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Abstract—Training deep learning recommendation models
(DLRMs) is increasingly dominated by all-to-all and many-to-
many communication patterns. Current solutions often involve
designing and implementing fully-connected—and costly—high-
speed interconnects. The recently proposed dynamic Opera net-
work optimizes bulk data flows using direct forwarding through
time-varying circuits and has been shown to be particularly useful
for all-to-all traffic patterns while remaining cost-equivalent
with static network topologies. We propose co-designing DLRM
models with the Opera network to improve training time while
matching network infrastructure cost with a traditional fat-tree
topology. We simulate strong-scaling DLRM training on Opera
networks up to 1024 nodes, identify shifting bottlenecks, and
suggest where co-designers should focus their efforts.

Index Terms—machine learning, deep learning, recommenda-
tion models, networks, dynamic networks

I. INTRODUCTION

Deep learning recommendation models (DLRMs) are com-
monly used by large organizations like Amazon [7], Face-
book [9], Google [1], and Netflix [2] to personalize recommen-
dations for users. For example, Facebook states that DLRMs
have the largest infrastructure demand of their AI applications,
and they propose a software/hardware co-design strategy using
a fully-connected dedicated GPU network to better handle the
growing all-to-all and many-to-many communication work-
loads in training these models. While highly performant, such
networks may become cost-prohibitive as they scale.

The dynamic Opera network was recently proposed to
improve bandwidth efficiency for bulk data transfers while
maintaining cost equivalence with traditional static network
topologies like fat-tree [8]. Opera reduces the bandwidth tax
incurred by multiple network hops by introducing a circuit-
switched topology that reconfigures a small number of links
at a time so that every pair of network endpoints periodically
have direct links. Multi-hop links are always available for
traffic requiring low latency, i.e., traffic that cannot wait for a
direct link to become available. The simplest use case is for
the network to wait for direct links to deliver traffic above a
size threshold (e.g., 15 MB) and to suffer the bandwidth tax
for smaller messages by using the always-available multi-hop
paths.
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the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department
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16 32 64 128 256 512 1024
Nodes

2.0

8.0

32.0

Ite
ra

tio
n 

Ti
m

e 
(s

) Fat-tree
Opera

Fig. 1: Strong-scaling DLRM training from 16 to 1024 nodes
on fat-tree and Opera networks.

We demonstrate the potential benefits of using Opera net-
works to train DLRMs by comparing with equivalent fat-
tree networks. Our DLRM model is based on Facebook’s
Model-A, consisting of two 20-layer MLPs with 3375
weights per layer each, 1000 embedding tables, and a sparse
feature size of 80, resulting in a model with roughly 800B total
parameters [9]. Whereas they present results at 16 nodes, we
simulate scaling from 16 to 1024 nodes. We discuss challenges
in strong-scaling the training workload and how a good co-
design might overcome these challenges to maintain perfor-
mance benefits. Using performance measurements on NVIDIA
A100 GPUs, we model DLRM component behaviors and data
exchange patterns, then generate task placement graphs using
FlexFlow [4]. We simulate training performance on fat-tree
and Opera networks using the htsim packet simulator [3].
Our compute system model uses 8 GPUs per compute node,
200 Gbps inter-GPU bandwidth within a node, and 100 Gbps
optical network between nodes.

We compare standard 1:1 fat-tree clusters [5] of 16, 128,
and 1024 nodes with equal-size Opera networks. To this end,
we simulate the following Opera configurations: a 16-node
cluster with four top-of-rack (ToR) switches and four nodes
per switch, a 128-node cluster with 32 ToR switches and
four nodes per switch, and a 1024-node cluster with 128 ToR
switches and eight nodes per switch.
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Fig. 2: Changing traffic patterns as we strong-scale the DLRM
training workload. All-reduce dominates at larger scales.
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Fig. 3: Varying the embedding table counts at 128 nodes
affects training iteration time and all-reduce traffic patterns.

II. RESULTS

Figure 1 presents the simulated training iteration time when
strong-scaling the DLRM training process. Note the log axes.
Opera achieves 1.20× speedup over fat-tree at 16 nodes. As
we scale out, the benefit reduces to 1.14× at 128 nodes, then
drops below fat-tree to 0.93× at 1024 nodes.

Figure 2 shows that as we strong-scale the workload, the
proportion of all-reduce traffic increases. This is because the
DLRM model’s MLP components are replicated on each node,
but the number of embedding tables remains fixed—each is
located on a single node using table-wise parallelism [9].
The strong-scaling challenge is thus that all-to-all traffic no
longer dominates. With fat-tree, other collective operations can
efficiently overlap communication and computation and thus
would not benefit from Opera’s intermittently available direct
links. We use a ring all-reduce algorithm in the backward
pass with fat-tree, which is bandwidth-optimal for tree net-
works [10], and a distributed parameter server with Opera [6].

Figure 3 explores the impact of embedding table counts
on training iteration times for fat-tree and Opera with 128
nodes. Viewed right to left, the four rightmost points are at 10,
25, 50, and 75 tables, then we scale at 100-table increments

from 100 to 2000. At small table counts, network traffic is
dominated by all-reduce during the backward pass as other
model components update their weights, which constitute the
bulk of the model. Since Opera is not beneficial for all-reduce
traffic, fat-tree tends to have slightly shorter training times. At
larger embedding table counts, embedding tables constitute a
larger portion of the total model size, and thus more traffic
(and more time) is spent in all-to-all exchanges during the
training forward pass. Therefore, Opera improves the training
time over fat-tree by waiting for direct links and avoiding the
multi-hop bandwidth tax.

III. CONCLUSION

Training DLRMs with a dynamic Opera network can
provide performance benefits over static fat-tree topologies.
However, network traffic becomes increasingly dominated by
all-reduce as we strong-scale a training workload, eventually
negating the benefits of using Opera. These results suggest that
careful co-design of a DLRM model and the Opera network is
necessary to achieve the best results. Particular attention must
be paid to all-to-all traffic, which Opera performs well on but
is strongly affected by the number of embedding tables when
using table-wise parallelism. Our ongoing work is exploring
other parameters that impact these traffic patterns, such as
feature sizes and training batch sizes.
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