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Abstract— The Posits standard has shown itself to be well 

suited to high performance, and particularly, AI based processors 

as well as being a viable storage formatting alternative  to IEEE754 

float types.   It contains an optional field in its format, the 

fractional bit field, which many times simply is bypassed if the 

number of storage bits does not allow for it.  The purpose of the 

precision computing circuit presented here is to present a 

preprocessing approach to optimize processors for the storage 

space issues found with the implementation of the new formatting, 

and to show its compatibility to new offloaded memory array 

structures.  The backbone of the compilation approach to 

instruction set optimization will be implementing single stage 

forwarding constraint, much as a carry flag is in traditional adder 

circuits, via a new computing pathway presented for the 

graphBLAS toolchain.   
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I. INTRODUCTION 

A large portion of the performance issues in accumulator 
based arithmetic circuits, and especially in grid based 
computing ones, lies in the address spacing needed in clustered 
machines.  Some newer architectures are finding alternative 
computing pathways enabled by memory offloading 
controllers, and  incorporating graphical processing engines.   

In line with these newer architectures, the LLVM Compiler 
Infrastructure has produced a forked off CIRCT development 
project, which isolates the hardware lowering mechanism and 
ensures all development cycles are kept in sync with the LLVM 
compilation pass optimization scheme.   

A recent but well known FPGA technique for edge 
computing ensures that sub 8 bit words are synchronously 
implemented in arithmetic instruction pipelines, shown in [1] to 
dramatically improve performance and reduce data loss, 
eliminating the need for such optimization techniques made 
popular in recent architectures as bit packing, data structure 
aligning, etc. In a  promising development for implementing 
weighted computational pathways, single bit slices were 
implemented in single precision formatting for binary neural 
networks to incorporate fused multiply add accelerators. [1] 
This is just another example of where highly complex compute 
pathways are finding alternatives to pipelined stages (i.e. 
decode and execute) of floating point double precision numbers 

These hardware advances, coupled with the recent 
advancement of John Gustafson's Posits format, should be 
exploited to fully incorporate both advancements together into 
recent efforts with IEEE standards updates, such as those with 
exact dot products. 

The unique features of the Posits system which, while 
distinguishing it from IEEE 754 float, also leaves it prone to 
memory storage space issues, is the extra optional field for the 
fractional bits.  In cases where it is not needed, the default value 
becomes zero, and the assembler is left with a non-instantiated 
extra value.  So the fractional bit portion of the quire is left 
essentially dormant. 

The intermediate stages of the pipelined circuit involving 
forwarding to eliminate redundant or wasted processor cycles 
can themselves create latency issues when cycles remain 
asynchronous, or when redundant and/or repeated load and 
stores are designed in the hardware.  The emphasis here is not 
on changing any part of the execution stages, but on 
implementing an extra bit field in our circuit, the prefix field of 
our data operand.  This is computationally the equivalent of an 
arithmetic micro operation of alignment (akin to the left shifting 
operator of  an HLS circuit).  By emphasizing a preprocessor 
compute  structure, the circuit eliminates the creation of extra 
references in data storage, more specifically in the retrieval of 
these labels in the adder circuit. 

The execution stage we wish to leave intact in order to exploit 
is the decoding of the exponent field, when all that needs to be 
known to start the pipeline is whether the exponent is under a 
certain value, (i.e. signed) and a single bit flag would suffice for 
this condition.  Then the shadowing effect   of our extra bit field 
would allow the decoding of the prefix of the current minposis 
value, and align the bits accordingly in order to encode the value 
of the subunitary number.  What this latency in the arithmetic 
pipeline allows for is for logic-controlled data flows (i.e. usage 
of branch prediction tables), so we will be aligning our 
fractional bit field multiple times in a computational cycle. A 
more suitable option for  our multiple (mantissa) alignments 
will be presented, once initial execution stage is completed, in 
order to minimize unnecessary spending of extra cycles with 
our innermost loop data and eliminate the need for rolling back 
the instruction part of the cache line.  But certain tasks are better 
left to a LLVM based compiler’s self loop optimization pass, 
and instead the attention of this paper turns to minimizing the 



number of compiler passes spent prior to lowering to the 
hardware host. 

 

TABLE 1A-B AN ENCODING OF A POSIT MINPOSIS FIELD OF BASE 4 AND 

EXPONENT OF  ¯² 
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‡The prefixes for the target machine are shown as a new proposed field 
in the POSITS formatting, with the sub-8 bit words shown shifted from 
the base position (at row one) to align the value in the adder circuit. 

Fig. 1. The proposed encoder will be using something comparable 
to an indexed (weighted) crossbar matrix,  with the individual columns 
shown above for an appropriate minposis exponent value, and it will 
load the prefix field weights in order to align the bit vectors of the 
matrix vector multiplication structure for the corresponding exponent 
bit field.  In each presented half word, the topmost bit is the MSB, the 
bottom most is the LSB..   

 
 

Cache lines for our sub 8 bit words will be overused in the 
case of the use of hardware buffers, and register memory at this 
stage of the pipeline, so as [4] shows to be a suitably secure 
alternative to creating unnecessary store (i.e. wait) cycles, the 
implementation at our stage of computation proposes the use of 
an appropriate open system intermediate buffer to hold the 
prefix 'weights' of the necessary summand terms of the current 
execution stage, much akin to the instruction memory of any 
pipelined ILP based machine.  

 While one of our block variables is in “wait” status for 
another instruction in the pipeline (exponent comparison 
branching)  to execute (termed a shadow effect by the Intel 
microprocessor series), the word prefixes (which are the 
weights of any client implementing binary ANN structure) can 
be repeatedly decoded, thereby eliminating a RAW “hazard” in 
this stage of our pipeline.    

// GB_jit__AxB_dot2__2c1f046bbb0bbbcd.c 

//-------------------------------------------------------------------------- 

#include "GB_jit_kernel.h" 

 
// semiring: (plus, rdiv, double) 

 

// monoid: 
#define GB_Z_TYPE double 

#define GB_ADD(z,x,y) z = (x) + (y) 
#define GB_UPDATE(z,y) z += y 

#define GB_DECLARE_IDENTITY(z) double z = 
0 

#define GB_DECLARE_IDENTITY_CONST(z) const 
double z = 0 

#define GB_HAS_IDENTITY_BYTE 1 
#define GB_IDENTITY_BYTE 0x00 

#define 
GB_PRAGMA_SIMD_REDUCTION_MONOID(z)\  

GB_PRAGMA_SIMD_REDUCTION (+,z) 
#define GB_Z_IGNORE_OVERFLOW 1 

#define GB_Z_NBITS 64 
#define GB_Z_ATOMIC_BITS 64 

#define GB_Z_HAS_ATOMIC_UPDATE 1 
#define GB_Z_HAS_OMP_ATOMIC_UPDATE 1 

#define GB_Z_HAS_CUDA_ATOMIC_BUILTIN 1 

#define GB_Z_CUDA_ATOMIC cUDA_ATOMIC_TYPE 
double 
// SuiteSparse:GraphBLAS v8.0.1, Timothy 

A. Davis, (c) 2017-2023, 
// All Rights Reserved. 

// SPDX-License-Identifier: Apache-2.0 
// The above copyright and license do not 

apply to any 
// user-defined types and operators 

defined below. 
//--------------------------------------------------------------------------

---- 
 
 

 Fig. 2. A look into a pragma based JIT framework approach:  the 
SIMD vectorization pass in this case occurs at the graphBLAS CUDA 
Kernel level.   The higher level  pragma based branching mechanism 
(at implementation level) of our program will be shown in order to 
emphasize the need for only lowering to a sufficient level of non-
generic structures, the main goal of the approach presented here.   

 
 

II. MINIMIZING COMPILING PASSES WITH THE ACCELERATOR 

  One potential structure of the implementation of this is the 
offloaded multidimensional vectorized memory structure from 
such architectures.  In a sense, the more open the system 
remains to cross-architecture compilation, the more capacity it 
has for a JIT compilation toolchain to implement it. 

In the past bufferized memory blocks which not immediate, 
accessed by indirect branching can incur some performance 
penalties, but there is a new exception to this rule.  Using the 
example of the programmable integrated unified memory 
architecture (PIUMA) by Intel, and implementing such a 
bufferized memory control structure,  where GPU kernels could 
be fully implemented as the host device of choice, the approach 
then is to model the compute pathway in line with a CUDA 
centered matrix generating  engine of choice, graphBLAS.  The 
actual compiler based approach utilizes the necessary multi 
level intermediate representation (and the target source for 
lowering the compiler backend to is located in the dma buffer 
structure of Red Hat’s AMDGPU source file, and referenced in 
the code snippet here.) 



/* decl.pdll*/ 
 (iprfx_, …) 
 
#include ‘‘amdgpu.h’’ 
#include ‘‘amdgpu_dma_buf.h’’ 
#include ‘‘amdgpu.h’’ 
#include <drm/amdgpu_drm.h> 
#include <linux/dma-buf.h> 
#include <drm/drm_cache.h> 
 
... 
const struct dma_buf_ops amdgpu_dmabuf_ops 
={\ 
  ..\ 
 .inc = iprfx_, 
 \  

}; 

Fig. 2. A dialect based typical llvm approach:  the introduction of a 
pattern for a compilation backend tool is much preferable to 
introducing extra (and in substantial number of cases, unnecessary) 
labels into the assembler output.   

 

In this above code exerpt from Red Hat’s AMDGPU generic 
driver application, ‘.inc’ is a boolean instruction type, since 
iprfx_ will indicate either an increase by the next available 
power of 2 in the particular regime’s scale factor or a 0 value.  
But in this case the new intrinsic will need to be introduced into 
the entire compiler toolchain. 

Any logic controller involved in the implementation will 
occur at block level.   This will enable a customized compiler 
backend optimization approach, as opposed to reconstruction of 
the entire compiler tree.  (As a particular file in the current llvm 
compiler pattern matching layer contains the defined ‘prfx’ 
constraint for preprocessing integer types, care should be taken 
to avoid bloating the generated instruction set with the addition 
of unnecessary constraints.) 

 In order to simplify  the compiler toolchain system here, the 
option to create a compiler (or even a shell) flag is considered.  
With a single bit, the arithmetic circuitry can be localized down 
to a single node in the compiler toolchain by a point to point 
communication abstraction, implemented at the intermediate 
buffer of choice in multiple graphics processing card systems, 
dma-buf.   

A simple check of the current LLVM  “opsrun” python 
integrative test check shows that the necessary tensorizable  
implementations of arithmetic ops will provide the necessary 
hardware lowering, while minimizing extra vectorizing or other 
transformation passes, in order to streamline the tool and 
without extra phases in the compiler pipeline: 

. 
#opsrun.py 

linalg.fill ins(%v2 : f32) outs(%rhs : 

memref<4xvector<8xbf16>>) 

linalg.fill ins(%v0 : f32) outs(%O0 : 

memref<4xvector<8xf32>>) 

linalg.fill ins(%v0 : f32) outs(%O1 : 

memref<4xvector<8xf32>>) 

call @elemwise_ipowi_on_buffers(%lhs, %rhs, 

%O0) : 

(memref<f32>,memref<4xvector<8xbf16>>,memref

<4xvector<8xbf16>>) -> () 

 Fig. 3.  The pytorch tool’s capacity for CUDA lowering 
transformations is mimicked and its streamlining of the compilation is 
highlighted here.  However, as with all python lowering calls at 
hardware level, for instance with the bazel tool, sys needs to be invoked 
and so extra compiler framework security measures need to 
implemented. 

 

In the above pytorch integrative approach both the 
bufferization as well as the fusion of ops occurs immediately 
prior to lowering to device machine levels, (or as is presented 
as a more viable AI suited approach for large scale systems in 
[6], outputting to a dma buffer) and these passes are condensed 
into the same node in the compiler tree. 

A preprocessing directive set with CLI flags, or better, a basic 
compiler extension, would better allow for the host to construct 
a prefetched instruction buffer, in place of other more logic 
containing (prediction) buffers.   Once the JIT compiler 
generated codes are assigned to the bufferized memory, 
repeated aligning (i.e. bit shifting) of the fractional bit field 
value would be much easier, as long as the clock delay cycle 
will allow it.    

III. DIRECTIONS FOR FURTHER DEVELOPMENT 

The following demo is shown of a cuda kernel driven JIT 
function suitable for an off-tree compilation of an LLVM 
compiler backend extension for our circuit: 

/*GB_jit_launcher.cpp*/ 
 

#include “GB_jit_kernel.h” 

auto const& callthis=set_kernel_inst(GB_\ 
_jit_kernel,mlir.MemRefType&\m,\ 

      dma_buf_PRIME& in_out); 
      callthis(P->(_iprfx,),callthis(P->(in\ 

_out));/*tensorizable output */ 
 Fig. 4.  The above code is inspired largely by the Easy::JIT LLVM 

forked project from the 2018 European LLVM Developers Meeting, 
with appropriate alterations for the memory structures allocated for this 
implementation. 
 

So here the suggested step is to utilize the graphBLAS 
toolchain as an alternative pathway to lowering to a LLVM's 
CIRCT node, in a way to maximize the immense block array 
memory optimizing capacities it demonstrates, and utilize its 
underlying matrix generation abilities.  The project proposes its 
use as an off-tree JIT compilation backend tool, to complement 
NVIDIA's NVCC compiler tree.  In presenting a fundamental 
pre-adder structure in this light, the optimal matrix based 
solution  to the problem presents graphBLAS as an entirely 
fundamental tool in a lower level compilation framework. 

 The code referenced in this section of the paper can be 
viewed at https://gitlab.com/rgulla_nc. 
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