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Abstract—Stochastic graph partitioning (SGP) plays a crucial
role in many real-world applications, such as social network analy-
sis and recommendation systems. Unlike the typical combinatorial
graph partitioning problem, SGP presents unique computational
difficulties due to time-consuming sampling processes. To address
this challenge, the recent HPEC launched the Stochastic Graph
Partitioning Challenge (SGPC) to seek novel solutions from the
high-performance computing community. Despite many SGP algo-
rithms over the last few years, their speed-ups are not remarkable
because of various algorithm limitations. Consequently, we propose
uSAP, an ultra-fast stochastic graph partitioner to largely enhance
SGP performance. uSAP introduces a novel strongly connected
component-based initial block merging strategy to reduce the
number of partitioning iterations significantly. To further improve
the runtime and memory performance, uSAP adopts a dynamic
batch parallel nodal block assignment algorithm and a dynamic
matrix representation. We have evaluated uSAP on the 2022
official HPEC SGPC benchmarks. The results demonstrate the
promising performance of uSAP on graphs of different sizes and
complexities. For example, uSAP achieves 129.4× speed-up over
the latest champion on a graph of 50K nodes.

I. INTRODUCTION

Graph data has become increasingly important in various
real-world applications, such as social network analysis and
recommendation systems. Graph partitioning can be utilized
to analyze such data, dividing the graph into meaningful
communities. This enables us to gain valuable insights into the
interaction and relationship among the nodes. Among various
graph partitioning techniques, Stochastic Graph Partitioning
(SGP) [1] characterizes the real-world graphs by utilizing
Bayesian inferential methods based on the degree-corrected
stochastic blockmodel [2]. Unlike the typical combinatorial
graph partitioning problem, SGP presents unique computational
challenges caused by time-consuming sampling processes. As a
result, the recent HPEC launched the Stochastic Graph Partition-
ing Challenge (SGPC) to seek innovative acceleration methods
from the high-performance computing (HPC) community [1].

SGPC provides a baseline sequential partitioner, namely
PEIXOTO which is developed by [3]–[5]. The baseline al-
gorithm utilizes a Fibonacci search approach [6] to explore
different numbers of blocks. It determines the optimal partition
by minimizing the overall entropy of a partitioned graph. Each
node is initially assigned a unique block and merged with
others at each search step, called block merging. Subsequently,
iterative sequential Monte Carlo Markov Chain (MCMC)
updates are applied to assign each node a block, namely nodal
block assignment. To evaluate the performance of a partitioner

over PEIXOTO, SGPC provides a rigorous evaluation metric
on synthetic graphs based on the stochastic model in [2]. The
model samples the connection between nodes from a Poisson
distribution with a correction term to emulate real-world graph
characteristics. Table I lists the characteristics of four categories
of these graphs from 1K to 200K nodes. The four categories
present different levels of partitioning difficulties or graph
complexities:

(1) Low block overlap, low block size variation (Low-Low)
(2) Low block overlap, high block size variation (Low-High)
(3) High block overlap, low block size variation (High-Low)
(4) High block overlap, high block size variation (High-High)

|V | |E| Density #Blocks Size

Low-Low

1K 8,067 8.0× 10−3 11 78 KB
5K 50,850 2.0× 10−3 19 574 KB

20K 473,914 1.2× 10−3 32 6 MB
50K 1,189,382 4.8× 10−4 44 16 MB
200K 4,750,333 1.2× 10−4 71 68 MB

Low-High

1K 7,892 7.9× 10−3 11 76 KB
5K 50,544 2.0× 10−3 19 571 KB

20K 476,386 1.2× 10−3 32 6 MB
50K 1,193,994 4.8× 10−4 44 16 MB
200K 4,747,902 1.2× 10−4 71 68 MB

High-Low

1K 7,903 7.9× 10−3 11 77 KB
5K 51,091 2.0× 10−3 19 578 KB

20K 475,421 1.2× 10−3 32 6 MB
50K 1,183,975 4.8× 10−4 44 16 MB
200K 4,743,468 1.2× 10−4 71 68 MB

High-High

1K 8,032 8.0× 10−3 11 77 KB
5K 51,157 2.0× 10−3 19 578 KB

20K 473,329 1.2× 10−3 32 6 MB
50K 1,187,682 4.8× 10−4 44 16 MB
200K 4,754,406 1.2× 10−4 71 68 MB

TABLE I: The four categories present different levels of
partitioning difficulties provided by the 2022 SGPC [1].

However, PEIXOTO is extremely time-consuming due to
its bottom-up merging strategy and iterative MCMC updates,
both of which require a large number of iterations that run
sequentially. As a result, the algorithm struggles to scale
effectively for large graphs. To tackle this problem, SGPC
has yielded many solutions [7]–[9], while their speed-ups are
not remarkable due to various algorithm limitations (discussed
later). For example, the latest SGPC champion [9] only reports
up to 3.78× speed-up for a 50K-node graph and cannot



complete larger graphs in a reasonable amount of time (e.g.,
10hrs).

Consequently, we propose uSAP, an ultra-fast stochastic
graph partitioner, to substantially improve the performance
of SGP that was previously out of reach. uSAP introduces a
novel strongly connected component(SCC)-based initial block
merging strategy to largely reduce the partitioning iterations.
To further enhance the sampling performance, uSAP adopts a
dynamic batch parallel nodal block assignment algorithm. In
addition to runtime improvement, uSAP employs a dynamic
matrix representation to reduce the memory footprint. We have
evaluated uSAP on the 2022 official benchmarks of HPEC
SGPC. The results demonstrate the promising performance of
uSAP on different graph sizes and categories. For example,
uSAP achieves 129.4× speed-up over the latest champion on
the graph of 50K nodes. We have made uSAP open-source to
facilitate high-performance graph partitioning research 1.

II. STATE OF THE ART

To overcome the scalability challenge, Distributed
Sketches [7], the 2020 SGPC champion, proposes the matrix
sketches derived from random dimension-reducing projec-
tions. They demonstrate the excellent scalability in distributed
memory of the linear sketch embedding algorithm. However,
the result shows that the pairwise precision and recall (i.e.,
accuracy) are not promising when partitioning large graphs.
Also, dealing with high-degree vertices is still challenging
because of the algorithm’s communication and computation
bottlenecks.

DPGS [8], the honorable mention of 2021 SGPC, introduces
a graph summarization technique that preserves the community
structure of the graph while reducing its complexity. The result
indicates that their algorithm runs faster than PEIXOTO, but
the pairwise precision and recall are not significantly better
than those achieved by PEIXOTO.

Faster Stochastic Block Partition (FSBP) [9], the 2021 SGPC
champion, proposes an aggressive initial merging strategy
to considerably decrease the initial block count at the first
searching iteration, which in turn reduces the total number of
partitioning iterations. Its parallelism control strategy carefully
manage the amount of parallelism during different phases of the
algorithm to improve the performance. However, the aggressive
initial merging strategy may merge blocks that cause substantial
changes in entropy, resulting in negative effects on the accuracy.
Also, its parallelism control strategy does not perform well
due to the synchronization overhead.

III. USAP

To overcome the performance bottleneck of existing partition-
ers, we present uSAP, an ultra-fast stochastic graph partitioner.
We implement uSAP in a task graph programming model to
accelerate SGP through an SCC-based initial block merging
strategy, a dynamic batch parallel nodal block assignment, and
a dynamic matrix representation.

1uSAP source code: https://github.com/gary30404/uSAP

A. SCC-based Initial Block Merging Strategy

In order to reduce the total number of partitioning iterations,
we merge the SCC of the graph into blocks in advance. This
approach substantially reduces the initial block number and
significantly enhances the algorithm’s efficiency. In contrast to
the greedy strategy of FSBP, which aggressively increases the
number of blocks to be merged, our method focuses on merging
blocks with stronger connections. The idea is inspired by the
degree-corrected stochastic blockmodel [2], which implies that
nodes within the same block exhibit stronger connections than
nodes across different blocks. The merging scenario, as shown
in Figure 1, represents a possible solution of PEIXOTO and
FSBP. Merging node B with node A causes an entropy change
of 0.35 according to the entropy definition in [1]. However,
merging node C into node A yields a smaller entropy change
of −0.43, as shown in Figure 2. This indicates that merging
node C into node A is a more favorable choice than merging
node B into node A because node A and node C are strongly
connected. Based on the observation, we adopt the SCC finding
algorithm, which has a linear-time complexity, to identify the
SCC and guide the initial merging strategy.
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Fig. 1: Illustration of merging node B into node A (a possible
solution of PEIXOTO and FSBP) and the resulting block edge
count matrix used to calculate the change in entropy (∆E =
0.35 from [1]).

In our SCC-based initial block merging strategy, we introduce
an initial block size threshold denoted as tSCC to limit the block
size accordingly instead of finding all the SCC in the graph.
The threshold can be adjusted to accommodate the different
complexities of graphs. The overall procedure described in
Algorithm 1 begins by applying a depth-first search to obtain the
traversal sequence stored in stack. Subsequently, we transpose
the input graph and perform the second depth-first search on
the transposed graph according to the traversal sequence. Once
a node is popped from the traversal sequence, its neighbors
are identified as the same block. We continue to find the
descendants of these neighbors until the step counter exceeds
tSCC or no descendant exists. At this point, an initial block is
found. The nodes within the block are then marked as finished,
and the step counter is reset in preparation for finding the
subsequent initial blocks.
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Fig. 2: Illustration of merging node C into node A (the solution
of uSAP) and the resulting block edge· count matrix used to
calculate the change in entropy (a smaller ∆E = −0.43 than
Figure 1).

Algorithm 1: Initial-Block-Merging
Input: A: adjacency list of the input graph
Output: Γ: block assignment for each node

1 block_id← 0
2 B ← 0
3 finished← {false}
4 stack ← DFS(A)
5 A′ ← Transpose(A)
6 while not stack.empty() do
7 v ← stack.pop()
8 if not finished[v] then
9 step_counter ← 0

10 stack2 = {}
11 stack2.push(v)
12 while not stack2.empty() do
13 if step_counter ≥ tSCC then
14 break
15 end
16 n← stack2.pop()
17 if not finished[n] then
18 finished[n]← true
19 Γ[n]← block_id
20 ++step_counter
21 for k ∈ A′[n] do
22 if not finished[k] then
23 stack2.push(k)
24 end
25 end
26 end
27 end
28 ++block_id
29 ++B
30 end
31 end

B. Dynamic Batch Parallel Nodal Block Assignment

To prevent the time-consuming MCMC updates in the early
partitioning stage, we propose a dynamic approach to decide
when to perform parallel nodal block assignment. We define
tB as the threshold value. When the current number of blocks
exceeds the value N

tB
, uSAP exclusively performs block merging

(N represents the total number of nodes in a graph, and B
represents the number of blocks at the current stage). Otherwise,
uSAP switches to perform both block merging and nodal block
assignment. By dynamically adjusting the level of granularity in
the graph partitioning process, uSAP strikes a balance between
computational efficiency and accuracy, leading to improved
overall performance.

We randomly select a batch of nodes to parallelize the
nodal block assignment, as shown in Figure 3. Each thread
is assigned a specific set of nodes and performs block
assignment independently based on the shared state of the
current partitioning result. After completing the computation
of the batch, the global shared state is updated, and the overall
entropy is calculated to determine whether to continue the nodal
block assignment. The parallelization significantly accelerates
the time-consuming MCMC updates without affecting accuracy.
The foundation to support this argument can be referred to
[10], [11].
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Fig. 3: Illustration of batch parallel nodal block assignment.

C. Dynamic Matrix Representation

To increase the memory efficiency of uSAP, we introduce
a threshold parameter denoted as tM to determine the choice
between using an adjacency matrix or an adjacency list for
representing the block edge count data. The adjacency matrix
representation offers the advantage of fast random access to
the data, while it is memory inefficient due to the sparse nature
of the graph. Additionally, it is time-consuming to iterate a
large sparse matrix for computing entropy. On the other hand,
the adjacency list provides a more memory-efficient storage
option. However, random access to the block edge count matrix
is essential for accelerating the entropy calculation. This is
because using only the adjacency list representation requires
more iterations. As a result, we use tM to make an informed
decision on when to use the adjacency matrix and the adjacency
list. This allows uSAP to strike a balance between memory
utilization and computational efficiency.

D. Task Graph Parallelism

To maximize the parallelism of uSAP, we leverage Task-
flow [12] to describe our algorithms in a task dependency
graph, where dependent tasks and parallel algorithms can be
scheduled by the Taskflow runtime across different CPUs with
dynamic load balancing. Furthermore, as uSAP incorporates
many iterative control flows in the Fibonacci search and MCMC
updates, the control taskflow graph (CTFG) programming



model of Taskflow allows us to express end-to-end parallelism
by integrating control flow into our task graph, largely reducing
the threading and synchronization overheads. More details
about CTFG and its successful applications can be referred
to [12]–[46].

We depict the task graph of uSAP in Figure 4 and present the
corresponding overall algorithm in Algorithm 2. uSAP begins
with the Initial-Block-Merging (line 1), where the SCC-based
initial block merging strategy is employed. This step is followed
by initializing block edge count data based on the initial merged
blocks. Next, a Fibonacci search (line 4) consists of two steps.
The first step is the parallel Block-Merging (line 6), and the
second step is batch parallel Nodal-Block-Assignment (line
14). The latter begins with Fetch-Batches (line 10) to obtain
batches of nodes and terminates based on the result of Check-
Convergence (line 17). Finally, the Prepare-for-Next (line 21)
examines the result of the Fibonacci search to determine if the
optimal partition has been achieved.
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UpdateBlock-Merging

Perform-Merge

Fetch-Batches

Nodal-Block-AssignmentInitialization

FinishStatic Task

Parallel Iteration Algorithm

Conditional Task

Task Dependency

Conditional Dependency

Yes Yes

Yes

Yes

No

No

No

No

Fig. 4: uSAP leverages Taskflow’s control taskflow graph
programming model [12] to describe the entire algorithm in
an end-to-end taskflow graph. Solid arrows represent a regular
task dependency and dashed arrows represent a conditional
dependency.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of uSAP using the official 2022
SGPC dataset. We focus on static graphs under four categories
of different graph complexity, as listed in Table I. All experi-
ments were conducted on an Ubuntu Linux 5.15.0-58-generic
x86_64 machine. The single-node machine was equipped with
a 12-core Intel(R) Core(TM) i7-12700 processor running at
3.4 GHz, with 32GB RAM. We compile all the programs on
GNU GCC-11.3.0 with the C++17 standard -std=c++17
and optimization flags -O3 enabled. For parameter settings,
we use 20 for tSCC, 20 for tB, 1024 for tM, and 0.3 for
num_block_reduction_rate.

Algorithm 2: uSAP
Input: A: adjacency list of the input graph
Output: Γ: block assignment for each node

1 Γ← Initial-Block-Merging(A)
2 M ← Initialization(Γ)
3 optimal← false
4 while not optimal do
5 do in parallel
6 Γ← Block-Merging(M)
7 end
8 Perform-Merge(Γ)
9 if B < N

tB
then

// N : the total number of node is a graph
// B: the number of block at the current stage

10 batches← Fetch-Batches(A)
11 for itr ← 0; itr < max_itr; ++itr do
12 for batch ∈ batches do
13 do in parallel
14 Γ← Nodal-Block-Assignment(A)
15 end
16 Γ,M ← Update(Γ)
17 Check-Convergence(M)
18 end
19 end
20 end
21 optimal← Prepare-for-Next(Γ)
22 end

A. Baseline

We consider two baseline implementations: (1) PEIXOTO
sequential partitioner provided by SGPC and (2) FSBP [9]
which is the latest champion of SGPC. The aggressive initial
merging rate of FSBP is set to 0.75, which is the same as
[9]. In addition, we ran FSBP with eight threads, where
it achieved the best performance on our machine. Using
more threads does not provide any further performance
advantage due to its synchronization overhead. In terms of
num_block_reduction_rate, we use 0.5 for PEIXOTO
and FSBP. The other common partition parameters used by
PEIXOTO, FSBP, and uSAP are listed in Table II.

Update Parameters Values

num_agg_proposals_per_block 10
max_num_nodal_itr 100
delta_entropy_threshold1 5.0× 10−4

delta_entropy_threshold2 1.0× 10−4

delta_entropy_moving_avg_window 3

TABLE II: Common partition parameters used by uSAP, FSBP,
and PEIXOTO.

B. Performance Comparison

Table III compares the runtime performance and memory
usage among PEIXOTO, FSBP, and uSAP across different
graph sizes and categories. The results clearly demonstrate
that uSAP significantly outperforms PEIXOTO and FSBP on
all graphs. For example, uSAP is about 1700× faster than
FSBP for the graph of 1K nodes under the low-low category.
For the same graph category of 5K, 20K, and 50K nodes,



uSAP is about 80.2×, 103.3×, and 129.4× faster than FSBP,
respectively. When partitioning the largest graph of 200K nodes
under the high-high category (the most complicated graph),
uSAP can finish in 23 minutes, while PEIXOTO and FSBP
fail to complete within 10 hours. Similar data can be observed
in the other three categories as well.

The runtime advantage of uSAP is a combination of our
SCC-based initial merging strategy, the dynamic batch parallel
nodal update approach, and the task graph parallelism. The
SCC-based initial merging strategy significantly reduces the
number of blocks before the block merging stage, resulting in
much fewer partitioning iterations. The results shown in Figure
5 demonstrate that uSAP outperforms PEIXOTO and FSBP by
merging up to 80% of nodes into blocks initially, leading to a
large reduction in the number of partitioning iterations.
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Fig. 5: Number of blocks after the initial merge.

In terms of memory usage, uSAP outperforms PEIXOTO
and FSBP on all graphs. For example, uSAP consumes 7.1×
less memory than FSBP and 12.55× less than PEIXOTO
on the 1K-node low-low graph. For the 20K-node low-low
graph, uSAP consumes 2.99× less memory than FSBP and
16.4× than PEIXOTO. The memory efficiency of uSAP can be
attributed to its dynamic matrix representation, which efficiently
manages memory by employing the adjacency list when the
block count B exceeds tM. During this phase, the number of
blocks is considerably high and the matrix sparsity is low. The
adjacency list representation is more suitable because it only
stores the connections between blocks. Conversely, when the
block count is below tM, uSAP switches to the adjacency matrix
representation for fast random access. This allows uSAP to
reach a balance between memory utilization and computational
efficiency.

Table IV compares the accuracy in terms of pairwise
precision (denoted as PP) and pairwise recall (denoted as
PR) on the four different categories. We observe that uSAP
outperforms PEIXOTO and FSBP on nearly all graphs because
the SCC-based initial block merging strategy minimizes the
change in entropy, and this helps maintain PP and PR. In
contrast, the aggressive initial merging approach used in FSBP
can harm the accuracy. This approach can significantly change
the entropy and degrade PP and PR. Compared to PEIXOTO,
our uSAP algorithm incorporates the batch parallel nodal block
assignment inspired by [10], [11]. This technique enables the
concurrent processing of multiple nodes, leveraging parallelism

to accelerate the MCMC updates without compromising the
PP and PR. For the high-high 20K-node graph, uSAP exhibits
a bit lower PP and PR than PEIXOTO and FSBP. This is
because the threshold tB is fixed across all four categories.
Yet, for more complicated graphs like the high-high category,
a higher level of granularity in the nodal block assignment
is necessary to achieve optimal PP and PR values. Thus, we
leave the threshold tB a tunable parameter where applications
can fine-tune it to improve the PP and PR (e.g., reducing tB
for more fine-grained updates).

C. Scalability

We compare the scalability between uSAP and FSBP over in-
creasing numbers of threads on partitioning the 50K-node graph
under the different categories. We do not report the scalability
for 200K-node graphs because FSBP cannot complete within
a reasonable amount of time. The execution time reported in
Figure 6 is presented on a logarithmic scale of base 10. We can
observe that uSAP significantly outperforms FSBP, regardless
of the number of threads. Regarding scalability, FSBP achieves
its best performance when utilizing eight threads. However,
when the number of threads exceeds eight, the performance
of FSBP begins to degrade. This degradation in performance
is due to the lack of an effective scheduling algorithm in
FSBP to handle the synchronization overhead that arises with
a larger number of threads. To solve this problem, uSAP
leverages Taskflow [12] to program our partitioning algorithms
in a scalable task dependency graph, where parallel and
dependent tasks can be efficiently scheduled by the Taskflow
runtime over different CPUs with dynamic load balancing.
For example, the runtime of uSAP with eight threads is
approximately 8× faster than that of one thread in Figure
6. This significant improvement demonstrates the superior
scalability of uSAP, allowing uSAP to effectively utilizes CPUs
to achieve performance enhancements for SGP.
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Fig. 6: Scaling results under different numbers of threads of
uSAP and FSBP on 50K-node graphs.

D. Effect of Dynamic Matrix Representation Strategy

We study the effect of our dynamic matrix representation
strategy under different tM values. In Table V, we only consider
the effect of the dynamic matrix representation without other
optimization mentioned in this paper. Using adjacency lists
alone takes about 0.45s, 4.9s, 60s, and 363s to partition the four



Static Graph Categories

Low-Low Low-High High-Low High-High

Nodes PEIXOTO FSBP uSAP PEIXOTO FSBP uSAP PEIXOTO FSBP uSAP PEIXOTO FSBP uSAP

sec sec sec sec sec sec sec sec sec sec sec sec
MB MB MB MB MB MB MB MB MB MB MB MB

1K 47.3 8.5 0.005 46.8 8.6 0.006 59.9 9.9 0.007 58.9 10.1 0.007
86.6 49.1 6.9 86.4 48.0 7.3 86.7 49.3 7.4 86.6 48.8 7.2

5K 470.0 56.2 0.7 522.8 70.5 0.6 596.5 75.8 1.2 550.7 71.3 1.1
244.6 78.9 13.6 244.7 78.5 15.7 249.9 78.6 14.3 239.1 79.3 16.7

20K 5305.5 640.6 6.2 5450.9 641.2 7.0 5681.6 689.2 10.4 5176.6 607.7 10.1
2074.4 378.2 126.1 1951.7 386.4 136.1 2073.3 385.3 136.1 2033.6 382.0 132.6

50K >36000 3558.6 27.5 >36000 3462.6 27.4 >36000 3381.4 53.5 >36000 3419.2 41.4
- 942.6 318.9 - 981.5 310.5 - 947.3 310.5 - 970.8 322.5

200K >36000 >36000 299.8 >36000 >36000 338.8 >36000 >36000 1243.8 >36000 >36000 1381.2
- - 1222.6 - - 1228.8 - - 1228.8 - - 1334.5

TABLE III: Overall runtime performance (seconds) and memory efficiency (MBs) of PEIXOTO (SGPC sequential baseline),
FSBP (2021 champion), and uSAP on static graphs of 2022 HPEC SGPC datasets [1].

Static Graph Categories

Low-Low Low-High High-Low High-High

Nodes PEIXOTO FSBP uSAP PEIXOTO FSBP uSAP PEIXOTO FSBP uSAP PEIXOTO FSBP uSAP

PP PP PP PP PP PP PP PP PP PP PP PP
PR PR PR PR PR PR PR PR PR PR PR PR

1K 0.994 0.994 0.998 0.939 0.811 0.952 0.717 0.719 0.747 0.686 0.710 0.843
0.996 0.996 0.998 0.990 0.995 0.993 0.883 0.878 0.971 0.972 0.653 0.954

5K 0.940 1.000 1.000 0.976 0.970 0.987 0.861 0.641 0.983 0.676 0.689 0.861
1.000 1.000 1.000 0.769 0.850 0.998 0.816 0.666 0.997 0.789 0.721 0.801

20K 0.984 1.000 1.000 0.721 0.921 0.948 0.950 0.875 0.982 0.889 0.789 0.803
1.000 1.000 1.000 0.671 0.479 0.999 0.740 0.705 0.999 0.995 0.943 0.778

50K - 0.988 1.000 - 0.849 0.921 - 0.757 0.946 - 0.766 0.456
- 0.855 1.000 - 0.997 0.998 - 0.862 0.994 - 0.64 0.981

200K - - 0.983 - - 0.768 - - 0.832 - - 0.386
- - 1.000 - - 0.922 - - 0.314 - - 0.885

TABLE IV: Comparison of the pairwise precision (PP) and pairwise recall (PR) values among PEIXOTO, FSBP, and uSAP of
the four categories.

|V | Adjacency List Dynamic Matrix Representation (tM)

512 1024 2048 4096

1K 0.45 0.43 0.42 0.44 0.43
5K 4.9 3.6 3.7 4.1 4.7

20K 60.2 46.1 43.1 43.3 45.7
50K 363.0 291.6 271.9 273.5 278.8

TABLE V: Comparison of runtime (secs) under different tM
in low-low graphs.

low-low graphs 1K, 5K, 20K, and 50K, respectively. With our
proposed dynamic strategy, we observe that the best runtime
improvements can achieve 19.6% − 25% on the 50K-node
graph under different tM (512, 1024, 2048, and 4096). The
value of 1024 strikes a balance between memory access time
and the number of iterations to read each row of the matrix
for calculating the entropy.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have introduced uSAP, an ultra-fast
stochastic graph partitioner targeting HPEC SGPC. uSAP has
introduced a novel SCC-based initial block merging strategy to
significantly reduce the number of partitioning iterations. In ad-
dition, uSAP has adopted a dynamic batch parallel nodal block
assignment algorithm and a dynamic matrix representation to
improve runtime and memory performance. We have evaluated
uSAP on the 2022 official HPEC SGPC benchmarks. The
results have demonstrated the promising performance of uSAP
on graphs of different sizes and complexities. For example,
uSAP achieves 129.4× speed-up over the 2021 champion on
a graph of 50K nodes.

Our future work will extend uSAP to handle streaming
graphs and leverage GPU [36] with data-parallel distributed
computing [47]–[50] to gain further acceleration and perfor-
mance improvements.
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