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Abstract—We revisit 1D Fast Fourier Transforms (FFT) imple-
mentation approaches in the context of compute units composed
of multiple cores with SIMD ISA extensions and sharing a
multi-banked local memory. A main constraint is to spare
use of local memory, which motivates us to use in-place FFT
implementations and to generate the twiddle factors with trigono-
metric recurrences. A key objective is to maximize bandwidth of
the multi-banked local memory system by ensuring that cores
issue maximum-width aligned non-temporal SIMD accesses. We
propose combining the SIMD lane-slicing and sample partitioning
techniques to derive multicore FFT implementations that do not
require matrix transpositions and only involve one stage of bit-
reverse unscrambling. This approach is demonstrated on the
Kalray MPPA3 processor compute unit, where it outperforms
the classic six-step algorithm for multicore FFT implementation.

Index Terms—FFT, DIF, DIT, four-step, six-step, multicore.

I. INTRODUCTION

Application CPUs expose significant processing capabili-
ties by combining multicore processing, multiple instruction
issuing per clock cycle, and SIMD instruction sets. When
integrated into many-core processors, such CPUs are clustered
into “core complexes” that share a slice of the memory
hierarchy. GPGPU processors propose a similar organization,
where the “stream cores” of a “compute unit” share a multi-
banked local memory [1] and a cache coherency domain.

In this work, we focus on the design and implementation
of FFT algorithms that exploit compute units composed of
multiple cores with SIMD ISA extensions such as those of
Kalray MPPA processors [2], [3]. Optimizing applications for
multicore SIMD execution requires high memory bandwidth,
which is addressed by multi-banking the local memory system
(L2 cache or scratch-pad memory) and by providing L1 cache-
bypass memory access instructions for SIMD data.

The proposed multicore SIMD FFT algorithms operate in-
place in memory, in order to spare use of the shared local
memory. As such, they involve bit-reverse scrambling of the
samples; thus, we assume that the core ISA supports efficient
bit-reversing of transform-sized integers (e.g. 16-bit integers
for 216 samples). These multicore FFT algorithms are also
compatible with implementation techniques that expose SIMD
execution opportunities, in our case SIMD lane-slicing [3].

The presentation is as follows. Section II provides the
relevant Cooley-Tukey FFT background. Section III describes
the high performance FFT enabling techniques that we use in
implementations. Section IV exposes the core of our contribu-
tion to in-place multicore FFT algorithms. Section V presents
experimental results. Section VI discusses related work.

II. COOLEY-TUKEY FFT BACKGROUND

Given a sequence N complex numbers [xn]0≤n≤N−1, its
Discrete Fourier Transform (DFT) is the sequence of N
complex numbers [Xk]0≤k≤N−1 defined as:

Xk =
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xnW
kn
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Assuming N = N1N2, the Cooley-Tukey FFT (Fast Fourier
Transform) algorithms rely on a decomposition of the time
n = n1N2 + n2 and frequency k = k1 + k2N1 DFT
indices in order to expose independent subtransforms which
are combined to reduce the algorithmic complexity [4]. Since
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Textbook Cooley-Tukey FFT implementations take N2 = 2
or N1 = 2, respectively referred to as radix-2 decimation in
time (DIT) or radix-2 decimation in frequency (DIF). High-
performance Cooley-Tukey FFT implementations use radices
larger than two to save computations. A radix-r FFT algorithm
is composed of logr N stages but requires that N which is a
power of two, also be a power of r.

The key feature of the radix-r DIT FFT algorithms is to
combine the results of subtransforms that operate on the subset
of samples that have the same residue modulo r. In particular,
the radix-4 DIT FFT recurrence equations are:
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Similarly, the key feature of the radix-r DIF algorithms is
to combine the results of subtransforms that operate on the
subset of samples resulting from partitioning into r sections.
In particular, the radix-4 DIF FFT recurrence equations are:
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Another application of the two-index decomposition of the
time and frequency indices is the four-step FFT algorithm [5],
which interprets the input samples as a N2 × N1 complex
matrix and performs the following steps [6]:

1) N2 simultaneous N1-point FFTs on the rows:
y1(n2, k1) =

∑N1−1
n1=0 xn1N2+n2

Wn1k1

N1

2) Twiddle factor multiplication (twisting):
y2(n2, k1) = y1(n2, k1)W

n2k1

N

3) Transposition to a N1 ×N2 complex matrix:
y3(k1, n2) = y2(n2, k1)

4) N1 simultaneous N2-point FFTs on the rows:
y4(k1, k2) =

∑N2−1
n2=0 y3(k1, n2)W

n2k2

N2

The four-step algorithms expose N2 independent FFT com-
putations, a matrix transposition, a point-wise multiplication,
and N1 independent FFT computations, which makes it a start-
ing point for multicore FFT implementations [7]. However, in
step 1 the input samples xn = xn1N2+n2 are accessed with
stride N2, while after step 4 sequentially accessing the output
samples Xk = Xk1+k2N1

involves reading y4(k1, k2) with
stride N1 (assuming row-major array layout).

The six-step FFT algorithm [6] addresses the spatial locality
issues of the four-step FFT algorithm by wrapping two matrix
transpositions around it:

0) Transpose the input samples x into y1:
y0(n2, n1) = xn1N2+n2

1)..4) Four-step FFT algorithm using y0(n2, k1) in 1)
5) Transpose y4 into the output samples X:

Xk1+k2N1
= y4(k1, k2)

As the six-step FFT algorithm localizes the accesses of
each FFT computation into its corresponding row, it is well
suited to hierarchical memory systems where the local memory
(scratch-pad or cache) can store N1 then N2 samples.

III. FFT IMPLEMENTATION TECHNIQUES

A. In-Place Data Processing

When computing FFTs using the Cooley-Tukey DIT or DIF
algorithms, it is possible to organize memory accesses so that
each stage overwrites the results of the previous stage. After
the last FFT stage, the output samples are located in-place
of the input samples. This approach is especially interesting
in the case of limited local memory capacity, but entails
data “scrambling”. For a DIT algorithm, scrambling the input
samples yields the output samples in natural order, while for
the DIF algorithm, the naturally ordered input samples yield
the output samples in scrambled order.

For the radix-2 algorithms, scrambling an array of samples
means applying the self-inverse permutation corresponding
to bit-reversing log2 N bits in the binary representation of
every sample index [8]. Let us denote bit-reverse(i, b) the
function that takes an integer i whose representation fits
into b bits and returns the corresponding bit-reversed value.
Efficient bit-reversing is supported in several instruction set

architectures (ISA), including the one we use for experiments
(§ V). When ISA support for bit-reversing is not available,
several approaches are available to scramble samples [9].
Algorithm 1 Scramble an array x[] of n elements

for i = 0 to n− 1 do
j ← bit-reverse(i, log2 n)
if j > i then

t = x[i]
x[i] = x[j]
x[j] = t

end if
end for
The bit-reverse scrambling of an array may be implemented

in-place (Algorithm 1). The loop of this algorithm has inde-
pendent iterations, as the memory locations written by iteration
i cannot overlap with those read by iteration i′ ̸= i:

• Assume that iteration i writes to x[i] and x[j]. This
implies i < j = bit-reverse(i, l2n).

• Assume that iteration i′ reads from x[i′] and x[j′]. This
implies i′ < j′ = bit-reverse(i′, l2n).

• If the writes from iteration i overlap with the reads of
iteration i′, then i = i′ ∨ i = j′ ∨ j = i′ ∨ j = j′.

• As bit-reverse is injective (bijective), i ̸= i′ ⇒ j ̸= j′.
• Then i = j′ ∨ j = i′, which contradicts i < j ∧ i′ < j′.

Therefore, the loop of Algorithm 1 can be parallelized between
cores and vectorized or software pipelined on each core.

When implementing radix-r DIT or DIF algorithms with
r > 2 a power of two, natural scrambling corresponds to the
base-r permutation of the binary representation of the sample
index, also known as “digit-reversal” [10]. For example, if
r = 8, then the permutation reverses the order of triples of
bits in the binary representation of the sample index. Digit-
reversal does not have the same support as bit-reversal in
existing ISAs, which could downplay the implementation of
high-radix Cooley-Tukey FFT algorithms.

However, in [11] Burrus explains how to modify a radix-r
FFT algorithm, r = 2m, so that it only involves bit-reverse
scrambling. For a DIF algorithm, the outputs of each radix-r
butterfly should be bit-reversed. Likewise in case of a DIT
algorithm, the inputs of each radix-r butterfly should be bit-
reversed. In practice, for a radix-4 FFT one only needs to
exchange the inputs (DIT) or the outputs (DIF) 1 and 2 of the
butterfly to keep bit-reverse scrambling [10].

B. Enabling Loop Software Pipelining

The defining property of a parallel loop is that there are
no loop-carried dependencies between iterations. The defining
property of a vector loop is that it is innermost with lexically
forward (or from RHS to LHS at the statement level) loop-
carried dependencies if any [12]. Thus, a parallel loop is a
vector loop, and conversely a vector loop may be converted
into a sequence of parallel loops at the expense of introducing
temporary vectors to carry values between these loops.

Software pipelining is the key technique to take advantage
of vector loops on statically scheduled application cores, that



is, in-order superscalar or VLIW. This technique restructures
the loop body so that long-latency dependencies become loop-
carried with an iteration distance large enough to avoid latency
stalls (memory and compute) inside the new loop body.

In order to benefit from software pipelining in iterative
Cooley-Tukey FFT implementations, Texas Instruments col-
lapsed the innermost loops in their TI C6x DSP fft32x32 code
for the C6x VLIW-DSP cores. As illustrated in Algorithm 2 for
a radix-2 DIF, an iterative Cooley-Tukey FFT is implemented
with three nested loops [4]: the innermost l loop iterates over
butterflies; the middle loop j iterates over groups of butterflies
that share the same twiddle factors; and the outer k loop
iterates over the stages of the FFT. This is apparent on Burrus-
style [4] Algorithm 2 and Algorithm 3 (radix-4 DIF) that
operate in-place, and produce bit-reversed output.
Algorithm 2 Burrus-style implementation of radix-2 DIF FFT

for k = 0; k < log2 n; k += 1 do
n1 ← n≫ k
n2 ← n1 ≫ 1
for j = 0; j < n2; j += 1 do
wj ← {cos −2jπ

n1
, sin −2jπ

n1
}

for l = j; l < n; l += n1 do
l1 ← l + n2

t1 ← x[l]− x[l1]
x[l]← x[l] + x[l1]
x[l1]← t1wj

end for
end for

end for
The challenge of collapsing the inner loops is to reconstruct

the l, j indices from the counter r of the collapsed loop. In
case of radix-2, the collapsed loop iterates n

2 times and:

r ∈ [0,
n

2
− 1] :

{
j ← r ≫ k
l← j + (r ≪ (log2 n− k))%n

In case of radix-4, the collapsed loop iterates n
4 times and:

r ∈ [0,
n

4
− 1] :

{
j ← r ≫ 2k
l← j + (r ≪ (log2 n− 2k))%n

The disadvantage of collapsing the inner loops is that
accessing the twiddle factors from a table or recomputing
them is now performed at each iteration of the new inner loop.
This can be mitigated by conditionally accessing or computing
the twiddle factors whenever j changes, under one of the
conditions j ̸= (r ± 1) ≫ k for the Burrus radix-2 DIF and
j ̸= (r ± 1)≫ 2k for the Burrus radix-4 DIF.

C. Twiddle Factor Recurrences

The twiddle factors of a N-point DFT are defined as W kl
P =

e
−2iπkl

P , with i2 = −1 and P a factor of N . Although one may
tabulate the twiddle factors in a way that ensures the spatial
locality of accesses, this requires storage of size comparable
to the FFT samples. The alternative to spare local memory
capacity or cache footprint is to compute twiddle factors using
one of the proposed trigonometric recurrences [13], each with
different cost and worst-case accuracy bounds [14].

Algorithm 3 Burrus-style implementation of radix-4 DIF FFT
for k = 0; k < log4 n; k += 1 do

n1 ← n≫ 2k
n2 ← n1 ≫ 2
for j = 0; j < n2; j += 1 do

wj ← {cos −2jπ
n1

, sin −2jπ
n1
}

w2j ← {cos −4jπ
n1

, sin −4jπ
n1
}

w3j ← {cos −6jπ
n1

, sin −6jπ
n1
}

for l = j; l < n; l += n1 do
l1 ← l + n2

l2 ← l1 + n2

l3 ← l2 + n2

t1 ← x[l] + x[l2]
t2 ← x[l1] + x[l3]
t3 ← x[l]− x[l2]
t4 ← x[l1]− x[l3]
x[l]← t1 + t2
t2 ← t1 − t2
t1 ← t3 + it4
t3 = t3 − it4
x[l2]← t3wj /* l2 instead of l1 [11] */
x[l1]← t2w2j /* l1 instead of l2 [11] */
x[l3]← t1w3j

end for
end for

end for
if log2 n mod 2 ̸= 0 then

Do a radix-2 stage with twiddle factor 1.
end if

With the availability of fused multiply-add floating-point
operators in application cores, the trigonometric recurrences
to consider compute ei(k+1)θ directly from eikθ and eiθ:

ei(k+1)θ = eikθeiθ (multiply recurrence)

ei(k+1)θ = eikθ + eikθ(eiθ − 1) (multiply-add recurrence)

For the multiply-add recurrence, the real part of eiθ − 1 is
calculated as −2 sin2 θ

2 to avoid cancellation in cosθ− 1 [15]
since θ = − 2π

P may be small for large-N FFTs.
In case of radix-2 FFT algorithms, there is one recurrence

computation per iteration of the twiddle group loop, with
absolute angle values spanning [0, π). In case of the radix-
4 FFT algorithms, there are three recurrence computations
per twiddle group loop iteration, with angle absolute values
spanning respectively [0, π

2 ), [0, π) and [0, 3π
2 ).

Algorithm 4 illustrates a Burrus-style radix-4 DIF FFT with
collapsed inner loops and multiply-add recurrences for twiddle
factors. Precisely, steps[m] returns a 3-element array with the
complex values −2 sin2 θk

2 + i sin θk for θk = −2πk
2m , k ∈

{1, 2, 3}. The cfma operation computes a complex fused
multiply add where the first two arguments are multiplicands
and the third is the addend. In an actual implementation, condi-
tional updates of wj , w2j , w3j are optimized into unconditional
cfma operations that write to temporary variables, which are
then conditionally moved.



Algorithm 4 Burrus-style implementation of radix-4 DIF FFT
with collapsed inner loop and twiddle recurrences

for k = 0; k < log4 n; k += 1 do
n1 ← n≫ 2k
n2 ← n1 ≫ 2
s[0..2]← steps[log2 n− 2k]
wj ← w2j ← w3j ← {1.0, 0.0}
for r = 0; r < n

4 ; r += 1 do
j ← r ≫ 2k
l← j + (r ≪ (log2 n− 2k))%n
l1 ← l + n2

l2 ← l1 + n2

l3 ← l2 + n2

t1 ← x[l] + x[l2]
t2 ← x[l1] + x[l3]
t3 ← x[l]− x[l2]
t4 ← x[l1]− x[l3]
x[l]← t1 + t2
t2 ← t1 − t2
t1 ← t3 + it4
t3 = t3 − it4
x[l2]← t3wj /* l2 instead of l1 [11] */
x[l1]← t2w2j /* l1 instead of l2 [11] */
x[l3]← t1w3j

if j ̸= (r + 1)≫ 2k then
wj ← cfma(wj , s[0], wj)
w2j ← cfma(w2j , s[1], w2j)
w3j ← cfma(w3j , s[2], w3j)

end if
end for

end for
if log2 n mod 2 ̸= 0 then

Do a radix-2 stage with twiddle factor 1.
end if

IV. MULTICORE FFT IMPLEMENTATIONS

A. Multicore SIMD Lane-Slicing

The first approach we propose to implement in-place FFTs
on multiple cores with SIMD ISA extensions is to extend
the single-core SIMD lane-slicing of [3] to parallel execution.
SIMD lane-slicing can be implemented in-place in two steps
with normally ordered input and scrambled output:

• Step 1 computes s independent DFTs of size n
s using a

DIF FFT algorithm whose scalar data types are replaced
by the corresponding SIMD data types. The output of this
step is a bit-reversed array of s-sized vectors.

• Step 2 combines the s subtransforms (one per SIMD lane)
with one stage of n

s radix-s DIT butterflies. The output
of this step is the bit-reversed array of output samples.

SIMD lane-slicing exploits the fact that the distribution of
input samples across the SIMD lanes decimates them in time
with a subtransform in each SIMD lane. Furthermore, both
steps operate into an array v[] of n

s vectors of s samples each,
which aliases the array x[] of n samples. As a result, they
only perform aligned SIMD memory accesses to vectors of s

samples, which fully exploit local memory bandwidth. This is
obvious for Step 1 and apparent for Step 2 (Algorithm 5).

In this work, we use the complex multiply-add recurrence
to compute the twiddle factors in the implementation of Step 1
and Step 2. As the output of Step 1 is scrambled on s-sized
vectors, the inner loop of Step 2 (Algorithm 5) is iterated in
bit-reverse order to ensure that the twiddle factors follow a
geometric progression as required by the recurrences.

Please note that Algorithm 5 outputs the elements of vector
v[l] in bit-reverse order to ensure that the output array x[]
is scrambled at the granularity of complex samples. Indeed,
Step 2 is based on the last stage of a radix-s DIT algorithm,
which normally scatters the output samples with stride n

s . As
the Step 2 output has to be unscrambled, bit-reversing the
produced vector elements prepares this scattering.
Algorithm 5 Implementation of SIMD lane-slicing Step 2 with
s = 4 (based on a radix-4 DIT last stage)
s[0..2]← steps[log2 n]
wk ← w2k ← w3k ← {1.0, 0.0}
for k = 0; k < n

4 ; k += 1 do
l← bit-reverse(k, log2 n

4 )
zl[4]← v[l]
al ← zl[0]
bl ← wkzl[1]
cl ← w2kzl[2]
dl ← w3kzl[3]
zl[0]← (al + cl) + (bl + dl)
zl[1]← (al − cl)− i(bl − dl)
zl[2]← (al + cl)− (bl + dl)
zl[3]← (al − cl) + i(bl − dl)
v[l]← {zl[0], zl[2], zl[1], zl[3]} /* bit-reversed */
wk ← cfma(wk, s[0], wk)
w2k ← cfma(w2k, s[1], w2k)
w3k ← cfma(w3k, s[2], w3k)

end for
In order to derive a multicore FFT implementation from the

SIMD lane-slicing approach, we execute in parallel the inner
loops of Step 1 (the collapsed loop), Step 2 (Algorithm 5)
and of the bit-reverse (un)scrambling Algorithm 1. The inner
loops of Step 1 and Step 2 involve trigonometric recurrences
so to execute these loops in parallel by chunks, each chunk
starts its recurrences from precomputed twiddle factors.

B. Multicore Sample Sectioning

The second approach we propose to implement in-place
FFTs on multiple cores is to partition input samples into c
contiguous sections to expose c independent subtransforms.
To be precise, the sample sectioning decimates the input in
frequency; therefore, an initial radix-c DIF stage is required
before completing the computations with the subtransforms.

An in-place implementation for the first step of this sample
sectioning approach is proposed in Algorithm 6 for c = 4. It is
derived from the inner loop of Algorithm 3 that produces the
output scrambled in bit-reverse, here at the section granularity.
We also compute the twiddle factors with three complex
multiply-add recurrences like in Algorithm 4.



Algorithm 6 Burrus-style implementation of sample section-
ing Step 1 with c = 4 (based on a radix-4 DIF first stage)
x0 ← x
x1 ← x+ n

4
x2 ← x+ n

2
x3 ← x+ 3n

4
s[0..2]← steps[log2 n]
wk ← w2k ← w3k ← {1.0, 0.0}
for k = 0; k < n

4 ; k += 1 do
t1 ← x0[k] + x2[k]
t2 ← x1[k] + x3[k]
t3 ← x0[k]− x2[k]
t4 ← x1[k]− x3[k]
x0[k]← t1 + t2
t2 ← t1 − t2
t1 ← t3 + it4
t3 ← t3 − it4
x2[k]← t3wk /* x2 instead of x1 [11] */
x1[k]← t2w2k /* x1 instead of x2 [11] */
x3[k]← t1w3k

wk ← cfma(wk, s[0], wk)
w2k ← cfma(w2k, s[1], w2k)
w3k ← cfma(w3k, s[2], w3k)

end for
The second step of the sample sectioning approach then

amounts to calling the subtransforms, which independently
process their own section of the samples. Given the bit-
reverse scrambling of the Step 1 output, if each subtransform
produces its output samples scrambled in bit-reverse, then a
single (un)scrambling step recovers the entire output normal
in normal order (Algorithm 7).
Algorithm 7 Implementation of sample sectioning with c = 4

sectioning-step1(n, x) /* Algorithm 6 */
dif-fft(n4 , x+ 0) /* normal input, bit-reversed output */
dif-fft(n4 , x+ n

4 ) /* normal input, bit-reversed output */
dif-fft(n4 , x+ n

2 ) /* normal input, bit-reversed output */
dif-fft(n4 , x+ 3n

4 ) /* normal input, bit-reversed output */
bit-reverse-scramble(n, x) /* Algorithm 1*/

The sample sectioning approach can be combined with
techniques that exploit SIMD ISA extensions in FFT im-
plementations, in particular the SIMD lane-slicing of [3].
Algorithm 7 is adapted for SIMD lane-slicing so that each
call to the dif-fft subtransforms is replaced by the sequence
of two calls to the SIMD lane-slicing Step 1 and Step 2. SIMD
lane-slicing may also be applied to Algorithm 6.

In order to derive a multicore FFT implementation with the
sample sectioning approach, we execute in parallel by chunks
with recurrence seeds the inner loop of Step 1 (Algorithm 6)
and of the bit-reverse (un)scrambling Algorithm 1). We also
execute concurrently the calls to the c dif-fft subtransforms.

V. EXPERIMENTAL RESULTS

A. Comparing multicore Implementations

To compare the multicore FFT approaches, we implement
them in C with builtins for the SIMD complex arithmetic. We

Fig. 1. Cycles divided by transform size of the three multicore FFTs.

compile and execute on four cores of the MPPA3 processor
running at 1 GHz with a local memory system configured for
3 MB of shared local memory and 1 MB of level-2 cache [2].
Parallel execution is explicit based on POSIX threads, but we
synchronize the cores with a fast hardware barrier.

Fig. 1 shows the performances in cycles divided by the
transform size for three multicore implementations: SIMD
lane-slicing (V4DIFP4), sample sectioning (V4DIFS4), and six-
step (SIXSTEP). It can be observed that V4DIFP4 and V4DIFS4
both outperform SIXSTEP. Furthermore, V4DIFS4 performs
slightly better than V4DIFP4, although we did not (but could)
use SIMD lane-slicing for implementing V4DIFS4 Step 1.

B. Accuracy of Trigonometric Recurrences

We evaluate the accuracy of trigonometric recurrences to
compute the twiddle factors in the context of fused floating-
point arithmetic. Let us consider implementations of the com-
plex multiply r = xy and complex multiply-add s = xy + z
operations using real floating-point arithmetic:

r = rre + irim with
{

rre = (xreyre − ximyim)
rim = (xreyim + ximyre)

s = sre + isim with
{

sre = (xreyre − ximyim + zre)
sim = (xreyim + ximyre + zim)

First, consider fused multiply-add (FMA) operators, which
compute a × b ± c with one rounding step. Also, consider
the more advanced FDP2A operators, which compute a× b±
c× d± e followed by a single rounding step [16]. The FMA
and FDP2A operators, respectively, allow us to implement the
complex multiply operation r = xy and the complex multiply-
add operation s = zy + z with two (FMA) operations or one
(FDP2A) operation per real or imaginary component.

We focus on the comparison between the complex multiply
recurrence implemented using FP32 FMA operators and the
complex multiply-add recurrence using FP32 FDP2A opera-
tors, as both are available in scalar and SIMD variants on our
target application cores. When a FP32 FDP2A operator is not
available, we observed that a similar accuracy was achieved by
using FP64 FMA operations to implement the FP32 complex
multiply-add recurrence.

The baseline for comparison computes each twiddle factor
using the libm standard cos and sin function, rounded to
FP32 from FP64. For each recurrence term, we compute the
error as the modulus of the difference between its value and
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Fig. 2. Base-10 logarithm of errors for the multiply and the multiply-add
radix-2 twiddle factor FP32 recurrences depending on the FFT size.

the baseline using FP64 arithmetic. Since twiddle factors are
roots of unity, these errors are absolute and relative.

Fig. 2 shows the maximum and average errors for the
multiply and multiply-add twiddle factor recurrences in the
log10 scale, for N successive powers of two and recurrence
angles spanning [0, π). When parallelizing loops with twiddle
recurrences, each chunk of iterations executing on a core starts
from a tabulated twiddle factor. This helps to reduce errors,
also shown in Fig. 2 with the 4S curves for four cores.

We observe that errors of multiply recurrences implemented
with FMA operators grow up to two orders of magnitude
larger than errors of multiply-add recurrences implemented
with FDP2A operators. In a radix-2 Cooley-Tukey FFT of
size N , there is a twiddle factor recurrence per stage so that
all terms of all recurrences up to length N

2 are actually used.

VI. RELATED WORK

As we optimize for multi-banked memory systems that are
accessed without traversing the L1 caches, the most closely
related work is optimizing FFT algorithms for implementa-
tions on parallel-vector processors [6], [17], [18]. None of
the algorithms proposed collapse the inner loops, but this
is possibly useful on classic vector units, provided that the
twiddle factors are conditionally accessed from a table.

In the area of multicore FFT algorithms, the main contri-
butions are variants of the four-step and six-step methods [7],
[19]. Their focus is to fit the subtransform working sets into
the L1 caches and to address the complexities of transposing
nonsquare matrices. These topics are irrelevant in our case.

The SIMD lane-slicing implementation of [3] accesses the
twiddle factors from tables that are kept in L1 cache as they
expose spatial locality, while samples are accessed in L1
cache-bypass mode. This leads to a different condition for
updating the twiddle factors in the collapsed loop.

VII. CONCLUSIONS

We present two new approaches to the implementation of
multicore FFTs, which are compared to the classic six-step
FFT algorithm implemented for multicore processors.

The first approach exposes suitably collapsed twiddle loops
as the main source of parallel execution. The second approach
exposes concurrency across subtransforms following the parti-
tioning of input samples into a number of sections that match
the number of cores.

We demonstrate how both approaches leverage FFT im-
plementation techniques that fully exploit the SIMD ISA

extensions of the target application cores. Moreover, these
approaches operate in-place, producing bit-reversed output
samples that may be reordered in-place using a single loop
over the samples, which we also show as being parallel.

An intriguing outcome is that our approaches to multicore
FFT implementation do not involve any matrix transposition
or sample twisting between steps, unlike the four-step method,
the six-step method, and other FFT algorithms designed for
classic parallel-vector processors.
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