
 A look into a GraphBLAS Entry Point into an
LLVM Lowering Pass, with A Precision Formatting

Example
Gulla, Roy

IEEE Northern Nevada Chapter

Mesquite Gaming, LLC

rgullape@gmail.com

Abstract— The Posits standard has shown itself to be well

suited to high performance, and particularly, AI based processors

as well as being a viable storage formatting alternative to IEEE754

float types. It contains an optional field in its format, the

fractional bit field, which many times simply is bypassed if the

number of storage bits does not allow for it. The purpose of the

precision computing circuit presented here is to present a

preprocessing approach to optimize processors for the storage

space issues found with the implementation of the new formatting,

and to show its compatibility to new offloaded memory array

structures. The backbone of the compilation approach to

instruction set optimization will be implementing single stage

forwarding constraint, much as a carry flag is in traditional adder

circuits, via a new computing pathway presented for the

graphBLAS toolchain.

Keywords—Number Representations•Rediuced Instruction Set

Computer(RISC)• JIT Compilation• High Performance Graphics

I. INTRODUCTION

A large portion of the performance issues in accumulator
based arithmetic circuits, and especially in grid based
computing ones, lies in the address spacing needed in clustered
machines. Some newer architectures are finding alternative
computing pathways enabled by memory offloading
controllers, and incorporating graphical processing engines.

In line with these newer architectures, the LLVM Compiler
Infrastructure has produced a forked off CIRCT development
project, which isolates the hardware lowering mechanism and
ensures all development cycles are kept in sync with the LLVM
compilation pass optimization scheme.

A recent but well known FPGA technique for edge
computing ensures that sub 8 bit words are synchronously
implemented in arithmetic instruction pipelines, shown in [1] to
dramatically improve performance and reduce data loss,
eliminating the need for such optimization techniques made
popular in recent architectures as bit packing, data structure
aligning, etc. In a promising development for implementing
weighted computational pathways, single bit slices were
implemented in single precision formatting for binary neural
networks to incorporate fused multiply add accelerators. [1]
This is just another example of where highly complex compute
pathways are finding alternatives to pipelined stages (i.e.
decode and execute) of floating point double precision numbers

These hardware advances, coupled with the recent
advancement of John Gustafson's Posits format, should be
exploited to fully incorporate both advancements together into
recent efforts with IEEE standards updates, such as those with
exact dot products.

The unique features of the Posits system which, while
distinguishing it from IEEE 754 float, also leaves it prone to
memory storage space issues, is the extra optional field for the
fractional bits. In cases where it is not needed, the default value
becomes zero, and the assembler is left with a non-instantiated
extra value. So the fractional bit portion of the quire is left
essentially dormant.

The intermediate stages of the pipelined circuit involving
forwarding to eliminate redundant or wasted processor cycles
can themselves create latency issues when cycles remain
asynchronous, or when redundant and/or repeated load and
stores are designed in the hardware. The emphasis here is not
on changing any part of the execution stages, but on
implementing an extra bit field in our circuit, the prefix field of
our data operand. This is computationally the equivalent of an
arithmetic micro operation of alignment (akin to the left shifting
operator of an HLS circuit). By emphasizing a preprocessor
compute structure, the circuit eliminates the creation of extra
references in data storage, more specifically in the retrieval of
these labels in the adder circuit.

The execution stage we wish to leave intact in order to exploit
is the decoding of the exponent field, when all that needs to be
known to start the pipeline is whether the exponent is under a
certain value, (i.e. signed) and a single bit flag would suffice for
this condition. Then the shadowing effect of our extra bit field
would allow the decoding of the prefix of the current minposis
value, and align the bits accordingly in order to encode the value
of the subunitary number. What this latency in the arithmetic
pipeline allows for is for logic-controlled data flows (i.e. usage
of branch prediction tables), so we will be aligning our
fractional bit field multiple times in a computational cycle. A
more suitable option for our multiple (mantissa) alignments
will be presented, once initial execution stage is completed, in
order to minimize unnecessary spending of extra cycles with
our innermost loop data and eliminate the need for rolling back
the instruction part of the cache line. But certain tasks are better
left to a LLVM based compiler’s self loop optimization pass,
and instead the attention of this paper turns to minimizing the

number of compiler passes spent prior to lowering to the
hardware host.

TABLE 1A-B AN ENCODING OF A POSIT MINPOSIS FIELD OF BASE 4 AND

EXPONENT OF ¯²

10 Prefix Field

 0

 1

 0

 0

a.

11 Prefix Field

0

0

1

 1

‡The prefixes for the target machine are shown as a new proposed field
in the POSITS formatting, with the sub-8 bit words shown shifted from
the base position (at row one) to align the value in the adder circuit.

Fig. 1. The proposed encoder will be using something comparable
to an indexed (weighted) crossbar matrix, with the individual columns
shown above for an appropriate minposis exponent value, and it will
load the prefix field weights in order to align the bit vectors of the
matrix vector multiplication structure for the corresponding exponent
bit field. In each presented half word, the topmost bit is the MSB, the
bottom most is the LSB..

Cache lines for our sub 8 bit words will be overused in the
case of the use of hardware buffers, and register memory at this
stage of the pipeline, so as [4] shows to be a suitably secure
alternative to creating unnecessary store (i.e. wait) cycles, the
implementation at our stage of computation proposes the use of
an appropriate open system intermediate buffer to hold the
prefix 'weights' of the necessary summand terms of the current
execution stage, much akin to the instruction memory of any
pipelined ILP based machine.

 While one of our block variables is in “wait” status for
another instruction in the pipeline (exponent comparison
branching) to execute (termed a shadow effect by the Intel
microprocessor series), the word prefixes (which are the
weights of any client implementing binary ANN structure) can
be repeatedly decoded, thereby eliminating a RAW “hazard” in
this stage of our pipeline.

// GB_jit__AxB_dot2__2c1f046bbb0bbbcd.c

//--

#include "GB_jit_kernel.h"

// semiring: (plus, rdiv, double)

// monoid:
#define GB_Z_TYPE double

#define GB_ADD(z,x,y) z = (x) + (y)
#define GB_UPDATE(z,y) z += y

#define GB_DECLARE_IDENTITY(z) double z =
0

#define GB_DECLARE_IDENTITY_CONST(z) const
double z = 0

#define GB_HAS_IDENTITY_BYTE 1
#define GB_IDENTITY_BYTE 0x00

#define
GB_PRAGMA_SIMD_REDUCTION_MONOID(z)\

GB_PRAGMA_SIMD_REDUCTION (+,z)
#define GB_Z_IGNORE_OVERFLOW 1

#define GB_Z_NBITS 64
#define GB_Z_ATOMIC_BITS 64

#define GB_Z_HAS_ATOMIC_UPDATE 1
#define GB_Z_HAS_OMP_ATOMIC_UPDATE 1

#define GB_Z_HAS_CUDA_ATOMIC_BUILTIN 1

#define GB_Z_CUDA_ATOMIC cUDA_ATOMIC_TYPE
double
// SuiteSparse:GraphBLAS v8.0.1, Timothy

A. Davis, (c) 2017-2023,
// All Rights Reserved.

// SPDX-License-Identifier: Apache-2.0
// The above copyright and license do not

apply to any
// user-defined types and operators

defined below.
//--

 Fig. 2. A look into a pragma based JIT framework approach: the
SIMD vectorization pass in this case occurs at the graphBLAS CUDA
Kernel level. The higher level pragma based branching mechanism
(at implementation level) of our program will be shown in order to
emphasize the need for only lowering to a sufficient level of non-
generic structures, the main goal of the approach presented here.

II. MINIMIZING COMPILING PASSES WITH THE ACCELERATOR

 One potential structure of the implementation of this is the
offloaded multidimensional vectorized memory structure from
such architectures. In a sense, the more open the system
remains to cross-architecture compilation, the more capacity it
has for a JIT compilation toolchain to implement it.

In the past bufferized memory blocks which not immediate,
accessed by indirect branching can incur some performance
penalties, but there is a new exception to this rule. Using the
example of the programmable integrated unified memory
architecture (PIUMA) by Intel, and implementing such a
bufferized memory control structure, where GPU kernels could
be fully implemented as the host device of choice, the approach
then is to model the compute pathway in line with a CUDA
centered matrix generating engine of choice, graphBLAS. The
actual compiler based approach utilizes the necessary multi
level intermediate representation (and the target source for
lowering the compiler backend to is located in the dma buffer
structure of Red Hat’s AMDGPU source file, and referenced in
the code snippet here.)

/* decl.pdll*/
 (iprfx_, …)

#include ‘‘amdgpu.h’’
#include ‘‘amdgpu_dma_buf.h’’
#include ‘‘amdgpu.h’’
#include <drm/amdgpu_drm.h>
#include <linux/dma-buf.h>
#include <drm/drm_cache.h>

...
const struct dma_buf_ops amdgpu_dmabuf_ops
={\
 ..\
 .inc = iprfx_,
 \

};

Fig. 2. A dialect based typical llvm approach: the introduction of a
pattern for a compilation backend tool is much preferable to
introducing extra (and in substantial number of cases, unnecessary)
labels into the assembler output.

In this above code exerpt from Red Hat’s AMDGPU generic
driver application, ‘.inc’ is a boolean instruction type, since
iprfx_ will indicate either an increase by the next available
power of 2 in the particular regime’s scale factor or a 0 value.
But in this case the new intrinsic will need to be introduced into
the entire compiler toolchain.

Any logic controller involved in the implementation will
occur at block level. This will enable a customized compiler
backend optimization approach, as opposed to reconstruction of
the entire compiler tree. (As a particular file in the current llvm
compiler pattern matching layer contains the defined ‘prfx’
constraint for preprocessing integer types, care should be taken
to avoid bloating the generated instruction set with the addition
of unnecessary constraints.)

 In order to simplify the compiler toolchain system here, the
option to create a compiler (or even a shell) flag is considered.
With a single bit, the arithmetic circuitry can be localized down
to a single node in the compiler toolchain by a point to point
communication abstraction, implemented at the intermediate
buffer of choice in multiple graphics processing card systems,
dma-buf.

A simple check of the current LLVM “opsrun” python
integrative test check shows that the necessary tensorizable
implementations of arithmetic ops will provide the necessary
hardware lowering, while minimizing extra vectorizing or other
transformation passes, in order to streamline the tool and
without extra phases in the compiler pipeline:

.
#opsrun.py

linalg.fill ins(%v2 : f32) outs(%rhs :

memref<4xvector<8xbf16>>)

linalg.fill ins(%v0 : f32) outs(%O0 :

memref<4xvector<8xf32>>)

linalg.fill ins(%v0 : f32) outs(%O1 :

memref<4xvector<8xf32>>)

call @elemwise_ipowi_on_buffers(%lhs, %rhs,

%O0) :

(memref<f32>,memref<4xvector<8xbf16>>,memref

<4xvector<8xbf16>>) -> ()

 Fig. 3. The pytorch tool’s capacity for CUDA lowering
transformations is mimicked and its streamlining of the compilation is
highlighted here. However, as with all python lowering calls at
hardware level, for instance with the bazel tool, sys needs to be invoked
and so extra compiler framework security measures need to
implemented.

In the above pytorch integrative approach both the
bufferization as well as the fusion of ops occurs immediately
prior to lowering to device machine levels, (or as is presented
as a more viable AI suited approach for large scale systems in
[6], outputting to a dma buffer) and these passes are condensed
into the same node in the compiler tree.

A preprocessing directive set with CLI flags, or better, a basic
compiler extension, would better allow for the host to construct
a prefetched instruction buffer, in place of other more logic
containing (prediction) buffers. Once the JIT compiler
generated codes are assigned to the bufferized memory,
repeated aligning (i.e. bit shifting) of the fractional bit field
value would be much easier, as long as the clock delay cycle
will allow it.

III. DIRECTIONS FOR FURTHER DEVELOPMENT

The following demo is shown of a cuda kernel driven JIT
function suitable for an off-tree compilation of an LLVM
compiler backend extension for our circuit:

/*GB_jit_launcher.cpp*/

#include “GB_jit_kernel.h”

auto const& callthis=set_kernel_inst(GB_\
_jit_kernel,mlir.MemRefType&\m,\

 dma_buf_PRIME& in_out);
 callthis(P->(_iprfx,),callthis(P->(in\

_out));/*tensorizable output */
 Fig. 4. The above code is inspired largely by the Easy::JIT LLVM

forked project from the 2018 European LLVM Developers Meeting,
with appropriate alterations for the memory structures allocated for this
implementation.

So here the suggested step is to utilize the graphBLAS
toolchain as an alternative pathway to lowering to a LLVM's
CIRCT node, in a way to maximize the immense block array
memory optimizing capacities it demonstrates, and utilize its
underlying matrix generation abilities. The project proposes its
use as an off-tree JIT compilation backend tool, to complement
NVIDIA's NVCC compiler tree. In presenting a fundamental
pre-adder structure in this light, the optimal matrix based
solution to the problem presents graphBLAS as an entirely
fundamental tool in a lower level compilation framework.

 The code referenced in this section of the paper can be
viewed at https://gitlab.com/rgulla_nc.

ACKNOWLEDGMENT

The author wishes to extend his appreciation to Dr. John
Gustafson and his team at National University of Singapore, as
well as the 2023 Conference on Next Generation Arithmetic for
their input and guidance in directing the course of this paper.

REFERENCES

[1] Bilaniuk, Wagner, Savaria, Jean-Pierre Bit Slicing FPGA
Accelerator for Quantized Neural Networks (2019)

[2] H. Assaf, Y. Savaria, and M. Sawan, “Vector Matrix
Multiplication Using Crossbar Arrays: A Comparative Analysis,”
2018 25th IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), Bordeaux, France, 2018. pp609-612, doi:
101109/ICECS.2018.8617942.

[3] Guelton, Serge, Martinez Caamano, Juan Manuel.
“Easy::JIT: compiler assisted library to enable just in-time compilation
in C++ codes.” Programming ‘18: Companion Proceedings of the 2nd
International Conference on the Art, Science, and Engineering of
Programming. April 2018 pp49-50, doi:10.1145/3191697.3191725

[4] Gustafson, J. (2015). The End of Error: Unum Computing.
Boca Raton, Florida: CRC Press.

[5] Aananthakrishnan, S., Ahmed, N., Cave, V., Cintra, M.H.,
Demir, Y., Bois, K.D., Everman, S., Fryman, J.B., Ganey, I.B.,
Heirman, W., Hoppe, H., Howard, j., Hur, I., Koyiayath, M., Jain. S.,
Klowden, D., Landowski, M., Montigny, L., More, A., Ossowski, P.,
Pawlowski, R., Pepperling, N., Petrini, F., Sikora, M., Seshasayee, B.,
Smith, S., Szkoda, S., Tayal, S., Tithi, J.J., Vandriessche, Y., & Wrosz,
I.P., (2020). PIUMA: Programmable Integrated Unified Memory
Architecture

[6] H. Suh et al., "Algorithm-Hardware Co-Optimization for
Energy-Efficient Drone Detection on Resource-Constrained FPGA,"
2021 International Conference on Field-Programmable Technology
(ICFPT), Auckland, New Zealand, 2021, pp. 1-9, doi:
10.1109/ICFPT52863.2021.9609840.

[7] Thorson, Gregory Michael. “Vector Computation Unit in
a Neural Network Processor.”United States Patent and Trademark
Office. US20160342889A1. September 03, 2015

