
Deep Learning Recommendation Model Training
Co-design with the Dynamic Opera Network

Connor Imes∗, Andrew Rittenbach∗, Peng Xie∗, Dong In D. Kang∗, John Paul Walters∗, Stephen P. Crago∗†
∗Information Sciences Institute, University of Southern California, USA

†Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, USA
Email: {cimes, arittenb, pengxie, dkang, jwalters, crago}@isi.edu

Abstract—Training deep learning recommendation models
(DLRMs) is increasingly dominated by all-to-all and many-to-
many communication patterns. Current solutions often involve
designing and implementing fully-connected—and costly—high-
speed interconnects. The recently proposed dynamic Opera net-
work optimizes bulk data flows using direct forwarding through
time-varying circuits and has been shown to be particularly useful
for all-to-all traffic patterns while remaining cost-equivalent
with static network topologies. We propose co-designing DLRM
models with the Opera network to improve training time while
matching network infrastructure cost with a traditional fat-tree
topology. We simulate strong-scaling DLRM training on Opera
networks up to 1024 nodes, identify shifting bottlenecks, and
suggest where co-designers should focus their efforts.

Index Terms—machine learning, deep learning, recommenda-
tion models, networks, dynamic networks

I. INTRODUCTION

Deep learning recommendation models (DLRMs) are com-
monly used by large organizations like Amazon [7], Face-
book [9], Google [1], and Netflix [2] to personalize recommen-
dations for users. For example, Facebook states that DLRMs
have the largest infrastructure demand of their AI applications,
and they propose a software/hardware co-design strategy using
a fully-connected dedicated GPU network to better handle the
growing all-to-all and many-to-many communication work-
loads in training these models. While highly performant, such
networks may become cost-prohibitive as they scale.

The dynamic Opera network was recently proposed to
improve bandwidth efficiency for bulk data transfers while
maintaining cost equivalence with traditional static network
topologies like fat-tree [8]. Opera reduces the bandwidth tax
incurred by multiple network hops by introducing a circuit-
switched topology that reconfigures a small number of links
at a time so that every pair of network endpoints periodically
have direct links. Multi-hop links are always available for
traffic requiring low latency, i.e., traffic that cannot wait for a
direct link to become available. The simplest use case is for
the network to wait for direct links to deliver traffic above a
size threshold (e.g., 15 MB) and to suffer the bandwidth tax
for smaller messages by using the always-available multi-hop
paths.

The information, data, or work presented herein was funded in part by
the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department
of Energy, under Award Number DE-AR0000851. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

16 32 64 128 256 512 1024
Nodes

2.0

8.0

32.0

Ite
ra

tio
n 

Ti
m

e 
(s

) Fat-tree
Opera

Fig. 1: Strong-scaling DLRM training from 16 to 1024 nodes
on fat-tree and Opera networks.

We demonstrate the potential benefits of using Opera net-
works to train DLRMs by comparing with equivalent fat-
tree networks. Our DLRM model is based on Facebook’s
Model-A, consisting of two 20-layer MLPs with 3375
weights per layer each, 1000 embedding tables, and a sparse
feature size of 80, resulting in a model with roughly 800B total
parameters [9]. Whereas they present results at 16 nodes, we
simulate scaling from 16 to 1024 nodes. We discuss challenges
in strong-scaling the training workload and how a good co-
design might overcome these challenges to maintain perfor-
mance benefits. Using performance measurements on NVIDIA
A100 GPUs, we model DLRM component behaviors and data
exchange patterns, then generate task placement graphs using
FlexFlow [4]. We simulate training performance on fat-tree
and Opera networks using the htsim packet simulator [3].
Our compute system model uses 8 GPUs per compute node,
200 Gbps inter-GPU bandwidth within a node, and 100 Gbps
optical network between nodes.

We compare standard 1:1 fat-tree clusters [5] of 16, 128,
and 1024 nodes with equal-size Opera networks. To this end,
we simulate the following Opera configurations: a 16-node
cluster with four top-of-rack (ToR) switches and four nodes
per switch, a 128-node cluster with 32 ToR switches and
four nodes per switch, and a 1024-node cluster with 128 ToR
switches and eight nodes per switch.



16 nodes 128 nodes 1024 nodes
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 Tr
af

fic
All-reduce traffic All other traffic

Fig. 2: Changing traffic patterns as we strong-scale the DLRM
training workload. All-reduce dominates at larger scales.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
All-reduce Traffic Proportion

0

2

4

6

8

10

Ite
ra

tio
n 

Ti
m

e 
(s

)

small table counts

large table counts Fat-tree
Opera

Fig. 3: Varying the embedding table counts at 128 nodes
affects training iteration time and all-reduce traffic patterns.

II. RESULTS

Figure 1 presents the simulated training iteration time when
strong-scaling the DLRM training process. Note the log axes.
Opera achieves 1.20× speedup over fat-tree at 16 nodes. As
we scale out, the benefit reduces to 1.14× at 128 nodes, then
drops below fat-tree to 0.93× at 1024 nodes.

Figure 2 shows that as we strong-scale the workload, the
proportion of all-reduce traffic increases. This is because the
DLRM model’s MLP components are replicated on each node,
but the number of embedding tables remains fixed—each is
located on a single node using table-wise parallelism [9].
The strong-scaling challenge is thus that all-to-all traffic no
longer dominates. With fat-tree, other collective operations can
efficiently overlap communication and computation and thus
would not benefit from Opera’s intermittently available direct
links. We use a ring all-reduce algorithm in the backward
pass with fat-tree, which is bandwidth-optimal for tree net-
works [10], and a distributed parameter server with Opera [6].

Figure 3 explores the impact of embedding table counts
on training iteration times for fat-tree and Opera with 128
nodes. Viewed right to left, the four rightmost points are at 10,
25, 50, and 75 tables, then we scale at 100-table increments

from 100 to 2000. At small table counts, network traffic is
dominated by all-reduce during the backward pass as other
model components update their weights, which constitute the
bulk of the model. Since Opera is not beneficial for all-reduce
traffic, fat-tree tends to have slightly shorter training times. At
larger embedding table counts, embedding tables constitute a
larger portion of the total model size, and thus more traffic
(and more time) is spent in all-to-all exchanges during the
training forward pass. Therefore, Opera improves the training
time over fat-tree by waiting for direct links and avoiding the
multi-hop bandwidth tax.

III. CONCLUSION

Training DLRMs with a dynamic Opera network can
provide performance benefits over static fat-tree topologies.
However, network traffic becomes increasingly dominated by
all-reduce as we strong-scale a training workload, eventually
negating the benefits of using Opera. These results suggest that
careful co-design of a DLRM model and the Opera network is
necessary to achieve the best results. Particular attention must
be paid to all-to-all traffic, which Opera performs well on but
is strongly affected by the number of embedding tables when
using table-wise parallelism. Our ongoing work is exploring
other parameters that impact these traffic patterns, such as
feature sizes and training batch sizes.

ACKNOWLEDGMENTS

The authors acknowledge the Center for Advanced Research
Computing (CARC) at the University of Southern California for
providing computing resources that have contributed to the research
results reported within this publication. URL: https://carc.usc.edu.

REFERENCES

[1] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM Conference
on Recommender Systems, ser. RecSys ’16, 2016, p. 191–198.

[2] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system:
Algorithms, business value, and innovation,” ACM Trans. Manage. Inf.
Syst., vol. 6, no. 4, dec 2016.

[3] Ht-sim, “The htsim simulator,” https://github.com/nets-cs-pub-ro/NDP/
wiki/NDP-Simulator.

[4] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks,” in Proceedings of Machine Learning and
Systems, vol. 1, 2019, pp. 1–13.

[5] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892–901, 1985.

[6] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14, 2014, p. 583–598.

[7] R. Lopez, I. S. Dhillon, and M. Jordan, “Learning from extreme bandit
feedback,” in AAAI 2021, 2021.

[8] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren,
and G. Porter, “Expanding across time to deliver bandwidth efficiency
and low latency,” in Proceedings of the 17th Usenix Conference on
Networked Systems Design and Implementation, ser. NSDI’20, 2020, p.
1–18.

[9] D. Mudigere et al., “Software-hardware co-design for fast and scalable
training of deep learning recommendation models,” in Proceedings of
the 49th Annual International Symposium on Computer Architecture,
ser. ISCA ’22, 2022, p. 993–1011.

[10] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms for
clusters of workstations,” J. Parallel Distrib. Comput., vol. 69, no. 2, p.
117–124, feb 2009.


