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Abstract—Subgraph matching is a crucial problem in graph
theory with diverse applications in fields, such as bioinformat-
ics, social networks and recommendation systems. Accelerating
subgraph matching can be greatly facilitated by GPUs, which
offer exceptional parallelism and high memory bandwidth. By
leveraging the power of multiple GPU cards, subgraph matching
can be scaled to achieve unprecedented levels of performance.

In this paper, we propose SMOG, an abbreviation for Subgraph
Matching On Multi-Card GPUs. It is a general, high-performance
and scalable subgraph matching system that utilizes multi-
card GPUs. To address the issue of duplication resulting from
subgraph automorphism, SMOG introduces a two-step approach.
Firstly, it analyzes the symmetry within the subgraph. Then,
it adaptively adjusts the graph preprocessing and generates
subgraph-aware GPU codes tailored to the given subgraph. Fur-
thermore, SMOG leverages multi-level parallelism by designing
the specific strategy for each level, enabling it to scale from 1 to
1,024 GPU cards, resulting in an extraordinary 553× speedup.

We evaluate SMOG on various subgraph queries and datasets.
The experimental results demonstrate that SMOG outperforms
the triangle-specific system TRUST with an average speedup of
2.94×. And it performs significantly better than the subgraph
matching system RPS by 203.55× and the graph processing
system Gunrock by 35, 455.52× on average.

Index Terms—Graph, GPU, Subgraph matching

I. INTRODUCTION

Subgraph matching, which aims to find all mappings of a
given subgraph (such as a triangle) in a data graph, has a
broad spectrum of applications including community detec-
tion [1], [2], [3], [4], biological/chemistry analysis [5], [6],
[7], [8] and emerging graph neural networks [9], [10], [11].
The GraphChallenge [12] competition also has established a
subgraph isomorphism challenge for the subgraph matching
problem. In GraphChallenge, there have been plenty of works
that focus on accelerating triangle counting [13], [14], [15],
[16], [17], [18], while [19] further considers square counting.
Instead of only counting triangles/squares, subgraph matching
that supports a variety of queried subgraphs has a wider
range of applications and is much more complex, making it
a worthwhile area of study. However, with the increasing size
of modern graphs, subgraph matching poses significant com-
putational challenges due to its NP-complete complexity [20].
As indicated by the 2022 innovation award winner FAST [21],
subgraph matching systems perform significantly worse than
triangle counting systems on the triangle counting task.

Fortunately, the acceleration of subgraph matching can be
greatly facilitated by GPUs, which offer massive parallelism
and high memory bandwidth. However, fully leveraging these
capabilities to design a system for efficient subgraph matching
on GPUs is non-trivial due to the following challenges.

Challenge 1: How to eliminate duplicated enumeration.
Duplication occurs when multiple mappings of a subgraph to
a set of vertices in the graph are counted, leading to increased
overhead in subgraph matching. As indicated in [22], [23],
there are six mappings between two triangles, resulting from
different permutations of the vertices in the triangle.

To tackle this challenge, we investigate the reason for
duplication, which is automorphism caused by symmetry in the
subgraph. Accordingly, we leverage the symmetry-breaking
technique [24], [25] by setting restrictions on the mapping.
Observing that restrictions can be classified into two types
according to the characteristics of the input subgraph, we pro-
pose an adaptive solution allowing for the efficient elimination
of duplication based on the properties of the ordered set of ver-
tices in the mapping. For a totally (linearly) ordered set, such
as a triangle, we leverage the orientation optimization, widely
used in GraphChallenge’s triangle counting systems [13], [14],
[16], [17], during preprocessing. For a partially ordered set,
such as a 4-cycle, we adopt the technique of intersection with
restrictions [24], [25], involving incorporating restrictions on
the candidates after the intersection in the runtime.

Challenge 2: How to leverage massive parallelism pro-
vided by multi-card GPUs. Modern GPUs are designed to
provide massive parallelism, while multi-card GPUs further
increase the parallelism to an unprecedented degree. However,
effectively utilizing this parallelism requires careful design to
avoid idle threads and workload imbalance [26], [13], [27].

To leverage the massive parallelism offered by multi-card
GPUs, we decompose the parallelism into three levels, includ-
ing GPU card level parallelism, warp level parallelism and
thread level parallelism, and we design strategies for each level
of parallelism. Specifically, we propose 1) workload partition-
ing for GPU card level parallelism, optimizing the partitioning
of tasks among multiple GPU cards; 2) task scheduling for
warp level parallelism, efficiently managing the execution
of tasks among warps; and 3) hash-based intersection for
thread level parallelism, utilizing the threads within a warp
to accelerate the intersection operation.
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Fig. 1: System overview.

As a result, we propose SMOG, short for Subgraph
Matching On Multi-Card GPUs. It is a general, high-
performance and scalable subgraph matching system that
utilizes multi-card GPUs. Figure 1 illustrates the workflow of
SMOG, which comprises two key components: preprocessing
and runtime. In the preprocessing stage, the input subgraph is
first analyzed to obtain its characteristics for the elimination
of duplication (Section III). This information not only deter-
mines the preprocessing strategy for the data graph, including
reordering and orientation, but also guides the subgraph-aware
code generation for the runtime. Once the preprocessing of the
data graph is completed, the processed graph is fed into the
hashtable construction procedure to build the corresponding
hashtables following the methodology outlined in [27]. When
both the generated code and hashtables are ready, the runtime
of the system is initiated. The runtime stage leverages the
multi-level parallelism of GPUs to accelerate subgraph match-
ing (Section IV). Specifically, the runtime includes a workload
partitioning step that distributes the workload according to
the hardware information. After that, the subgraph matching
kernel is launched and executed to perform the subgraph
matching algorithm (Section II).

We summarize the contributions of this paper as follows:

• The design of an adaptive strategy that dynamically
adjusts the search space based on analyzing the charac-
teristics of the subgraph.

• The exploration and utilization of multi-card GPUs by
decomposing the massive parallelism into multiple levels
and designing approaches for workload partitioning, task
scheduling and hash-based intersection.

• The proposal of the general subgraph matching frame-
work - SMOG, which combines innovative techniques
to address the challenges of duplicated enumeration and
massive parallelism exploitation.

• Extensive experimentation and evaluation on various sub-
graph matching problems and a range of datasets. The
experimental results demonstrate that SMOG not only
significantly outperforms state-of-the-art subgraph match-
ing system RPS and graph processing system Gunrock by
an average of 203.55× and 35, 455.52×, respectively, but
also beats the specific triangle counting system TRUST
by an average factor of 2.94× on the triangle counting

problem. Furthermore, SMOG exhibits remarkable scal-
ability, achieving a speedup of up to 553× when scaling
from 1 to 1,024 GPU cards.

II. SUBGRAPH MATCHING ALGORITHM

A. Definition

We denote G = (V,E) (G = (V, E)) as a graph (subgraph)
with a vertex set and an edge set. A vertex (edge) in the graph
(subgraph) is then denoted by v ∈ V (e ∈ E) and u ∈ V
(ε ∈ E), respectively. The neighbors (degree) of a given vertex
v are represented by N(v) (d(v) = |N(v)|). Additionally, the
cardinality or size of a set/array X is denoted by |X|.

Subgraph matching/isomorphism: Given G and G, a
mapping M maps a vertex of subgraph ui ∈ V to a vertex
of graph v = M(ui) ∈ V , ensuring that if an edge exists
in the subgraph (ui, uj) ∈ E , there must also be an edge
in the graph (M(ui),M(uj)) ∈ E. In GraphChallenge, the
subgraph isomorphism problem asks whether there exists a
mapping between G and G. However, the subgraph matching
task is more complex as it aims to find the set of all mapping
results M , where each mapping M ∈ M . For simplicity,
we use mi to denote M(ui) and maintain M as an array
[m0, · · · ,m|V|−1]. Moreover, we consider that there is a fixed
vertex order in the subgraph O = [u0, · · · , u|V|−1], and we
follow this order to conduct the matching.

B. Algorithm

Algorithm 1 Subgraph matching

Input: Subgraph G, matching order O = [u0, · · · , u|V|],
graph G.

Output: Mapping set M
1: for m0 ∈ V do in parallel
2: Initialize M← [m0]
3: DFS(1,M)
4: function DFS(i,M)
5: if |M| = |V| then
6: M ←M ∪ {M}
7: return
8: S ← {j|j < i and (ui, uj) ∈ E}.
9: Candidate C ← N(mk), where k = argmin

k∈S
(d(mk))

10: for j ∈ S and j 6= k do
11: C ← C ∩N(mj)

12: for mi ∈ C do
13: DFS(i+ 1, [M, [mi]])

There are two main-stream subgraph matching algorithms:
BFS-based [28], [29], [30] and DFS-based [25], [31]. The
BFS-based approach enumerates the mapping level by level,
maintaining partial mappings in memory for each level. How-
ever, the limited GPU memory makes it impractical for super-
linear intermediate results. Thus, SMOG adopts a DFS-based
approach that has controllable memory usage by enumerating
mappings one by one.



Algorithm 1 describes the subgraph matching algorithm of
SMOG. Naturally, the matching tasks starting from different
vertices are independent of each other and can be parallelized
(line 1). The DFS function (line 4) is used to find the mapping
mi of the i-th vertex ui in the subgraph. Particularly, lines 5-7
check if one mapping is complete. To find the mapping of the
next vertex ui, given that i vertices have already been matched,
the search extended from the matched vertex uj connected to
ui. Accordingly, we maintain the index of uj in S (line 8). The
mapping vertex mi will fall into the intersection of neighbors
of mj , i.e.,

⋂
j∈S N(mj) (lines 9-11). To minimize the time

complexity, we start from the minimal neighbor list (line 9).
After obtaining the candidate set C of mapping mi, we proceed
to match the next vertex (line 13).
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Fig. 2: An example of subgraph matching.

Figure 2 depicts the subgraph matching when the subgraph
is a triangle (Figure 2(a)). The data graph is shown in
Figure 2(b). We follow the order O = [u0, u1, u2] to match
the subgraph (Figure 2(c)). Figure 2(d) demonstrates how to
match the subgraph by extending the mapping one vertex at
a time. At first, we start from each vertex in the graph to
find the mapping of u0. For a mapping m0 = v0, we obtain
m1 by enumerating the neighbors of v0, i.e., v1, v2, v3. Next,
considering a neighbor v2 and the corresponding mapping
[m0,m1] = [v0, v2], we intersect the neighbors of v0 and the
neighbors of v2 to obtain the candidates of m3. Finally, a
mapping [m0,m1,m2] = [v0, v2, v3] is enumerated.

III. ELIMINATION OF DUPLICATION

Considering the example in Figure 2, there are a total
of A3

3 = 6 mappings between triangle (v0, v2, v3) and
(u0, u1, u2). This count arises from the fact that each permu-
tation of the vertices {v0, v2, v3} in the graph can be mapped
to the given triangle. The duplication of mapping significantly
increases the overhead of subgraph matching.

In this section, we first investigate the reason for duplication.
Then we leverage a symmetry-breaking technique, which sets
restrictions on the mapping to eliminate duplication. Recogniz-
ing two distinct categories of these restrictions, each benefiting
from different optimization, we propose an adaptive solution
depending on input subgraphs for optimal performance.

A. Elimination of Duplication by Symmetry Breaking

Reason for duplication: Recall the triangle matching exam-
ple, the subgraph (u0, u1, u2) can be mapped to any permuta-
tion of itself, namely automorphism. Accordingly, duplication

appears. Moreover, as indicated in [32], the automorphism is
implicit in the symmetry in the subgraph.

Symmetry breaking: The most straightforward way to
eliminate the duplication is by breaking the symmetry [24],
[25]. In triangle matching, vertices u0 and u1 are symmetry,
i.e., swapping them still results in a triangle. Actually, we can
break this symmetry by setting a restriction on the mapping
of u0 and u1, i.e., p(m0) > p(m1), where p(m) is the unique
priority of the vertex m in the graph. Obviously, there may
exist more than one symmetry/restriction, and we identify the
symmetry of a vertex based on its matching order. Specifically,
for matching the i-th vertex, we first label the matched vertices
with their IDs and treat the remaining vertices as unlabeled.
We then identify the symmetry group SG containing vertex
i in the unlabeled vertices and set the restrictions between i
and j ∈ SG− {i}. Consider the examples in Figure 3:
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Fig. 3: Symmetry breaking.
Triangle: In the case of a triangle, u0 is symmetrical to

both u1 and u2, indicating the restrictions p(m0) > p(m1) and
p(m0) > p(m2). After u0 is matched, since the remaining two
vertices are still symmetrical, p(m1) > p(m2) is set. Overall,
a total order is formed as p(m0) > p(m1) > p(m2).

4-cycle: A 4-cycle (a.k.a. rectangle, or butterfly) contains
four vertices and four edges, defined as (u0, u1, u2, u3). Fig-
ure 3(c) depicts the symmetry in a 4-cycle. In the begin-
ning, the four vertices are symmetrical, implying restrictions
p(m0) > p(m1), p(m0) > p(m2) and p(m0) > p(m3). Next,
after u0 is matched, we find that u1 and u2 are symmetrical
as they are both connected to u0 and u3. Accordingly, we
add a restriction p(m1) > p(m2). For the remaining ver-
tices, u2 and u3, no more restrictions are required due to
the lack of symmetry. Overall, a partial order is formed as
p(m0) > p(m1) > p(m2), p(m0) > p(m3).

B. Adaptive Strategy for Elimination

The restrictions make the set of vertices in the mapping
become an ordered set, which can be classified into the fol-
lowing two categories, each with its corresponding strategies
to eliminate duplication:

Totally (linearly) ordered set (orientation in preprocess-
ing): Regarding a triangle, restrictions exist among all pairs of
vertices, forming a totally ordered set. It provides an excellent
property that the restrictions can be concluded by a linear
ordered list such as p(m0) > p(m1) > p(m2). Clearly, cliques
of any size satisfy the total order due to perfect symmetry,
i.e., symmetry exists between each pair of vertices. The linear
property of the totally ordered set suggests that for two
vertices in mapping mi,mj satisfying j < i, p(mj) > p(mi).
Referring to lines 8-11 in Algorithm 1, the i-th vertex is
extended from the previous mapping vertex j. Combining
the linear property and matching process, we observe that
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Fig. 4: Accelerate subgraph matching by multiple GPU cards.

only one direction of an edge is required in the matching.
Specifically, for a edge (vx, vy), where p(vx) > p(vy), we
will only traversal from high-priority vertex vx to low-priority
vertex vy , as vx is always in front of vy in the matching
process. Accordingly, we preprocess the graph by orienting
the edges based on the priorities, namely orientation, which is
also widely discussed in triangle counting [22], [23].

Partially ordered set (intersection with restrictions): For
other subgraphs, such as the 4-cycle, we call its vertices set
a partially ordered set. The orientation optimization does not
apply to these general subgraphs. In these cases, discovering
high-priority vertices from low-priority vertices is necessary.
For example, in a 4-cycle (u0, u1, u2, u3), finding candidates
for m3 requires intersecting the neighbor lists of m1 and m2.
As there does not exist priority restriction between m1 and
m3, discovering m3 from m1 with higher priority is possible.

To address this limitation, we adopt the technique of in-
tersection with restrictions [24], [25], which further checks
the restrictions for candidates generated by intersection. These
restrictions are incorporated into the algorithm as an additional
input parameter R = [r0, · · · , r|V|], where ri represents the
restrictions for matching ui, indicating that the priority of mi

is lower than some other matched vertices. Referring back to
the previous 4-cycle example, the restrictions would be r0 = ∅,
r1 = {0}, r2 = {1} and r3 = {0}.

Set the priority by reordering: As indicated in [22], [33],
[24], giving low priority to a vertex with a high degree can
limit the search tree of this vertex and thus improve the
performance. In practice, we reorder the vertices by degree
and utilize the new index of the vertex as its priority.

Adaptive preprocessing and matching algorithm: The
two strategies with different runtime and preprocessing opera-
tions mentioned above are complementary to each other. The
orientation optimization is more efficient but only applicable
for cliques, while the intersection with restrictions is applicable
for general subgraphs but less efficient. As a result, we adopt
an adaptive approach as shown in Figure 1. We first analyze
the subgraph and then dispatch different preprocessing steps
as well as generate different GPU kernel codes accordingly.

IV. ACCELERATING SUBGRAPH MATCHING VIA MULTIPLE
GPU CARDS

GPUs are well-suited for accelerating subgraph matching
due to their massive parallelism and high throughput band-
width. Additionally, by utilizing multiple GPU cards, the
scalability of subgraph matching can be further enhanced.
To fully exploit the massive parallelism provided by multiple
GPU cards, we decompose the parallelism into three levels,
including GPU card level parallelism, warp level parallelism
and thread level parallelism. The architecture diagram pre-
sented in Figure 4 showcases the multi-level parallelism in
our system, encompassing three crucial procedures: workload
partitioning, inter-warp scheduling and intersection. In this
section, we follow a top-down fashion to describe our design.

A. Workload Partitioning for Multiple GPU Cards

Firstly, we address GPU card level parallelism. As shown
in Figure 4(a), the workload partitioning procedure evenly
distributes the vertices in the preprocessed graph into n
partitions for n GPU cards, with each partition assigned to
a GPU card. The vertices in a partition represent the starting
vertices of the matching process (line 1 of Algorithm 1), which
are further scheduled to the warps on the GPU card.

B. Inter-warp Task Scheduling

Next, we present the approach for warp level parallelism
within a GPU card. As GPUs follow the single instruction
multiple threads (SIMT) model, where 32 threads in a warp
execute the same instruction simultaneously, we assign a warp
to handle the subgraph matching task starting from a given
vertex (lines 2-3 of Algorithm 1). Figure 4(b) demonstrates
the task scheduling among warps within a GPU card. In more
detail, each warp is first assigned a vertex to start the process
of subgraph matching. When the current task is finished, the
warp requests the task scheduler for a new vertex and launches
the corresponding next task. This procedure is repeated until
all vertices in the partition are processed.

C. Leveraging Warps for Accelerating Intersection

Finally, we consider the thread level parallelism within a
warp. Regarding the DFS function of Algorithm 1, the prepa-
ration steps (lines 8-9) have negligible cost, thus allowing all
threads in a warp to perform the same operation to obtain the
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TABLE I: Runtime of SMOG, TRUST, RPS and Gunrock on triangle counting task (in ms).

Datesets Vertices Edges Triangles SMOG TRUST Speedup RPS Speedup Gunrock Speedup
Real-world graphs from SNAP (Stanford’s Large Network Dataset Collection)

amazon0312 400,727 2,349,869 3,686,467 1.53 0.69 0.45 8.09 5.29 9563.66 6250.76
amazon0505 410,236 2,439,437 3,951,063 1.91 0.69 0.36 8.82 4.61 10249.27 5363.30
amazon0601 403,394 2,443,408 3,986,507 2.21 0.77 0.35 8.97 4.05 10167.15 4594.28
cit-Patents 3,774,768 16,518,947 7,515,023 16.02 3.13 0.20 53.72 3.35 #OT #OT
flickrEdges 105,718 2,081,520 107,987,357 4.43 8.18 1.85 30.13 6.80 1932.72 436.28
roadNet-CA 1,965,206 2,766,607 120,676 2.26 0.61 0.27 11.91 5.27 55708.25 24638.77
roadNet-PA 1,088,092 1,541,898 67,150 0.76 0.28 0.37 8.59 11.33 17336.56 22871.45
roadNet-TX 1,379,917 1,921,660 82,869 1.26 0.35 0.28 9.84 7.80 26823.86 21255.04
friendster 65,608,366 1,806,067,135 4,173,724,142 4770.00 1469.83 0.31 #OT #OT #OT #OT

Synthetic Kronecker Graphs (Theory) with many/some triangles
25-81-256-B1k 547,924 2,132,284 2,102,761 1.01 1.58 1.56 4.90 4.86 132.95 131.89
25-81-256-B2k 547,924 2,132,284 7 0.54 0.98 1.82 30.85 57.45 12.28 22.87
3-4-5-9-16-25-B1k 530,400 11,080,030 35,882,427 17.38 68.38 3.94 156.66 9.02 74165.40 4268.51
3-4-5-9-16-25-B2k 530,400 11,080,030 651 5.59 16.50 2.95 104.24 18.65 66878.74 11966.14
4-5-9-16-25-B1k 132,600 1,582,861 3,548,463 1.37 1.69 1.23 26.96 19.72 161023.54 117793.38
4-5-9-16-25-B2k 132,600 1,582,861 155 0.63 0.91 1.43 16.89 26.77 2294.29 3635.96
5-9-16-25-81-B1k 2,174,640 28,667,380 66,758,995 31.77 569.74 17.94 610.24 19.21 #OT #OT
5-9-16-25-81-B2k 2,174,640 28,667,380 155 11.58 130.94 11.31 370.95 32.04 485469.40 41937.58
9-16-25-81-B1k 362,440 2,606,125 4,059,175 2.79 4.54 1.63 50.64 18.18 71766.79 25769.05
9-16-25-81-B2k 362,440 2,606,125 35 1.16 2.59 2.24 37.71 32.59 5153.34 4454.05

Protein k-mer graphs generated using data from GenBank
P1a 139,353,211 148,914,992 3,412 77.01 72.85 0.95 446.91 5.80 #OT #OT
U1a 67,716,231 69,389,281 325 35.20 33.86 0.96 258.96 7.36 #OT #OT
V1r 214,005,017 232,705,452 49 116.60 100.22 0.86 578.91 4.97 #OT #OT
V2a 55,042,369 58,608,800 1,443 30.30 17.11 0.56 209.83 6.93 #OT #OT

Graphs from MAWI Working Group Traffic Archive
201512012345 18,571,154 19,020,160 2 0.57 5.22 9.10 741.92 1292.54 58753.08 102357.28
201512020000 35,991,342 37,242,710 2 1.13 10.15 8.97 2540.68 2246.40 151281.38 133758.96
201512020030 68,863,315 71,707,480 6 2.72 19.39 7.13 4776.98 1756.24 354289.14 130253.36
201512020130 82,389,971 89,009,590 10 6.58 37.27 5.67 8348.55 1269.74 735044.34 111793.82

Synthetic graph500 network
scale18-ef16 174,147 3,800,348 82,287,285 7.20 9.58 1.33 65.14 9.05 114594.95 15920.39
scale19-ef16 335,318 7,729,675 186,288,972 20.36 26.89 1.32 159.38 7.83 408176.95 20047.98
scale20-ef16 645,820 15,680,861 419,349,784 57.16 85.08 1.49 315.34 5.52 1669641.48 29208.94
scale21-ef16 1,243,072 31,731,650 935,100,883 153.25 273.14 1.78 764.00 4.99 #OT #OT
scale22-ef16 2,393,285 64,097,004 2,067,392,370 423.08 857.73 2.03 1807.42 4.27 #OT #OT
scale23-ef16 4,606,314 129,250,705 4,549,133,002 1109.78 2877.24 2.59 4474.52 4.03 #OT #OT
scale24-ef16 8,860,450 260,261,843 9,936,161,560 2883.68 9425.55 3.27 11233.00 3.90 #OT #OT
scale25-ef16 17,043,780 523,467,448 21,575,375,802 6786.56 29935.40 4.41 28424.40 4.19 #OT #OT

lists that need to be intersected. For the intersection operation,
we follow [27] by leveraging a hash-based intersection, with
all 32 threads in a warp being utilized. This is done by
searching for the vertices of the list in the hashtable in parallel.

V. EVALUATION

SMOG1 is implemented with C++/CUDA code for sub-
graph matching and Python for code generation. We evaluate
SMOG on A100 [34] GPUs, each of which has 40 GB GPU
memory. The datasets used in our experiments are sourced
from the official website of the Graph Challenge [12], includ-
ing SNAP datasets [35], synthetic kronecker graphs (theory
and graph500) [36], protein k-mer graphs [37] and MAWI
graphs [38]. For our experiments, besides the triangle, which is

1Available at https://github.com/mengziheng/Gpu-SubgraphIsomorphism.
Due to the page limit, detailed information regarding execution time and
subgraph counts (including several more complex subgraphs) can also be
found within the repository.

required by the GraphChallenge, we also evaluate several other
subgraphs, as listed in Figure 52. These queried subgraphs
have been evaluated in several recent works [30], [39]. We
follow H-index [13] to measure the runtime of SMOG, i.e.,
reporting the GPU kernel time once the graph is loaded
on GPUs. For the experiment of scalability, we report the
maximum kernel time across all participating GPU cards as
the subgraph matching time. For results that run for more than
an hour, we mark them with #OT.

A. Comparison with SOTA on the Triangle Counting Task

SMOG is compared against the SOTA triangle counting
system (TRUST [27]), which is the extension of the cham-
pion of GraphChallenge 2019 (H-INDEX [13]), a subgraph

2Given the NP-complete nature of graph matching and identification of
the automorphism group in symmetry breaking, our current focus is limited
to handling small subgraphs. Nevertheless, it is interesting to tackle this
challenge with medium-sized graphs and complex subgraphs, which may serve
as a potential avenue for future research.
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Fig. 6: The performance of SMOG with varying number of GPU cards.

matching system (RPS [30]) and a graph processing system
(Gunrock [40]). Table I demonstrates the performance of these
systems on the triangle counting task. Note that we omit
graphs with less than 1 million edges in Table I, whose run
time are always less than 1 ms. Overall, SMOG outperforms
TRUST by 0.2 × −17.94× (2.94× on average), RPS by
3.35 × −2, 246.4× (203.55× on average), and Gunrock by
22.87×−133, 758.96× (35, 455.52× on average).

B. Comparison with RPS on Subgraph Matching Tasks
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Fig. 7: Speedup ratio of SMOG over RPS.

As Gunrock performs significantly worse than SMOG, we
only compare SMOG with RPS in the matching tasks of
more complex subgraphs, which incur a high complexity.
Figure 7 presents the speedup ratio of SMOG over RPS for
various subgraphs, where each box in the boxplot depicts
the distribution of speedup for Qi across real-world graphs
provided by SNAP. The experimental results demonstrate that
SMOG significantly outperforms RPS on cliques (Q3, Q5),
thanks to the adaptive elimination strategy reducing half edges.
SMOG also outperforms RPS in he remaining subgraphs due
to our efficient implementation.

C. Comparison with Other GraphChallenge Systems

Due to the unavailable code or the system running on the
other hardware, we compare SMOG with the results reported
in the papers of these systems. FAST [21] is a subgraph
matching system on CPUs that won the 2022 GraphChallenge
innovation award. In roadNet-PA graph, FAST requires more
than 1s to count the triangles while SMOG only needs 1ms,

resulting in a speedup of more than 1, 000×. HTC [14]
is a triangle counting system on GPUs that also won the
2022 GraphChallenge innovation award. HTC achieves a 1.5×
speedup over TRUST, while SMOG achieves 2.94×. More-
over, HTC can not scale to multiple GPU cards. TriC [16],
[17] is a distributed triangle counting system, which won the
2020 GraphChallenge champion and 2022 innovation award.
With 24 nodes and 768 processors, TriC counts triangles on
the friendster graph in 16.99s, while SMOG with 1 GPU only
needs 4.77s, resulting in a 3.6× speedup.

D. Scalability

We evaluate the scalability of SMOG from 1 GPU card to
1,024 GPU cards through workload partitioning. Our strategy
of workload partitioning assumes that the complete graph can
fit in the GPU memory so that we can directly duplicate the
entire graph across all the GPUs. Figure 6 shows the scalability
of SMOG on two representative graphs from real-world and
synthetic with various queried subgraphs. Particularly, SMOG
achieves up to a 423× speedup on cit-Patient and up to 553×
speedup on P1a. Several large subgraphs in cit-Patient suffer
from an imbalance workload and result in poor scalability.

VI. CONCLUSION

In this paper, we propose SMOG, a powerful system for
accelerating subgraph matching on multi-card GPUs. SMOG
addresses the issue of duplication resulting from subgraph
automorphism by employing a two-step approach. It begins
by analyzing the symmetry within the subgraph and then
adaptively adjusts the graph preprocessing and GPU code
generation. By leveraging multi-level parallelism, SMOG is
able to scale to 1,024 GPU cards and provides up to 553×
speedup from 1 to 1,024 GPU cards. Moreover, SMOG
beats the triangle counting system TRUST and significantly
outperforms the subgraph matching system RPS and the graph
processing system Gunrock.
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[1] A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey, “High quality,
scalable and parallel community detection for large real graphs,” in
Proceedings of the 23rd international conference on World wide web,
2014, pp. 225–236.
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