
,14 Wind velocity
…
Closed This flag shows the door is closed.

The Opened and Closed texts have no comma before, the
distance data shown has two commas before it, the time in
milliseconds since start of program has no comma before, and
the wind velocity shown has one comma before.

Figure 4 illustrates the connections among the Arduino,
anemometer, magnetic door switch, and ultrasonic sensor.

Figure 4. Component connection diagram

B. Data Collection

Wind speed, door open distance, and time are needed to
calculate the door opening speed. Figure 5 shows the process
how the Arduino goes through during data collection.

Figure 5. Data collection flowchart

Measure time, post wind speed,

and door open distance

Measure time, initial wind speed,

and door open distance

Start

Door open?

Yes

Calculate maximum opening

No

Stop?
No

Stop

C. Ploting Graphs

A Python script (say, WindVelocity.py) file is used to plot
graphs. To start plotting graphs, the texts in the Serial Monitor
window are copied and pasted into Notepad to save as a .txt file.
Then the data is imported to Excel and saved as .xlsx in the
same directory with the WindVelProject.py file. The Python
script uses multiple libraries such as openpyxl, matplotlib, and
numpy. Openpyxl is a python library that is used to read and
write from excel workbooks or .xlsx files. In the script the
workbook is initialized to wb_obj and the sheet is initialized to
sheet_obj. With the workbook and sheet initialized, an
individual cell can be accessed with the code shown. Cell_obj
= sheet_obj.cell(row = #, column = #). This stores the value that
is in the sheet into the variable. The value in the cell can then
be accessed with cell_obj.value. The Python script initializes
three variables to append with data from the workbook called
‘dist’ to store the ultrasonic sensor distance measurements, ‘vel’
to store the anemometer measurements, and ‘time1’ to record
the time on each ultrasonic sensor measurement. Next a while
loop goes through the first column until the cell is not empty,
which means that the door is opened as signaled by “opened” in
the text. Then it loops through the column from that point until
the cell contains “closed.” The data is stored in a row where
opened and closed are found, and the rows between them with
the first three columns are iterated through with
sheet_obj.iter_cols, and the data in the first column going into
time1, the data in the second column going into vel, and the data

in the third column going into dist.

Next, the data in the dist and time1 have a lot of empty cells
from the xlsx format. These empty cells are removed to simplify

the graphing later in the process.

The next issue with the data is with the time measurements.
This time value is found using the millis() command on the
Arduino. This command returns the time in milliseconds since
the microprocessor started the program. It is noticed that the
time value does not start at 0 seconds from the door opening.
The time value is obtained in milliseconds. To calculate the
elapsed time, the minimum value of the list is stored into a
variable to iterate through the time1 list and subtract each value
by that variable to move the time range from 0 until the door is
closed. Then each value in the list is divided by a thousand to
convert the time to seconds for clarity. To properly display the
velocity data as the speed is recorded each second, len(list) is
used to find the length of the vel list, then using linspace from
the numpy library to generate a list from 0 to the number of
velocity data points spaced by 1 second. Matplotlib is the library
used to graph the data. Usage in code of matplotlib requires
generating a figure using the code shown below.

fig(ax1, ax2) = plt.subplots(2)
fig.suptitle(‘Wind speed and Velocity’)
ax1.plot(time1, dist)
ax2.plot(timvel, vel2)
ax1.set_title(‘Door Distance in mm’)
ax2.set_title(‘Wind Velocity in MPH’)
plt.show()

Here, fig(ax1, ax2) is the entire figure object with two
subplots and their names; plt.subplots(2) is the command to
generate the two plots. Then into ax1.plot and ax2.plot, the x
axis values are put in first and the y values in the second part.
Then ax1.set_title and ax2.set_title is used to title the individual
plots. Finally, plt.show() displays the figure with the two
subplots. A graph is shown in Figure 6.

IV. EXPERIMENTAL RESULTS

The experiments are conducted inside a room, where the
wind and door distance can be controlled. Figure 6 shows an
assumed condition for normal operation of the door with typical
open and closing times. As shown in the figure, the door
distance in (a) has the assumed slow increase, plateau in
distance, then the decrease in distance. An anomaly found is
that at the beginning and end of the graph, there is the spike up
and spike down respectively. The first spike up after 0 seconds
could be from the delay in the door getting into the line of sight
of the ultrasonic sensor. The second spike down after 6 seconds
could be from the door going passed the line of sight of the
ultrasonic sensor and coming very close, thus reading close to
20 mm distance, then spiking up as the door goes past the sensor
and the sensor is reading other data. As shown in Figure 6 (b),
the wind speed is high when opening the door. The wind speed
goes lower as the door closes as expected.

(a) Door distance Vs Time

(b) Wind speed Vs Time

Figure 6. Door distance and wind velocity under simulated
normal operating conditions

Next, we conduct the experiments under increased wind
speed. As shown in Figure 7, the door open distance increases
significantly faster (in less two seconds, instead of more than
four seconds); then stays at that distance for a while before
quickly closing. The wind velocity is shown higher (more than
40 miles per hour, instead less than 15 miles per hour) when
opening the door. As expected, the wind speed goes lower as
the door closes.

(a) Door distance Vs Time

(b) Wind speed Vs Time

Figure 7. Door distance and wind velocity under simulated
high wind environment

The results in a controlled environment show that the system
works as intended to collect wind speed velocity and door
opening distance over the time of the door is being opened. If
the system (using microcontroller, wind velocity sensor, door
switch, and distance sensor) is properly implemented, it is
expected that it will help avoid accidents due to unexpected
uncontrolled sudden opens and shuts of entrance doors.

V. CONCLUSION

This work studies a wind velocity model on doors’ risky
behavior under high gusty wind speed. The experiments are
conducted using an Arduino Uno to collect and format the data,
an anemometer to record the wind velocity data, a magnetic
door switch to record when the door opens and closes, and a
ultrasonic sensor to measure the door opening distance. Python
is used with the matplotlib, numpy, and openpyxl libraries to
plot graphs. According to the experimental results from a
controlled environment, when the wind speed is increased from
15 miles per hour to 40 miles per hour, the door opens faster (in
less two seconds, instead of more than four seconds).

ACKNOWLEDGMENT

Part of this work is funded by “Faculty Connection and
Mentorship Through an Integrated Entrepreneurial Mindset
Curriculum” project from the Mentorship 360 program.

REFERENCES

[1] N. Abdel-Karim, M. Ilic, and M. Small, “Modeling Wind Speed for Power
System Applications,” in Wind Farm - Impact in Power System and
Alternatives to Improve the Integration. InTech, Jul. 28, 2011. doi:
10.5772/17870.

[2] M. Ghodrat, F. Shakeriaski, D. J. Nelson, and A. Simeoni, “Existing
Improvements in Simulation of Fire–Wind Interaction and Its Effects on
Structures,” in Fire, vol. 4, no. 2, p. 27, May 2021, doi:
10.3390/fire4020027.

[3] A. Loganathan, S. Albert, and Y. Uma, “Performance Enhancement of
Wind Energy Conversion System at Low WindSpeeds,” in International
Conference on Combinatorial and Optimization, 2021.

[4] A. Abdulkareem, B.O. Adeyemi, T.E. Somefun, Tobi and V. Oguntosin,
“Design and Construction of a Weather-Based Automatic Sliding
Window,” in Institute of Physics (IOP) Conference Series: Materials
Science and Engineering, 2021.

[5] Panindre, P., Mousavi, N.S.S., and Kumar, S. “Improvement of Positive
Pressure Ventilation by optimizing stairwell door opening area,” in Fire
Saf. J., 92(1), 195–198, 2017.

[6] Lee, J. “Numerical analysis on the rapid fire suppression using a water
mist nozzle in a fire compartment with a door opening,” in Nucl. Eng.
Technol., 51(1), 410–423, 2019.

[7] Shang, W., Deng, L., and Liu, J. “A Novel Air-Door Opening and Closing
Identification Algorithm Using a Single Wind-Velocity Sensor,” in MDPI
Sensors, 22(18), 1-21, 2022.

[8] Arduino controller (with ATmega328P). A000073/1050-1041-ND, 2023,
https://www.digikey.com/en/products/detail/arduino/A000073/3476357

[9] Anemometer sensor (to measure the wind speed and wind direction).
SEN-15901 ROHS, 2023, https://www.sparkfun.com/products/15901

[10] Magnetic door sensor. MC 38 NC, https://www.amazon.com/Window-
Magnetic-Recessed-Security-Normally/dp/B074271Y6S?th=1

[11] Distance sensor: Ultrasonic distance sensor HC-SR04. SEN-15569,
https://www.sparkfun.com/products/15569

