
A Massively Parallel BWP Algorithm for Solving
Large-Scale Systems of Nonlinear Equations

Bruno Silva
PhD Program in Computer Eng., Univ. of Madeira

SRE, Regional Government of Madeira
Funchal, Madeira Is., Portugal

bruno.silva@madeira.gov.pt

Luiz Guerreiro Lopes
Faculty of Exact Sciences and Engineering

University of Madeira
Funchal, Madeira Is., Portugal

lopes@uma.pt

Abstract—This paper presents a GPU-based massively parallel
implementation of the Best-Worst-Play (BWP) metaphor-less
optimization algorithm, which results from the combination of
two other simple and quite efficient population-based algorithms,
Jaya and Rao-1, that have been used to solve a variety of prob-
lems. The proposed parallel GPU version of the algorithm is here
used for solving large nonlinear equation systems, which have
enormous importance in different areas of science, engineering,
and economics and are usually considered the most difficult
class of problems to solve by traditional numerical methods. The
proposed parallelization of the BWP algorithm was implemented
using the Julia programming language on a GeForce RTX 3090
GPU with 10 496 CUDA cores and 24 GB of VRAM and tested
on a set of challenging scalable systems of nonlinear equations
with dimensions between 500 and 2000. Depending on the tested
problem and dimension, the GPU-based implementation of BWP
exhibited a speedup up to 283.17×, with an average of 161.21×,
which shows the efficiency of the proposed GPU-based parallel
version of the BWP algorithm.

Index Terms—metaheuristic optimization, metaphor-less algo-
rithms, GPU acceleration, best-worst-play algorithm, nonlinear
equation systems

I. INTRODUCTION

Metaheuristic optimization provides a framework for solv-
ing complex optimization problems in which population-based
optimization algorithms are included. These algorithms rely on
a population of candidate solutions to guide the search process
and effectively explore different regions of the search space.
These types of methods stand out for their adaptability, ability,
and versatility to solve a variety of optimization problems
without requiring prior knowledge about the problem specifics.

The Best-Worst-Play (BWP) algorithm [1] is a metaphor-
less population-based optimization technique that can be used
for approximating solutions of systems of nonlinear equations
(SNLEs). These problems can be transformed into nonlinear
minimization problems by using the sum of the absolute values
of the residuals as the objective function.

As solving SNLEs is difficult and requires substantial
computational resources, which can increase rapidly with
problem size, these are excellent candidates to be processed
by massively parallel algorithms.

This paper proposes a parallel implementation of BWP that
takes advantage of graphics processing unit (GPU) hardware
to perform general-purpose parallel computation.

The GPU-based implementation of the algorithm is also
compared with the sequential version, running on a central
processing unit (CPU), in the resolution of a set of scalable
and difficult-to-solve SENLs selected as test problems in order
to assess and analyze different performance attributes.

II. BEST-WORST-PLAY ALGORITHM

Best-Worst-Play (BWP) [1] is a metaphor-less algorithm
motivated by the simplicity and efficiency of the Jaya [2]
and Rao-1 [3] algorithms. Through the hybridization of both
of these algorithms, in which they are executed sequentially,
one after the other, BWP provides a reasonable balance of
exploration and exploitation. This means that BWP is able to
maintain the same straightforward approach as Jaya and Rao-1,
i.e., by focusing on identifying the best and worst candidate
solutions within a given population, it is able to gradually
increase the quality of the population and converge to a near-
optimal solution.

As parameter-less algorithms, BWP, Jaya, and Rao-1 only
require common optimization control parameters such as the
maximum number of possible iterations (maxIter), the pop-
ulation size (popSize), and the number of decision variables
(numV ar) to maximize or minimize a given objective func-
tion f(X).

Taking into consideration a design variable index v ranging
from 1 to numV ar, a population index p varying from 1
to popSize, and the iteration index i ranging from 1 to
maxIter, let Xv,p,i be the value of the v-th variable of the p-
th population candidate during the i-th iteration. The updated
value Xnew

v,p,i for the Jaya algorithm is determined as:

Xnew
v,p,i = Xv,p,i + r1,v,i (Xv,best,i − |Xv,p,i|)−

r2,v,i (Xv,worst,i − |Xv,p,i|) ,
(1)

where r1,v,i and r2,v,i are uniformly distributed random num-
bers between 0 and 1, and Xv,best,i and Xv,worst,i are the
population candidates with the best and worst fitness values.

The Rao-1 algorithm employs a similar approach to the Jaya
principles, in which the population avoids the worst solution
while moving towards the best, but in a more simplified
manner, as shown in the following equation:

Xnew
v,p,i = Xv,p,i + r1,v,i (Xv,best,i −Xv,worst,i) (2)

1: /* Initialization */
2: Initialize numV ars, popSize and maxIters;
3: Generate initial population X;
4: Evaluate fitness value f(X);
5: i← 1;
6: /* Main loop */
7: while i ≤ maxIters do
8: Determine Xv,best,i and Xv,worst,i;
9: for p← 1, popSize do

10: for v ← 1, numV ars do
11: Update population Xnew

v,p,i by Eq. (3);
12: end for
13: Calculate f(Xnew

v,p,i);
14: if f(Xnew

v,p,i) is better than f(Xv,p,i) then
15: Xv,p,i ← Xnew

v,p,i;
16: f(Xv,p,i)← f(Xnew

v,p,i);
17: else
18: Keep Xv,p,i and f(Xv,p,i) values;
19: end if
20: end for
21: Determine Xv,best,i and Xv,worst,i;
22: for p← 1, popSize do
23: for v ← 1, numV ars do
24: Update population Xnew

v,p,i by Eq. (4);
25: end for
26: Calculate f(Xnew

v,p,i);
27: if f(Xnew

v,p,i) is better than f(Xv,p,i) then
28: Xv,p,i ← Xnew

v,p,i;
29: f(Xv,p,i)← f(Xnew

v,p,i);
30: else
31: Keep Xv,p,i and f(Xv,p,i) values;
32: end if
33: end for
34: i← i+ 1;
35: end while
36: Report best solution found;

Fig. 1. Sequential BWP algorithm.

The search strategy for the BWP algorithm is based on
both the Jaya and Rao-1 formulations, and as such, the new
modified value (Xnew

v,p,i) is determined by two equations, as
follows:

Xnew
v,p,i = Xv,p,i + r1,v,i (Xv,best,i − |Xv,p,i|)−

r2,v,i (Xv,worst,i − |Xv,p,i|)
(3)

Xnew
v,p,i = Xv,p,i + r3,v,i (Xv,best,i − |Xv,worst,i|) (4)

Both equations above are applied in sequence to all can-
didate solutions along all the iterations, as shown in the
algorithm of Fig. 1.

III. GPU PARALLELIZATION OF THE BWP ALGORITHM

To take full advantage of the power of GPUs for general-
purpose computing and achieve significantly improved perfor-

mance and efficiency over traditional CPU-based implementa-
tions, it is necessary to resort to a parallel computing platform
and programming model. In this implementation, the Compute
Unified Device Architecture (CUDA) platform was used with
the aim of massively parallelizing the BWP algorithm. The
CUDA software stack was developed by NVIDIA as a way
to abstract the complexities of GPU programming and enable
communication and coordination between the CPU and GPU.

The first step in executing a massively parallel implemen-
tation of any algorithm on the GPU is to carry out a deep
analysis of its organization, dependencies, and data structure
in order to obtain a thorough understanding and be able
to determine which parts of the algorithm are able to be
parallelized. In CUDA, these parallel computational units are
called kernel functions.

The CUDA thread hierarchy organizes multiple threads into
a thread block, which in turn is part of a grid of other thread
blocks that are used by a kernel to process data. This grid can
be composed of one-dimensional (1D), two-dimensional (2D),
or three-dimensional (3D) thread blocks, depending on the
algorithm requirements and data structure. Figure 2 illustrates
the indexing of a 2D data structure into a 2D thread hierarchy
(i.e., a grid).

CUDA uses a thread indexing mechanism to control which
specific data pieces should be accessible by each individual.
In general terms, this mechanism handles the mapping of data
to individual threads. In Fig. 2, it is also possible to see the
mapping of a population of possible candidates to a CUDA
kernel. Data is divided into a tile of blocks, composed by a
number of threads, within a grid, and each element is indexed,
meaning that there is a mechanism to uniquely identify each
individual component using a set of built-in variables.

The upper right corner of Fig. 2 illustrates how the data-
to-thread indexing of the population information is performed
in the GPU-based BWP algorithm. Data from candidate 9 and
variable 6 (considering that indexing starts at 0) is mapped to
be processed by the thread (4,3) from the block (1,1). This is
how computation over the population data can be performed
in parallel on multiple blocks of threads. For the parallel
processing of data associated with the cost function, a 1D
thread block arrangement is utilized, which means that the
process is similar but employs one-dimensional thread blocks
to perform the data-to-thread indexing.

Determining the optimal number of blocks and threads per
block is a key performance factor as it establishes the GPU
hardware occupancy, i.e., the allocation of the GPU computing
resources. The maximum number of threads that can run con-
currently and the number of threads allowed per block depend
on the GPU hardware used, which is limited by characteristics
such as the quantity of multiprocessing units available and the
number of threads per multiprocessor. In order to achieve the
most effective ratio, this process typically requires complex
computation to deal with GPU specifications as well as kernel
properties and restrictions. The implementation of the GPU-
based BWP algorithm addresses this issue by utilizing a set of
new routines introduced in CUDA version 6.5 to address the

Fig. 2. 2D CUDA thread hierarchy for data and thread indexing.

occupancy calculation and launch configurations of kernels.
This resulted in a kernel launch configuration function that is
able to dynamically propose the optimal number of threads
and blocks required to achieve maximum occupancy for the
specific kernel and GPU hardware used. In this way, it was
possible to design kernels where the main focus is on data
and computation characteristics, which are able to run on and
adapt to different GPU hardware and are inherently designed
to scale horizontally by utilizing additional threads, and deliver
improved performance on more modern hardware without
requiring codebase modifications.

The proposed massively parallel GPU-based BWP imple-
mentation is presented in the algorithm of Fig. 3. This imple-
mentation uses a heterogeneous computing approach, meaning
that the algorithm uses both the CPU (the host) and the GPU
(the device) during the entire computational process.

The CPU manages the overall execution of the algorithm
by carrying out sequential workloads like initializing the GPU
hardware, memory allocations, data transfers, and handling
synchronizations between CPU and GPU (tasks identified in
the algorithm of Fig. 3 with the comment Host). On the other

1: /* Initialization */
2: Initialize numV ar, popSize and maxIter; ▷ Host
3: X ← GENERATE INITIAL POP KERNEL(); ▷ Device
4: EVALUATE FITNESS KERNEL(X);
5: i← 1; ▷ Host
6: /* Main loop */
7: while i ≤ maxIter do ▷ Host
8: /* Apply Eq. (3) */
9: Determine Xbest,i and Xworst,i; ▷ Device

10: Xnew
i ← UPDATE POP KERNEL(Xi, ‘Eq a’);

11: EVALUATE FITNESS KERNEL(Xnew
i);

12: Xi ← SELECT BEST KERNEL(Xi, X
new
i);

13: /* Apply Eq. (4) */
14: Determine Xbest,i and Xworst,i; ▷ Device
15: Xnew

i ← UPDATE POP KERNEL(Xi, ‘Eq b’);
16: EVALUATE FITNESS KERNEL(Xnew

i);
17: Xi ← SELECT BEST KERNEL(Xi, X

new
i);

18: i← i+ 1; ▷ Host
19: end while
20: Report best solution found; ▷ Device and Host

Fig. 3. GPU-based parallel BWP algorithm.

hand, the GPU handles all parts of the algorithm that could
be parallelized. The GPU parallel tasks are identified in Fig. 3
with the comment Device or all functions whose names end
in kernel.

Having parallel execution divided among multiple kernels
simplifies the management of thread synchronization because
all processed data is synchronized within the device’s global
memory when one kernel completes its execution and the
subsequent kernel starts.

Being a population-based optimization algorithm, BWP
has to maintain and update information about a population
(a matrix of popSize × numV ars size), the fitness value
of each population candidate (an array of popSize length)
and information about the best and worst candidate solutions
(arrays of length numV ars). Due to the performance costs
associated with transferring data between the host and the
device, the number of data transfers has to be as minimal as
possible, meaning that moving or synchronizing data structures
repeatedly would result in an adverse effect on the computa-
tional performance.

Besides transferring control parameters like the numV ars
and popSize, all remaining data for the BWP algorithm is
generated or computed directly on the device. Data is stored
direct in the device global memory and the only data transfer
between device and host is the best solution found at the end
of the execution. This data locality strategy resulted in a very
efficient reduction of data transfers, with no data transfers
during the main loop, which is the most computationally costly
phase of the entire implementation, with the exception of two
variables in the initialization phase and the best solution found
at the end of the algorithm.

1: function UPDATE POP KERNEL(Xi, Equation)
2: /* Device code */
3: Determine row using blockDim.x, blockIdx.x, and

threadIdx.x;
4: Determine col using blockDim.y, blockIdx.y, and

threadIdx.y;
5: if row ≤ popSize and col ≤ numV ar then
6: if Equation = ‘Eq a’ then ▷ Eq. (3)
7: Xnew

i [row, col] = Xi[row, col] + rand()×
(Xbest,i[col]− |Xi[row, col]|)− rand()×
(Xworst,i[col]− |Xi[row, col]|);

8: else if Equation = ‘Eq b’ then ▷ Eq. (4)
9: Xnew

i [row, col] = Xi[row, col] + rand()×
(Xbest,i[col]− |Xworst,i[col]|);

10: end if
11: end if
12: end function

Fig. 4. Kernel to update population.

The algorithm in Fig. 4 describes the kernel implementation
for updating the population. This kernel is able to determine
all the new candidate solutions for the entire population in
parallel, as it leverages the CUDA thread hierarchy to handle
the data and thread indexing in a 2D grid arrangement of
blocks and threads, in a similar configuration to that shown in
Fig. 2.

This kernel employs the variables row and col to handle
data indexing. The first one refers to the population size and
uses the x dimension of the thread and block data for indexing,
while the second one relates to the number of variables (i.e.,
the problem dimension) and indexes using the y dimension of
the thread and block data.

IV. COMPUTATIONAL EXPERIMENTS

A total of 10 scalable and hard-to-solve SNLEs were
selected from the literature to be used as test problems. These
problems are listed in Table I along with their domain D and
additional parameters used.

With the goal of finding out how well the sequential and
parallel versions of the BWP algorithm work for large-scale
SNLEs, problem sizes of 500, 1000, 1500, and 2000 were
used for testing. The population size was set at 10× the
problem dimension, resulting in 5000, 10 000, 15 000, and
20 000, respectively.

The number of iterations was fixed at 1000, as the objective
of the experiments is to compare the efficiency of the parallel
version of BWP to that of the corresponding sequential algo-
rithm, and not to focus on how well the algorithm performs
with this class of problems considered. For each combination
of algorithm, test problem, and dimension, a total of 51
independent runs were performed.

The sequential experiments were executed using an Intel
Core i7-5700HQ CPU running at 2.70 GHz up to 3.50 GHz,
with 4 cores and 8 threads and 16 GB RAM. The GPU parallel

TABLE I
TEST PROBLEMS

No. Problem name, domain, and parameters Ref.
1 Broyden tridiagonal function [4]

D = ([−1, 1], . . . , [−1, 1])T

2 Discrete boundary value function [4]
D = ([0, 5], . . . , [0, 5])T

h = 1
n+1

, ti = ih

3 Modified Rosenbrock function [5]
D = ([−10, 10], . . . , [−10, 10])T

4 Powell badly scaled function [5]
D = ([0, 100], . . . , [0, 100])T

5 The beam problem [6]
D = ([−100, 100], . . . , [−100, 100])T

α = 11, h = 1
n+1

6 The Bratu problem [6]
D = ([−100, 100], . . . , [−100, 100])T

α = 3.5, h = 1
n+1

7 Extended Rosenbrock function [4]
D = ([−100, 100], . . . , [−100, 100])T

8 Schubert–Broyden function [7]
D = ([−100, 100], . . . , [−100, 100])T

9 Extended Powell singular function [4]
D = ([−5, 5], . . . , [−5, 5])T

10 Martı́nez function [8]
D = ([−100, 100], . . . , [−100, 100])T

Note: For all the problems, n = 500, 1000, 1500, 2000.

experiments were performed using a GeForce RTX 3090 GPU
with 10 496 CUDA cores and 24 GB GDDR6X VRAM.

Both the sequential and parallel versions of the BWP
algorithm were implemented using the Julia programming
language (version 1.9.0) and double-precision floating-point
arithmetic.

V. RESULTS AND DISCUSSION

The execution time of each individual run of the sequential
and parallel implementations of the BWP algorithm was mea-
sured, and the average result for each experimental evaluation
is presented in Table II.

The mean CPU and GPU times presented in Table II
correspond to the average result of 51 independent runs of
1000 iterations each and cover the entire algorithm, i.e.,
the initialization of parameters, the generation of the initial
population, the main loop, and the reporting of the best
solution found at the end of each run. In the case of the parallel
algorithm, this also implies that all costs associated with data
movement are taken into account.

Data shows that the GPU-based algorithm was more effi-
cient when compared to its sequential implementation, having
been consistently the fastest in terms of execution time.
Considering the sequential version of the algorithm as a
baseline, the execution time improvement (speedup) obtained
by the GPU-based implementation ranged from 69.89× to
283.17× and averaged 161.21×, depending on the problem
and dimension tested.

When averaging the results by problem dimension (see
Table III), the results show that the GPU-based algorithm gets

TABLE II
COMPUTATIONAL RESULTS

Prob.
dim.

Pop.
size

Test
prob.

Mean CPU
time (s)

Mean GPU
time (s)

Mean
speedup

500 5000

1 136.1736 1.7823 76.40
2 149.0208 2.1322 69.89
3 192.5926 2.0338 94.70
4 184.3982 2.0084 91.81
5 157.8388 1.9124 82.53
6 158.2328 1.9063 83.00
7 199.0742 1.2277 162.16
8 190.7176 1.1884 160.48
9 165.0380 1.2728 129.67

10 149.3742 1.1875 125.79

1000 10 000

1 414.3892 2.8573 145.03
2 434.6956 4.1474 104.81
3 553.4086 4.1180 134.39
4 685.6960 4.2553 161.14
5 504.6524 4.4473 113.47
6 493.7792 4.3857 112.59
7 589.2004 2.4716 238.39
8 479.4048 2.4645 194.52
9 474.0440 2.7117 174.82

10 378.2830 2.5341 149.28

1500 15 000

1 814.2546 4.5280 179.83
2 861.8682 6.6186 130.22
3 1158.4782 6.5886 175.83
4 1413.0258 7.4532 189.59
5 1055.8556 8.0191 131.67
6 1196.2840 7.9709 150.08
7 1151.6798 4.0671 283.17
8 985.9276 4.1533 237.38
9 946.2958 4.3409 217.99

10 766.8736 4.3180 177.60

2000 20 000

1 1324.9416 6.7269 196.96
2 1337.9348 10.1912 131.28
3 2049.7252 10.0461 204.03
4 2490.5636 11.8766 209.70
5 1756.7964 13.0952 134.16
6 1756.3878 12.8975 136.18
7 1650.8750 6.0108 274.65
8 1454.2976 6.1807 235.30
9 1489.4332 6.3099 236.05

10 1368.4750 6.4652 211.67

faster (i.e., the speedup increases) as the problem dimension
grows larger. This indicates that the implemented paralleliza-
tion strategy is very efficient and is able to successfully deal
with the increase in computational complexity.

TABLE III
MEAN COMPUTATIONAL RESULTS PER PROBLEM DIMENSION

Prob.
dim.

Pop.
size

Mean CPU
time (s)

Mean GPU
time (s)

Mean
speedup

500 5000 168.2461 1.6652 107.64
1000 10 000 500.7553 3.4393 152.84
1500 15 000 1035.0543 5.8058 187.34
2000 20 000 1667.9430 8.9800 197.00

The computational scaling was evaluated by analyzing the
mean execution time for each test problem while adjusting the
dimension for both the sequential (see Fig. 5) and the parallel
(see Fig. 6) implementations.

In the sequential version of the algorithm, all test problems
exhibit a growing trend of execution time for each dimension
increase, although the performance penalty for rises in the

problem dimension is larger than the rate of data increase.
Problems 3 and 4 present a stepper increasing slope, which
indicates that these problems are the most computationally
challenging, especially at the highest dimension. Looking at
the parallel BWP algorithm execution time in Fig. 6, it is
noticeable that the problems with numbers 2, 3, 4, 5, and 6
have a computational time growth larger than the rest of the
test problems. This suggests that the implementation of these
test problems resulted in a less efficient parallelization when
compared with problems 1, 7, 8, 9, and 10, for which the time
needed to compute the higher dimensions varies at a more
constant rate.

Fig. 5. CPU execution time per problem and dimension.

Fig. 6. GPU execution time per problem and dimension.

The scalability and efficiency of the GPU-based parallel
BPW algorithm are presented in Fig. 7 in the form of the
mean speedup per problem and dimension. Results show that
the parallel algorithm is very effective in handling workload
increases, as the mean speedup shows a positive growth as
the problem sizes get larger in the majority of the test prob-
lems. This indicates effective utilization of the GPU hardware
resources in order to maintain or improve performance.

The exceptions were test problems 6, 7, and 8, which
in dimension 2000 failed to achieve an acceleration greater
than in dimension 1500, although still accomplishing a very

positive speedup gain. This could be related to underlying
characteristics of the algorithm design in combination with
aspects of the GPU hardware architecture used for testing (e.g.,
particularities with the SNLEs parallelization, combination of
blocks and threads allocated, GPU memory or synchronization
overheads, etc.).

Fig. 7. Mean speedup improvement per problem and dimension.

Figure 7 also shows that the lowest speedup gains were
achieved when computing with the smallest problem dimen-
sion and that generally the speedup increases along with the
problem dimension. This is an expected behavior since the
GPU-based algorithm is designed to utilize more threads as the
problem dimension increases, meaning that the performance
scalability depends both on the problem size as well as on the
number of CUDA cores available in the GPU hardware.

While analyzing data between the dimensions 1500 and
2000, it is visible in Fig. 7 that problems with numbers 6, 7,
and 8 show a negative slope change, i.e., a speedup regression.
This means that the optimal workload point for these problems
was reached around dimension 1500, as this is where the
greatest speedup gain was achieved.

Within the same dimension range, the speedup for problems
2 and 5 appears to be leveling off, suggesting that the optimal
workload point for these test problems is probably nearly after
dimension 2000. The remaining test problems demonstrate
a positive slope up to dimension 2000, implying that the
parallel BWP algorithm is able to efficiently use the hardware
resources to provide speedup increases as the computational
complexity grows.

VI. CONCLUSION

The GPU-based parallel BWP algorithm was implemented
using CUDA and a heterogeneous computing technique that
assigned different workloads to the CPU and GPU processors.
The new algorithm was tested using large and scalable SNLEs,
and the results were compared with its sequential version.

Results showed that the proposed GPU-based parallel al-
gorithm was very effective in coping with the computational
complexities of solving large-scale SNLEs, achieving an av-
erage speedup of up to 283.17× over the original sequential

algorithm. The parallel BWP algorithm was able to use the
available GPU resources very efficiently and consistently offer
performance increases with growing workloads, although in
some test problems there was a small speedup regression in
the largest dimension.

GPU parallelization can offer considerable performance
improvements but requires a deep understanding of several
paradigms, such as parallel programming, the computing plat-
form, and the device hardware architecture, to be able to
harness its processing power. The design and implementation
strategy used in the GPU-based BWP algorithm was hardware-
agnostic, meaning that it was not specifically tailored for the
specific GPU hardware used for testing.

Other CUDA optimization techniques such as tiling, cache
re-use, and exploiting warp characteristics were not used due
to the fact that such approaches often impose restrictions on
the optimization algorithm’s parameters, like the number of
decision variables, population size, or types of allowed com-
binations. A generic parallelization, such as the one presented
in this paper, is important since it can run on a variety of
hardware configurations and adapt to different optimization
scenarios while still providing a significant speedup boost.
This approach strikes an appropriate balance between adapt-
ability and performance.

ACKNOWLEDGMENT

The authors would like to thank Emiliano Gonçalves for
kindly providing access to the GPU hardware used in the
computational experiments.

REFERENCES

[1] R. Singh, K. Gaurav, V. Pathak, P. Singh, and H. Chaudhary, “Best–
Worst–Play (BWP): A metaphor-less optimization algorithm,” J. Phys.
Conf. Ser., vol. 1455, p. 012007, 2019.

[2] R. Rao, “Jaya: A simple and new optimization algorithm for solving
constrained and unconstrained optimization problems,” Int. J. Ind. Eng.
Comput., vol. 7, no. 1, pp. 19–34, 2016.

[3] ——, “Rao algorithms: Three metaphor-less simple algorithms for solving
optimization problems,” Int. J. Ind. Eng. Comput., vol. 11, no. 1, pp. 107–
130, 2020.

[4] J. Moré, B. Garbow, and K. Hillstrom, “Testing unconstrained optimiza-
tion software,” ACM Trans. Math. Softw., vol. 7, no. 1, pp. 17–41, 1981.

[5] A. Friedlander, M. Gomes-Ruggiero, D. Kozakevich, J. Martı́nez, and
S. Santos, “Solving nonlinear systems of equations by means of quasi-
Newton methods with a nonmonotone strategy,” Optim. Methods Softw.,
vol. 8, no. 1, pp. 25–51, 1997.

[6] C. Kelley, L. Qi, X. Tong, and H. Yin, “Finding a stable solution of a
system of nonlinear equations,” J. Ind. Manag. Optim., vol. 7, no. 2, pp.
497–521, 2011.

[7] E. Bodon, A. Del Popolo, L. Lukšan, and E. Spedicato, “Numerical
performance of ABS codes for systems of nonlinear equations,” Univer-
sitá degli Studi di Bergamo, Bergamo, Italy, Technical Report DMSIA
01/2001, 2001.

[8] M. Ziani and F. Guyomarc’h, “An autoadaptative limited memory Broy-
den’s method to solve systems of nonlinear equations,” Appl. Math.
Comput., vol. 205, no. 1, pp. 202–211, 2008.

