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Abstract—Galvanized by waning general-purpose CPU per-
formance improvements, large-scale system architectures have
shifted towards increasingly heterogeneous designs in recent
years. Systems devised under this regime are constructed using
the principles of hardware/software codesign and incorporate
domain specific accelerators in order to optimize system per-
formance for targeted use cases. In this context, smartNICs
represent a class of accelerator devices currently experiencing
a resurgence. In the past, power and flexibility limitations
largely relegated these devices to performing only tasks associated
with low-level networking operations. More recent smartNIC
incarnations have addressed many of these design constraints.
The full range of capabilities of these new smartNICs, however,
is not well understood. Moreover, the suitability of these devices
as general-purpose accelerators, particularly within the high
performance computing domain, as well as any potential barriers
to their more widespread adoption, remain to be seen. In this
work, we detail our efforts to explore these open questions.

Index Terms—SmartNIC, DPU, Accelerator, Offloading, High
Performance Computing

I. INTRODUCTION

The end of Moore’s law and Dennard scaling has necessi-
tated a fundamental shift with respect to the design of high
performance computing (HPC) systems. The requirement to
continue realizing performance improvements, coupled with
the need to enhance energy efficiency, has accelerated the
adoption of heterogeneous system architectures. Within this
paradigm, specialized compute components such as general
purpose graphics processing units (GPGPUs), tensor process-
ing units (TPUs), and field-programmable gate arrays (FPGAs)
are distributed throughout a given system. In turn, these
distinct components are then utilized to optimize the execution
of specific tasks, which often occur within larger workloads,
with respect to a given metric.

Against this backdrop, a class of accelerator devices posi-
tioned at the network edge known as smart network interface
cards, or smartNICs, has been experiencing a resurgence in
recent years. Previous incarnations of smartNIC accelerators
were primarily utilized to offload low-level networking func-
tionality from the CPU. These devices, most often based
on application-specific integrated circuit (ASIC) or FPGA
designs, proved well suited to such tasks, but lacked the combi-
nation of power and flexibility necessary for more widespread
adoption as general-purpose accelerators.

In contrast, the emerging generation of smartNICs were
largely designed to rectify these shortcomings. These new
smartNICs, also known as data processing units (DPUs) or in-
frastructure processing units (IPUs), couple some combination
of system-on-a-chip (SoC) and FPGA based designs together

and often also incorporate task-specific accelerators. Smart-
NICs that include SoCs featuring general purpose CPU cores,
which can be programmed using high-level languages such
as C and C++ rather than the hardware description languages
(HDLs) necessary for FPGAs, enable the potential for new
use cases for smartNICs. Examples of SoC-based smartNICs
include the NVIDIA BlueField family of DPUs [18], the
Marvell Octeon [17], and the Broadcom Stingray [2] among
others.

Previous works have demonstrated the viability of smart-
NICs as accelerators for software-defined networking [6],
packet inspection [11], and even secure RDMA-based com-
munication [28]. The true breadth of use cases to which
smartNICs may prove applicable, however, still remains to be
seen. Moreover, the potential of smartNICs as general purpose
accelerators, particularly with respect to high performance
computing, as well as the challenges inherent with leveraging
them effectively, are not well understood.

In this work we detail our efforts to explore these open
questions using two proxy applications as case studies. In
the following sections we introduce these applications and
describe our methodology for injecting smartNIC-based of-
floading at the application level. We then provide a short
evaluation of our offloaded implementations using NVIDIA
BlueField 2 DPUs. Finally, we conclude with a discussion of
insights gleaned from our experiments.

II. OFFLOADING METHODOLOGY

For the experiments performed in this work, we employ a
smartNIC offloading methodology that offloads work from the
host at the application level. Herein, we strive to modify the
application in question as little as possible and instead focus
on offloading portions of the existing application semantics
rather than making alterations to the application that render
it more performant or otherwise amenable to offloading. We
take this approach in order to emulate the sort of code changes
that are likely to be feasible for the large, complex scientific
codes often found in HPC environments.

We effect smartNIC offloading for our experiments by
utilizing a multiple program, multiple data (MPMD) model
built on MPI wherein host and smartNIC processes execute
distinct code segments and are treated as true peers at the ap-
plication level. This strategy enables us to minimize overheads
associated with rapid prototyping and provides a portable
mechanism for experimenting with different smartNICs as it
does not rely on any particular communication middleware
stack or other proprietary software. The resulting offloaded



application source code is, however, somewhat difficult to
understand and debug. Moreover, utilizing this approach also
induces performance penalties associated with performing data
movement through MPI when more optimized mechanisms are
available. Our current implementations are also limited in that
they assume a one-to-one mapping between smartNIC and host
processes.

III. PENNANT

A. Application Overview

For our first smartNIC offloading case study, we explore
the PENNANT [4], [5] application developed by Los Alamos
National Laboratory. PENNANT is an unstructured mesh
physics mini-app designed as both a tool for benchmarking
emerging architectures as well as a direct proxy for portions
of the much larger FLAG hydrodynamics code. Written in
approximately 3300 lines of C++ code, PENNANT supports
2-D meshes composed of arbitrary polygons. These unstruc-
tured meshes, similar to complex graphs, are organized into
geometric elements known as points, edges, and zones in zero,
one, and two dimensions, respectively. At a high level, the
physics calculations that take place within PENNANT are
organized into two stages. The first, known as the predictor
stage, advances a number of variables to the middle of a
given hydrodynamics cycle in order to compute intermedi-
ate values. The second, or corrector stage, then progresses
all variables associated with the simulation to the end of
the timestep. The calculations performed in these stages are
based on staggered grid methods wherein some variables are
associated with points while others are attached to zones.
Double-precision floating-point formats are utilized for both of
these variable types. Due to the irregular relationships between
distinct but closely related variables, frequent translations
using indirection arrays are necessary during execution. As a
result, PENNANT exhibits the challenging, irregular memory
access patterns that characterize many scientific applications
within the high performance computing domain. Although a
more in depth description of PENNANT is beyond the scope
of this work, for further detail we refer the reader to [4].

The reference implementation of PENNANT that we modify
for our case study is parallelized using MPI and, optionally,
OpenMP. Conventional domain decomposition techniques are
utilized to partition the overall mesh into distinct subsets
whose states are progressed by independent MPI processes.
Values along mesh subset boundaries are replicated and ex-
changed as necessary during execution using a primary/replica
communication scheme. When enabled, OpenMP is used to
further subdivide each mesh subset into thread-parallel chunks
for processing.

B. Offloading Strategy

In order to better understand the runtime behavior of the
application and identify potential smartNIC offload targets, we
gathered execution profiles for PENNANT when solving dif-
ferent problem inputs using the TAU [27] toolkit. An analysis
of the resulting data revealed that, at least for relatively small
scales, communication that takes place within the application
represents an insignificant portion of the overall run time,
and, as a result, PENNANT is a thoroughly compute-bound

Fig. 1. Diagram illustrating offloaded functionality in PENNANT. Blue boxes
represent computation performed on the host in both implementations. The
green box indicates computation offloaded in both V1 and V2. The orange
box contains functionality offloaded in V1, but performed on the host in V2.

application. This implies that, in contrast to more conventional
smartNIC use cases, any meaningful smartNIC offloading
strategy for PENNANT should incorporate computational of-
floads.

Towards this end, we analyzed the source code of the
hydrodynamics algorithm that constitutes the core of the
application and correlated our findings together with the timing
information provided by our profiling efforts in an attempt
to identify functionality suitable for offloading. Herein, we
discovered that, overall, the various calculations performed
within the PENNANT hydro cycle are tightly coupled such
that most stages of the computation are directly dependent on
data computed in immediately preceding steps. As a result of
these data dependencies, minimal opportunities for overlapped
computation on the host and smartNIC exist.

Despite this observation, we identified a number of calcula-
tions sufficiently decoupled from the more compute intensive
portions of the PENNANT hydro cycle as to be potentially
viable offload candidates. The computation of edge lengths as
well as zone characteristic lengths, both performed early in
the predictor stage, are two such candidates. Each of these
calculations requires only a single set of input variables and
produce results not needed until later in the hydro cycle. Sim-
ilarly, a portion of the point mass calculation, which includes
both computation and communication, can be decoupled from
the more compute intensive force and mesh calculations per-
formed in the predictor stage. Within the corrector stage, the
calculation of zone work, work rate, and energy values can
also be largely separated from the more time consuming mesh
updates performed in this stage. However, as these calculations
depend on a number of variables obtained in the predictor
stage, offloading these computation routines necessitates trans-
ferring a considerable amount of data between the host and
smartNIC. Furthermore, the produced values in these routines
are also immediately required at the beginning of the following
hydro cycle.

Utilizing these insights, we develop two PENNANT im-
plementations that incorporate smartNIC offloading. The first
implementation, V1, takes an aggressive approach and offloads
the computation within both the predictor and corrector stages



described above. In recognition of the fact that the corrector
stage offloads may incur significant overheads, the second im-
plementation, V2, employs a more conservative methodology
and offloads only the predictor stage calculations. Figure 1
provides a simplified view of smartNIC offloaded functionality
in each implementation.

IV. BIGSORT

A. Application Overview
We utilize the CORAL-2 BigSort benchmark [14] as the

basis of our second case study on smartNIC offloading. The
BigSort benchmark performs a parallel sort of a user defined
number of 64-bit integer values into ascending order in a
distributed environment. Parallelization is achieved through
utilization of MPI to distribute sort values across available
nodes, wherein one rank is used per node, while OpenMP is
used to accelerate the local sort within a given node. The appli-
cation is characterized by interleaved periods of computation,
communication, and file I/O. User provided DRAM ALLOC
and PAGE SIZE parameters supplied at runtime control the
amount of memory utilized per rank to perform the sort, and
the granularity at which the sort occurs, respectively. Although
the behavior of the application may vary somewhat based on
the provided parameters, in keeping with the benchmark’s
design of simulating scenarios wherein the total sort size
exceeds the aggregated system memory capacity, the runtime
is generally dominated by file I/O.

At a high level, the BigSort benchmark can be divided
into three phases. In the first phase, each MPI rank reads in
distinct segments of the file containing the unsorted integer
values. This read data is then sorted into bins corresponding
to the integer value ranges assigned to each MPI rank. MPI
collective communication routines are then used to send the
binned values to their proper destination where they are written
to a bin file. This process is repeated until all of the unsorted
values have been read from the original file and delivered to
the appropriate destination rank.

In the second phase of the BigSort benchmark, each bin file
constructed in phase one is sorted into ascending order locally
by the associated MPI rank. Herein, segments of PAGE SIZE
are read in from the local bin files, sorted in parallel using
OpenMP, and then merged together. This procedure continues
in an iterative fashion until a single file per MPI rank,
each containing the corresponding rank’s sorted integers, is
obtained. As the local sort size in this phase typically out-
strips the available memory as defined by DRAM ALLOC, a
number of temporary files are utilized throughout the ongoing
merge process. Files opened and written to as the output of
a given iteration serve as the inputs for the subsequent cycle.
Notably, the file operations performed in this phase are POSIX
operations rather parallel file operations and ranks are blocked
while the I/O is being performed. The final phase of the
BigSort benchmark is also the simplest. Herein, parallel file
operations are used to combine the individual files obtained
through the local sort performed in phase two into one globally
sorted file.

B. Offloading Strategy
Similar to PENNANT, we analyzed the BigSort benchmark

for tasks potentially suitable for smartNIC offloading using

Fig. 2. State diagrams demonstrating BigSort phase two behavior for original
(left) and offloaded (right) implementations.

an approach that incorporated both source code analysis and
runtime profiling using TAU. From the profiles obtained with
TAU, we observed that the majority of the BigSort application
runtime was typically spent in the phase two local sort.
However, analyzing the phase two source code revealed the
existence of very little task level parallelism with respect
to computation. Instead, we identified several POSIX file
operations on temporary files that occur during the merging
process as prospective offload targets. More specifically, within
the phase two algorithm multiple temporary files are most
often opened, written to, and closed during a given cycle.
The rank executing these file I/O calls is blocked while the
operations take place. However, as these files are not utilized
again until the following cycle, the creation of the files can
be safely decoupled to allow the sorting process to continue
until the next cycle is reached.

Based on this finding, we offload the POSIX open(), write(),
and close() operations associated with the creation of these
files to the smartNIC for our experiments. In order to do so,
we replicate the loop logic for the cycles within the phase two
local sort in the smartNIC source code. A circular buffer of
size DRAM ALLOC is also allocated on the smartNIC and
divided into DRAM ALLOC/PAGE SIZE elements. At the
beginning of each cycle, the smartNIC opens the temporary
files (up to a predetermined maximum number of files) needed
for the given iteration and then waits to receive sorted data
values from the host into its current buffer. As the sort
progresses on the host, it fills its own PAGE SIZE buffer
with sorted values in the same manner as in the original
implementation. However, when its buffer becomes full, rather
than writing the data to the temporary file directly, the host
instead sends the sorted values to the smartNIC and increments
an internal counter corresponding to the next buffer element
on the smartNIC. In this manner, the host is able to avoid
blocking on file I/O operations and continue sorting data until
the smartNIC runs out of available buffer space or the cycle
is completed. When the smartNIC receives a series of sorted
values from the host, it first performs the ordering verification
that was originally performed on the host. The smartNIC then
writes the data to the appropriate file. If this is the final write
to the given file, the smartNIC also closes the file. Finally,
the smartNIC sends a signal back to the host indicating that
the given buffer can be reused. Figure 2 provides a simplified
comparison of the phase two behavior for the original and
offloaded BigSort implementations.



Fig. 3. Hydro cycle runtime for the PENNANT mini-app with only MPI-level
parallelism

V. EVALUATION

A. Platform

In this section, we evaluate the efficacy of our smartNIC
offloaded implementations of the PENNANT and BigSort
applications. In order to do so, we perform a number of
experiments to measure the performance of both the original
applications and our smartNIC offloaded variants in a variety
of scenarios. We then compare and analyze the associated
results. For the experiments performed in this work, we utilize
the HPC-AI Advisory Council [10] Thor cluster which pairs
conventional host nodes together with NVIDIA BlueField-2
DPUs. We utilize Open MPI built upon UCX [26], [32] for
communication. Further details of the Thor cluster and our
software stack are given in Table I.

TABLE I
THOR CONFIGURATION

Host BlueField-2
CPU Intel Xeon E5-2697A v4 Cortex-A72

Frequency 2.60 GHz 2.80 GHz
Cores 16 8

Sockets 2 1
Memory 256 GB 16 GB
Kernel 4.18.0-425.10.1 5.4.0-1049

Interconnect InfiniBand HDR100
Operating

System Rocky Linux 8.7

Compiler GCC 8.5.0
UCX v1.13.1
MPI Open MPI v4.1.4

B. PENNANT Results

We evaluate our two smartNIC offloaded implementations
of the PENNANT mini-app using 8 BlueField-2 enabled nodes
of the Thor cluster. Performance data for the original, V1, and
V2 implementations is gathered and compared when using
MPI level parallelism exclusively as well as when utilizing
MPI in conjunction with OpenMP. For each of our offloaded
implementations, we measure performance using two different
offload configurations in order to observe any changes in
behavior. In the first offload configuration, each host resident
rank performs offloading to a paired process on the associ-
ated BlueField-2 DPU. For our second offload configuration,
host ranks instead perform offloads to processes pinned to

Fig. 4. Hydro cycle runtime for the PENNANT mini-app with MPI and
OpenMP parallelism

a distinct socket within the same host node. The leblancx4
and sedovflatx4 problem inputs provided with PENNANT are
utilized across experiments.

We first examine the results of our PENNANT trials con-
ducted using only MPI level parallelism. For these experi-
ments, 8 host ranks were utilized per node for a total of 64
host ranks. In the case of our offloaded implementations, this
number is supplemented by an additional 64 ranks as appro-
priate to each offload configuration. Figure 3 demonstrates
the results of these experiments. As shown, when running
with the specified parameters, both of our smartNIC offloaded
implementations demonstrated degraded performance as com-
pared to the original implementation regardless of offload
configuration. Our V1 implementation showcased the worst
performance, particularly when performing offloading to the
BlueField-2 DPUs. Here, the hydro cycle run time of the
leblancx4 and sedovflatx4 problems increased by approxi-
mately 82% and 42%, respectively. While less egregious, V2
also decreased performance by approximately 11-21% across
configurations. Based on these results, we performed further
analysis with TAU in order to better understand this behavior.
Herein, we discovered that the problem size operated on by
each rank within these experiments had diminished such that
the overhead of communication, even across shared memory,
precluded the realization of any performance improvements.
The more pronounced performance decrease for V1 as op-
posed to V2, which transfers far more data during the corrector
stage, reinforces this conclusion.

We also conducted experiments with PENNANT using both
MPI and OpenMP level parallelism. In these trials, a single
rank on each of our 8 host nodes was utilized. Each of these
ranks was paired with a single offloading process located
either on the associated BlueField-2 DPU or remaining host
socket as appropriate for the offload configuration. The host
and offload processes utilized 16 and 8 threads, respectively.
The results of these experiments, as shown in Figure 4,
are somewhat orthogonal to those demonstrated by our MPI
exclusive PENNANT trials. Here, our V1 implementation
again demonstrates significant performance decreases when
offloading to the BlueField-2 DPUs. In the case of leblancx4,
an approximately 37% decrease is exhibited as compared to
approximately 30% for sedovflatx4. However, when offloading
is performed to a different socket within the same host, modest



Fig. 5. Phase two runtime for the BigSort benchmark with different offload
types using an NFS filesystem

Fig. 6. Phase two runtime for the BigSort benchmark with different offload
types using a Lustre filesystem

improvements of approximately 4% and 6% are realized,
respectively. This suggests that, for the given problem size
per rank, the computation decoupling strategy employed in V1
itself has some merit. However, the penalty of moving large
amounts of data between devices significantly outweighs the
benefits of the computation offloading. In contrast to V1, and
our previous MPI exclusive results, the performance of our
V2 implementation here differs minimally from the baseline.
Across both problem inputs and offload configurations, per-
formance differences of -0.8% - +1.2% are observed. In this
implementation, offloading to the BlueField-2 DPUs slightly
outperformed the host based offload scheme. Overall, results
for the V2 implementation with these parameters suggest that
while excessive data movement penalties were not introduced,
neither was a sufficient amount of computation offloaded as
to be useful.

C. BigSort Results

As with our PENNANT experiments, trials of our smartNIC
accelerated BigSort implementation are conducted using 8
BlueField-2 enabled nodes. For each BigSort experiment, the
host portion of the benchmark is run using 1 MPI rank per
node and 32 OpenMP threads. Each host rank offloads to a
single offload process that does not utilize multithreading.
For trials of our offloaded implementation, we reuse the
two distinct offload configurations utilized in our PENNANT
experiments. We also add a third configuration wherein each

host resident process offloads to a simulated smartNIC process
on a distinct host node. Tests are performed using a total of 16
GB of unsorted integer values, which equates to a 2 GB phase
two local sort per host rank, and an 8 KB PAGE SIZE. The
preceding parameters are kept constant across trials while the
DRAM ALLOC is varied from 128 KB to 1 MB. Notably,
we test using small DRAM ALLOC sizes in relation to the
problem size in order to ensure I/O bound behavior.

During the initial stages of this research, platform limita-
tions restricted us to the utilization of an NFS filesystem for
our experiments. As such, we first demonstrate the perfor-
mance of our solution using the NFS filesystem attached to the
Thor cluster and then compare against results gathered using a
high performance Lustre filesystem. The runtimes of phase two
within the BigSort benchmark across different scenarios when
using an NFS filesystem are given by Figure 5. As shown,
when offloading was performed to the BlueField-2 DPUs,
our solution was able to improve application performance by
approximately 1.6% - 9.4%, where increased improvements
were realized for the larger DRAM ALLOC values. When
offloading to another rank within the same host, performance
decreased by 15.6% for a 128KB DRAM ALLOC, but im-
proved by 5.2% at 256KB. For the larger two sizes, results
for same host offloading mirror those of the other offload
configurations. Finally, offloads performed to a rank on a
different host also improved performance, but generally did
so to a slightly lesser degree than other offload configura-
tions. Overall, our smartNIC offloaded implementation of the
BigSort benchmark was able to achieve modest performance
improvements over the original implementation when paired
with an NFS filesystem.

In contrast to the above, results gathered using a more HPC
appropriate Lustre filesystem, as demonstrated in Figure 6, tell
a different story. Here, we see that both the smartNIC offload
configuration and the different host offload configuration are
only able to improve performance when using a 128 KB
DRAM ALLOC. Moreover, in this case they do so only by a
relatively small 3.7% and 2.2%, respectively. For 256 KB and
1 MB DRAM ALLOC values, these configurations result in a
slight decrease in performance while a significant slowdown is
observed for both configurations at 512 KB. Orthogonally, of-
floading to a process within the same host uniformly improves
performance. In this configuration, improvements of 15.5%
- 22.2% are demonstrated across different DRAM ALLOC
sizes. Based on this behavior, we conclude that the Lustre
filesystem is most likely able to optimize repeated file opera-
tions to the same files when those operations originate from
the same device. Such an optimization would explain why only
offloads performed to the same host were generally beneficial
for BigSort when utilizing the Lustre filesystem.

VI. INSIGHTS

Throughout the course of our research we have identified a
number of insights that we believe will prove critical to efforts
to harness smartNICs as general purpose HPC accelerators. We
summarize these insights below in the hope they will prove
useful in guiding future endeavors.

1) SmartNIC offloads must be carefully chosen and
coordinated. As the compute capabilities of most smart-



NICs are less extensive than those of their associ-
ated hosts, naively offloading computationally intensive
workloads is unlikely to prove beneficial. Instead, smart-
NIC offloads should largely be restricted to task parallel
workloads that can be effectively overlapped with other
host-resident work. If insufficient work exists to occupy
the host for the duration of a proposed offload, the
offload is most often inadvisable.

2) Mechanisms that assist in determining where smart-
NIC offloading may be advantageous are needed.
Successfully leveraging smartNIC offloading as de-
scribed above currently necessitates a painstaking anal-
ysis of the application and system in question by the
end user. The ability to effectively conduct such an
analysis, however, is largely limited to subject matter
experts and not without potential pitfalls. Moreover, such
an approach is time consuming and not scalable as a
general solution. As such, tools that can help quantify
the performance characteristics of different smartNICs
and their platforms, as well as provide insight into
how applications map to these characteristics, will be
critical for smartNIC offloading. The OpenHPCA bench-
mark [29], [30] and Clara [22], [23] represent prominent
examples of efforts in this domain.

3) SmartNIC acceleration requires an accessible, per-
formant interface. At present, minimal support exists
for enabling generalized smartNIC offloading. In this
work, we utilized a MPMD programming model based
on MPI to perform our experiments. Although this
approach provided a solution agnostic of any device
specific dependencies, it also compelled a significant
amount of code refactoring. The resulting applications
are also difficult to both debug and understand. Fur-
ther, utilization of this high level abstraction incurred
overheads that might have been avoided with a more
optimal solution. Adoption of emerging smartNIC inter-
faces such as OpenSNAPI [31] and DOCA [19], which
provide simple yet optimized APIs, will therefore be
critical to the success of smartNICs.

4) SmartNIC offloading necessitates an efficient channel
for data sharing between the host and smartNIC As
described above, smartNIC offloading must be thought-
fully coordinated with respect to the associated host.
As part of this paradigm, and in contrast to GPGPU-
based acceleration, the host and smartNIC are often
utilized in tandem to progress independent tasks within
a larger workload. Data dependencies between devices
are therefore common. As such, if a sufficiently high
performance methodology for enabling communication
between the devices is not present, costs associated with
data movement may become insurmountable.

VII. RELATED WORK

Alongside the emergence of this new generation of smart-
NICs, considerable research efforts have been undertaken to
discover the full range of capabilities of these devices as well
as novel use cases. Grant et al. provide a primer on this new
class of devices and detail scenarios in which specific features
may prove advantageous [7]. sPIN [9] defines a programming

model for smartNIC packet processing, based on the concept
of handler functions, that is optimized for tasks associated with
data movement. The subsequent study, PsPIN [3], implements
an open source sPIN SoC based on RISC-V. INCA [25] de-
scribes an in-network processing model built on smartNIC tag-
matching, atomics, and triggered operations that is deadline-
free and complementary to streaming data models such as
sPIN. Clara [22], [23] provides an automated mechanism for
predicting the suitability and performance of network function
offloads to smartNICs through an approach that employs
source code analysis and machine learning. Similarly, the
Floem [21] framework supplies an infrastructure that seeks
to simplify the process of developing smartNIC-accelerated
applications. Orthogonally, the Two-Chains and Three Chains
frameworks [8], [16], [20] represent novel approaches to dy-
namically offloading tasks to accelerators, such as smartNICs,
in heterogeneous environments.

With respect to NVIDIA’s BlueField-2 DPUs, Liu et al. con-
duct an extensive evaluation to quantify the devices’ network
and compute capabilities [15]. BluesMPI [1], [24] utilizes
BlueField-2 DPUs to realize optimized implementations of
nonblocking alltoall, allgather, and broadcast collectives built
on RDMA read and write operations. In contrast, Jain et al.
explore offloading computation to BlueField-2 DPUs in order
to accelerate the training of deep learning models [12]. Finally,
Karamati et al. perform an investigation similar to our own
wherein they evaluate offloading to BlueField-2 DPUs in the
context of the YASK and miniMD applications [13].

VIII. CONCLUSION

In this work, we explored the viability of smartNICs as
general-purpose accelerators for high performance computing
environments. We demonstrated a methodology for prototyp-
ing application-level smartNIC offloads built upon an MPI-
based MPMD programming model that is fully agnostic of sys-
tem specific requirements. We then applied this methodology
to two applications as a case study for smartNIC offloading.
Using the PENNANT mini-app, we attempted to offload com-
putational kernels in the context of a tightly coupled scientific
application. Herein, we found that overheads associated with
data movement between devices largely inhibited any benefits
from a coprocessing model. For the BigSort benchmark, we
took an orthogonal approach and utilized the smartNICs as
asynchronous engines for performing file I/O operations. Al-
though this approach demonstrated some merit, unanticipated
optimizations within the Lustre filesystem conflicted with our
approach in the most realistic HPC scenarios. In conclu-
sion, we believe emerging smartNIC designs possess great
potential for improving performance in heterogeneous HPC
environments. However, as detailed in Section VI, utilizing
these devices effectively will require both an understanding
of their capabilities as well as more performant and intuitive
interfaces.
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