
Towards a Flexible Hardware Implementation for
Mixed-Radix Fourier Transforms

Mario Vega, Xiaokun Yang, John Shalf, Doru Thom Popovici
Lawrence Berkeley National Lab

{mvega, xiaokunyang, jshalf, dtpopovici}@lbl.gov

Abstract—The discrete Fourier transform is a versatile math-
ematical kernel widely used in a myriad of applications from
physics, chemistry, and even machine learning. While most
applications typically rely on power of two sizes for which high
performance implementations have been developed as software
libraries or custom hardware IPs, there are codes in chemistry
or even machine learning that require non-power of two or
even prime-sized Fourier transforms. Classic prime-sized Fourier
transform implementations are more complicated and less per-
formant both in software and in hardware compared to the
power of two implementations. Recent work [1] has shown
that casting small prime-sized Fourier transforms as specialized
matrix operations, competitive codelets can be developed on CPU
platforms. In this work, we focus on designing the corresponding
hardware unit for prime-sized Fourier transforms and integrating
the custom design within any mixed-radix Fourier transform.
We provide a detailed analysis of the design and investigate the
latency, throughput, and resource utilization on Xilinx FPGAs for
the both standalone and mixed-radix designs. We show that even
oddly shaped Fourier transforms can be appealing when building
custom hardware designs for general size Fourier transforms.

Index Terms—Fourier transforms, mixed-radix, prime-sizes,
specialized matrix operation, FPGA

I. INTRODUCTION

The discrete Fourier transform (DFT) is a key mathematical
tool that appears in a wide range of applications from fields
like physics, chemistry, material sciences and even machine
learning. Typically, most applications require power of two
sizes for which high performance software libraries and hard-
ware IPs have been developed and studied over the past
years. However, there are scenarios, where codes require non-
power of two sizes or even prime-sized Fourier transforms. For
example, DFT-based pseudo-spectral solvers seen in particle
in cell (PIC) codes [2], DFT-based eigensolvers [3], [4] used
in planewave Density Functional Theory codes, or DFT-based
convolutions used in Local Correction (MLC) codes [5] and
even machine learning applications [6]–[8] may require oddly
shaped Fourier transforms. For such sizes, the typical Cooley-
Tukey algorithm [9], meant for power of two sizes, cannot be
directly utilized off the shelf.

Typically, the mixed-radix Cooley-Tukey algorithm decom-
poses any composite number into smaller building blocks,
that are implemented as codelets for small powers of two
and small prime sizes. The FFTW library [10] follows this
approach, where a multitude of codelets are created and then
linked together to create any composite size. For power of
two sizes, codelets of size 2, 4, 8 can be used. For general

Fig. 1: The hardware design for a DFT of size a) 2, b) 4 and
c) p = 5. These building blocks are sufficient for building any
Fourier transform of size 2k5l.

composite sizes, prime sizes are needed, for which algorithms
like Rader [11] or Bluestein [12] have been developed. Both
cast the Fourier computation as a circular convolution by either
permuting the data or padding the original data and increasing
the problem size by at least twice the original size. Both
algorithms exhibit worse execution time as compared to the
power of two counterpart. Recent work by Popovici et. al [1]
has shown that the Fourier computation for small prime sizes
can be cast as specialized matrix operations that exploit the
structure of the Fourier computation. This approach has been
shown to outperform classical implementations within FFTW
on CPUs.

The idea that any composite size Fourier transform only
needs a handful of codelets as opposed to FFTW’s approach
of having a large number of codelets, becomes appealing. This
aspect is of great interest nowadays with hardware specializa-
tion. In this work, we focus on developing a specialized prime-
sized Fourier transform and integrating the IP within any
mixed-radix Fourier transform. As depicted for any Fourier
transform of size 2k5l in Figure 1, we plan to utilize a reduced
set of building blocks. We provide details about the hardware
design choices and outline the trade-offs between latency,
throughput, and resource utilization on Xilinx FPGAs. We



Fig. 2: The decomposition of a DFT of size 20 using a mixed-
radix algorithm. The 1D DFT is viewed as a set of linear
algebra operations, where the 1D input and output x and y are
viewed as 2D matrices x̃ and ỹ. The decomposition applies
DFTs of size 5 and 4 on the data, a point-wise scaling with
the twiddle factors, and a transposition step.

outline the different characteristics of the integrated designs.
Finally, we will provide an end-to-end implementation by
developing a lightweight code generator, using the Chisel
Hardware Construction Language (HCL), to allow for fast
prototyping of the designs on any FPGA systems.

Contributions. The paper makes the following contribu-
tions:

1) We develop a custom IP for prime-sized Fourier trans-
forms and perform a detailed analysis of its performance
characteristics.

2) We integrate the custom design within a mixed-radix im-
plementation, analyzing the trade-offs between latency,
throughput, and resource utilization on modern FPGA
systems.

3) We provide an end-to-end tool implemented in the
Chisel language to enable ease of prototyping for any
composite size Fourier transform.

II. BACKGROUND

In this section, we briefly present the Fourier transform. We
focus on the mixed-radix implementation using both power of
two and prime-sized kernels. We outline the details for the
prime-sized transforms in [1].

A. The Fourier Transform

The discrete Fourier transform is a linear transform such as

y = DFTN · x, (1)

where x/y represent one dimensional input/output arrays of
size N . The DFTN represents the complex type Fourier
matrix defined as

DFTN =
[
ωkl
N

]
,∀ 0 ≤ k < N and 0 ≤ l < N, (2)

where ωN = e−j 2π
N and j2 = −1. The elements of the Fourier

matrix represent the roots of unity for a given size N .
The Fourier transform for composite sizes N = nm is

implemented using fast algorithms like the Cooley-Tukey
algorithm [9], that factorizes the Fourier matrix. For example,
the Fourier matrix in Equation 1 is re-written as a set of linear
algebra operations such as

ỹ = (Twidm×n ⊙ (x̃ ·DFTn))
T ·DFTm, (3)

Fig. 3: The Rader and Bluestein algorithms used for im-
plementing prime-sized Fourier transforms. Both algorithms
require pre/post processing steps to reshape the matrix into a
circulant matrix. The circulant matrix is then decomposed into
a forward, inverse Fourier transform and a diagonal matrix.

where x̃/ỹ represent the 2D matrix views of the original
input/output x/y. The input x̃ is an m × n matrix, and the
output ỹ is an n×m matrix, both stored in column major order.
The first step of the decomposition applies a DFT of size n
in the rows of x̃. The result is then point-wise scaled with
the so-called twiddle factors Twidm×n, and then transposed
from an m × n matrix to an n × m matrix. A DFT of size
m is applied in the rows of the transposed matrix to obtain
the final output ỹ. The decomposition is depicted in Figure 2.
For power of two sizes, the decomposition will always deal
with smaller power of two sizes, the smallest being the DFT
of size 2 defined as the butterfly matrix

DFT2 =

[
1 1
1 −1

]
. (4)

For composite sizes like N = 20, the decomposition requires
a DFT of size 4 and a DFT of size 5, for which different
algorithms must be used.

Typically, Rader’s [11] or Bluestein’s [12] algorithms can be
used to compute prime-sized DFTs. As depicted in Figure 3,
both algorithms restructure the Fourier matrix as a circulant
matrix (a matrix where each column is a shifted version of the
previous column). The circulant matrix is the decomposed as
a forward, inverse Fourier transform and a diagonal matrix.
Frameworks like Spiral [13] utilize the two algorithms to
generate software or hardware for such problem sizes. The
work by Milder et. al [14], [15] has outlined that prime-sized
Fourier transforms and indirectly mixed-radix DFTs are more
expensive in execution time and resource utilization, compared
to the power of two counterparts. Recent work [1] has shown
that a simpler implementation can be obtained, which will be
presented in the following sub-section.



Fig. 4: The implementation of a DFT of size 5, where only
the columns and rows of 1 and the upper triangular matrix are
needed to fully compute the Fourier transform. More details
can be found in [1].

B. The Prime-Sized DFT Kernel

The work by Popovici et. al [1] has outlined an alternative
approach for computing prime-sized Fourier transforms. In-
stead of reshaping the Fourier matrix, the paper exploits the
structure of the matrix. For consistency, we will provide a brief
description of the approach and refer the readers to the paper
for more details. As an example, we use y = DFT5 ·x which
can be expanded as

y0
y1
y2
y3
y4

 =


ω0
5 ω0

5 ω0
5 ω0

5 ω0
5

ω0
5 ω1

5 ω2
5 ω3

5 ω4
5

ω0
5 ω2

5 ω4
5 ω6

5 ω8
5

ω0
5 ω3

5 ω6
5 ω9

5 ω12
5

ω0
5 ω4

5 ω8
5 ω12

5 ω16
5

 ·


x0

x1

x2

x3

x4

 . (5)

Using the properties that ω0
5 = 1 and ωk

5 = ωk−5
5 , the Fourier

matrix can be re-written as
y0
y1
y2
y3
y4

 =


1 1 1 1 1
1 ω5 ω2

5 ω−2
5 ω−1

5

1 ω2
5 ω−1

5 ω5 ω−2
5

1 ω−2
5 ω5 ω−1

5 ω2
5

1 ω−1
5 ω−2

5 ω2
5 ω1

5

 ·


x0

x1

x2

x3

x4

 . (6)

The first element in the output vector y is computed as

y0 = x0 + 1 · x1 + 1 · x2 + 1 · x3 + 1 · x4, (7)
= x0 + 1 · (x1 + x4) + 1 · (x2 + x3) (8)

The grouping of the input terms in the above formula will be
clarified in the following paragraphs. The computation of the
remaining outputs can be done in pairs. For example, the pair
(y1, y4) can be computed as

y1 = x0 + ω5 · x1 + ω2
5 · x2 + ω−2

5 · x3 + ω−1
5 · x4 (9)

y4 = x0 + ω−1
5 · x1 + ω−2

5 · x2 + ω2
5 · x3 + ω5 · x4, (10)

where ω−1
5 and ω−2

5 represent the complex conjugates of ω5

and ω2
5 , respectively. The paper exploits the complex conjugate

property of the ω terms by grouping the input terms such as

ω5 · x1 + ω−1
5 · x4 (11)

ω−1
5 · x1 + ω5 · x4. (12)

The ω terms can be expanded as real and imaginary parts, and
the computation can further be grouped as

Re{ω5} · (x1 + x4) + j · Im{ω5} · (x1 − x4) (13)
Re{ω5} · (x1 + x4)− j · Im{ω5} · (x1 − x4), (14)

where Re{·} and Im{·} represent the real and imaginary parts
of a complex number. Utilizing the same principle for the x2

and x3, the overall computation of the (y1, y4) output pairs
can be modified as

tr = x0 (15)
ti = 0 (16)
tr+ = Re{ω5} · (x1 + x4) (17)
ti+ = Im{ω5} · (x1 − x4) (18)

tr+ = Re{ω2
5} · (x2 + x3) (19)

ti+ = Im{ω2
5} · (x2 − x3) (20)

y1 = tr + j ∗ ti (21)
y4 = tr − j ∗ ti. (22)

Similarly, the output pair (y2, y3) can also be computed.
The overall computation is simplified. The complex mul-

tiplication with the twiddle factors is replaced with real
multiplication. The real and imaginary parts of the ω terms
are multiplied against pairs of input terms, i.e. (x1, x4) and
(x2, x3). An astute reader may identify the DFTs of size 2
being used between the pairs of inputs and outputs, respec-
tively. As depicted in Figure 1, this implementation can easily
be implemented in hardware.

III. BUILDING THE HARDWARE COMPONENTS

In this section, we present our approach to generating hard-
ware designs for prime-sized and mixed-radix Fourier trans-
forms. In our implementations we aim at generating streaming
DFT designs, where data flows through the components con-
tinuously. For the power of two sizes, bit-wise permutations
and point-wise multiplications with the twiddle factors are
mapped as streaming sub-modules and pieced together with
DFTs of sizes 2 and 4, following the implementations provided
by Spiral [13].

A. Designing the Prime-Sized Fourier Kernel

We use Chisel Hardware Construction Language (HCL) [16]
to construct a template for the prime-sized Fourier transform
as depicted in Figure 5. The template has a top module that
defines the prime-sized Fourier transform. The top module
is built up from five sub-modules, i.e. two data adjustment
sub-modules, two modules that perform pair-wise addition
and subtractions (DFT2s), and one multiply and accumulate
(MAC) module. The manner in which the sub-modules are
instantiated and pieced together is determined by 1) the
parameter configurations in the top modules and 2) the patterns
baked into the top module. The order of the sub-modules does
not change, only the stitching between each module. For the
prime DFT generator, the parameters include prime-DFT size,
streaming width, and floating point precision. In the following



Fig. 5: The Chisel template for the prime-sized Fourier trans-
form. The top module contains the corresponding modules
for data permutation, pair-wise addition and subtraction, and
multiply and accumulate. The top module specifies the size of
the DFT, the streaming width, and the floating point precision.

paragraphs, we will discuss the data adjustment and MAC sub-
modules. The DFT2 sub-modules are just butterfly operators
as depicted in Figure 1.

Data Adjustment Sub-Modules. The sub-modules re-
organize the data such that the data points are in the correct
order. For example, for the implementation of a DFT5, the
input adjustment sub-module extracts the first element x0, and
forms the pairs (x1, x4) and (x2, x3), while the output adjust-
ment module shuffles y0 and pairs (y1, y4) and (y2, y3) back
to the original order. The extract and shuffle operations can be
seen in Figure 6. In general, the prime-sized Fourier transform
reads input values xi and xn−i to produce the output values yi
and yn−i, for all values i = 1..(n−1)/2. Additionally, the first
element of the input x0 and the first element of the output y0
need to be accumulated separately. The Chisel implementation
of these sub-modules follows the general details from the work
by Püschel et. al [17], where permute units are implemented
as switch-memory-switch blocks.

Multiply and Accumulate Sub-Module. The most time
consuming part for any prime-sized Fourier transform is
represented by the multiply and accumulate (MAC) operations
as outlined in Equation 8 and Equations 17-20. The equations
can be translated into an array of MAC units as depicted
in Figure 7, where we show the array of MACs for the
DFT5 example. The top adder accumulates the updates to
y0, while the bottom two groups of multipliers and adders
perform the corresponding updates to the rest of outputs. The
first group updates the output pairs (y1, y4), and the second
updates (y2, y3). The three groups work in a pipeline fashion.

Fig. 6: The P and Q units manipulate the data. The compu-
tation required for any prime-sized Fourier transform needs
the data to be shuffled and reorganized. P extracts the first
element x0 and creates the pairs (x1, x4) and (x2, x3). The Q
block performs the opposite.

Fig. 7: The diagram that outlines the accumulator and multiply
and accumulate (MAC) units required by the DFT5. The
accumulator performs the updates to the first term y0 of
the output. The units work in a systolic fashion, each group
working on different pairs of data at a time (note the registers
R between the three groups).

We use registers in between the groups of operations to delay
the data between the units. In the first iteration, two complex
numbers produced by the DFT2 are passed to the accumulator
that updates y0. The same two complex numbers are stored
into registers to be subsequently used in the next iteration.
In the next iteration, while the accumulator unit updates y0
with the new values obtained from the DFT2, the first MAC
unit operates on the previously stored complex numbers. Each
complex number is multiplied with the corresponding real and
imaginary components of the roots of unity and accumulated to
the corresponding registers. In each iteration, new data points
are produced by the DFT2 until all blocks are processing in
parallel. Once the iterations have managed to stream the data
through, each group will output the results to a second DFT2

to form the final output results.
Note that the DFT5 requires an accumulator to hold the

updates to y0 and two groups MAC units for the remaining
four output elements. In general, for any prime-sized Fourier
transform, the total number of MAC groups, including the
accumulator, can be determined as

nMAC = 1 + (p− 1)/2, (23)

where p represents the prime size. Using this formula we
can estimate the total number of floating point adders and
multipliers needed by our implementation. Therefore, the new
prime-sized Fourier transform requires 2 ∗ (p− 1) + 2 adders
and 2 ∗ (p− 1) multipliers. In addition, a constant amount of
eight adders is needed to account for the floating point adders
present in the two DFT2.

B. The Mixed-Radix Fourier Transform

Similar to the prime-sized Fourier transform, we create a
templatized mixed-radix Fourier transform using the Chisel



Fig. 8: Two designs that correspond to the mixed-radix DFT20. Design A. has an overall streaming width of two complex
elements per cycle. As building blocks the design uses DFT2s, a DFT5, some point-wise scaling operations (orange boxes)
and some permutation units (dark grey boxes). Design B. has an overall streaming width of four complex elements per cycle.
The computation is decomposed as DFT4 and DFT5. The streaming width changes the permutation units.

Size Prime-Sized Kernel Bluestein to closest 2n

3 14 adds, 4 muls 44 adds, 40 muls
5 18 adds, 8 muls 60 adds, 48 muls
7 22 adds, 12 muls 60 adds, 48 muls

11 30 adds, 20 muls 76 adds, 54 muls
13 34 adds, 24 muls 76 adds, 54 muls

TABLE I: Comparing the number of floating point operations
for our approach of implementing the prime-sized Fourier
transform against the Bluestein algorithm. The Bluestein ap-
proach decomposes the circular matrix outlined in Figure 3
using a forward and inverse DFT and a point-wise scaling
operation of size greater than 2p, where p is the prime size.
Usually the Bluestein algorithm increases the problem size to
a power of two for which fast DFT algorithms exist.

language. We define a top module as the main transform and
the corresponding sub-modules for the different components.
The sub-modules are represented by the DFTs of the different
radix, permutation units, and point-wise scaling operations.
For the DFTs, we restrict our approach only to DFTs of size
two and four and prime size p. In addition, we organize the
DFT sub-modules such that the power of two sub-modules
go first, and then the prime-sized transforms. Depending on
the decomposition, the top-module instantiates and links the
corresponding sub-modules together. The top module accepts
as parameters the size of the Fourier transform, the streaming
width, and the data type. The configuration of parameters has
similar implications to the stand-alone prime DFT in terms of
influencing the hardware cost, parallelism, and precision.

Figure 8, outlines two hardware designs for the mixed-
radix DFT20. The first design imposes a streaming width of
two complex elements per cycle. For this design, the Chisel

generator chooses the DFT2 and DFT5 as the main compute
units and configures the permutation units accordingly. The
second design is configured with an increased streaming width
of four complex numbers per cycle. This in turn modifies
the computation kernels, by choosing a DFT4 instead of two
DFT2s. The permutation units are also configured to allow
four elements as input and four elements as output. Note that
for the this implementation, there are two DFT5s. These
two implementations are needed to remove any bubbles in
the pipeline, which may be introduced given the extra zeros
for the prime-sized Fourier transform. All other mixed-radix
Fourier transforms are generated in a similar fashion. In the
following section, we present some results using our approach
for generating mixed-radix Fourier transforms.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present experimental results for the
generated hardware for both the prime-sized Fourier transform
and the mixed-radix implementation. For each experiment, we
analyze our approach and compare it against other hardware
implementations, when possible. We also provide a discussion
of current limitations and future directions.

Methodology. As stated in the previous section, we have
created templatized implementations for both the prime-sized
Fourier transform and mixed-radix implementation, using the
Chisel HCL. The current templates are meant to generate
streaming architectures, where data flows from one sub-
module to another. We allow the user to specify the Fourier
transform size, the streaming width and the data type. The tool
will instantiate the sub-modules, create the temporary buffers
and link everything together. The generated Verilog code is
then passed through the Vivado 2023 tool chain to synthesize



Size Latency [cycles] LUTs FFs Memory [kB]

3 81 10,253 14,493 0.9
5 124 14,361 20,446 1.8
7 167 18,532 26,066 2.7
11 253 36,035 37,487 4.5
13 296 39,755 43,281 5.4

TABLE II: Results for prime-sized Fourier transforms. We re-
port the latency and the resource utilization when synthesizing
the hardware for the FPGA.

and do “place and route” for the design on the U280 Xilinx
FPGA board.

Prime-Sized Fourier Transforms. We focus first on the
prime-sized Fourier transform. Neither Spiral, nor the Xilinx
IP generator provide readily available hardware for prime-
sizes. From previous papers [14], [15], we can extract that
prime-sizes are implemented using the Bluestein algorithm.
As such, we provide a comparison of floating point operation
count between our approach and the Bluestein algorithm,
and outline the resource utilization of our approach when
targeting the U280 Xilinx FPGA. Table I outlines the different
number of floating point operations needed by our approach
and the classical implementation. The Bluestein algorithm
applies a pre/post processing step to convert the Fourier matrix
into a circular matrix as outlined in Figure 3. The matrix
is not directly applied on the data, rather it is decomposed
into a forward DFT, a point-wise scaling operation and an
inverse Fourier transform. The size of the Fourier transforms
is at least twice the size of the original prime size p. Most
implementations choose to increase the problem size to the
nearest power of two, for which efficient implementations of
the DFTs have already been developed. The problem size
increase requires data padding with zeros, which may cause
bubbles in the hardware pipelined design. In contrast, our
approach requires simple shuffle operations, and a computation
that can be done with a matrix multiply engine. Table II
outlines the resource utilization as estimated by the Vivado
tool chain. We report the number of LUTs, FFs and BRAM
utilization. We also report the latency of each of design. For
all the designs, the Vivado tool chain estimates a frequency of
280 MHz on a Xilinx Alveo U280 board.

Mixed-Radix Algorithm for Composite Sizes. We in-
tegrate the prime-sized Fourier transform into the mixed-
radix implementation. We explore different design choices
for composite sizes like 20, 28, 88, 96 and 192. Table III
outlines the latency and the resource utilization for each of
the designs. Note that we generate different designs based on
the overall streaming width (the input and output streaming
width of the entire DFT). When we increase the streaming
width, our approach increases the power of two sizes from
two to four and also duplicates the prime-sized units. Recall
that the prime-sized Fourier transform requires an insertion of
a zero term, which may cause pipeline bubbles. As expected,
increasing the streaming width, will require more resources
to be utilized. However, the number of stages is reduced and

Size SW Latency (cycles) LUTs FFs Memory [kB]

20 2 436 28,630 38,454 9.5
20 4 357 57,796 67,530 13.6
28 2 562 33,782 44,124 13.4
28 4 469 67,441 78,954 19.7
88 2 1,027 50,764 69,829 27.8
88 4 857 104,413 130,802 37.2
96 2 901 66,316 105,946 19.4
96 8 439 187,674 273,283 26.1

192 2 1,532 101,699 180,964 36.8
192 8 692 260,575 375,404 43.5

TABLE III: Results for the mixed-radix implementations using
our prime-sized Fourier transform. We report the latency and
the resource utilization when synthesizing the hardware on the
U280 FPGA.

hence the latency is decreased. All the tested designs were
able to fit on the U280 Xilinx FPGA board.

Discussion. We focused on the specialized implementa-
tion for prime-sized and mixed-radix Fourier transforms. We
presented some preliminary results. We could not compare
the designs with Spiral or the Xilinx IP generator, since
neither frameworks offered readily available hardware designs
for the selected sizes. We compared the power of two sizes
generated by our tool against the designs generated by Spiral
generated ones, and the designs are competitive. There are
still optimizations that need to be added to our approach.
First, the current implementation of the prime-sized Fourier
transform is restricted to a streaming width of two complex
elements (input and output). Increasing the streaming width
requires some minor modifications to the array of multiply and
accumulate units. Secondly, our designs require more buffers.
The adjustment sub-modules require buffers to reshape the
data. However, for mixed-radix implementations, the permu-
tation units and the adjustment modules can be merged into a
single sub-module to reduce the required memory. Lastly, the
current generator creates one dimensional Fourier transforms
for batched and non-batched data. However, the units must be
used as part of two dimensional and three dimensional Fourier
computations needed by planewave DFT codes. All these we
leave as future work.

V. CONCLUSION

This paper presents a new hardware solution for prime-sized
and mixed-radix Fourier transforms. We have implemented an
alternate kernel for prime-sizes, following the details from
a previous work. We have incorporated the novel kernel
design into a lightweight generator constructed with the Chisel
Hardware Language, which enables us to generate Verilog
code for various Fourier transforms. We used the generator
to experiment with Fourier transforms of different sizes and
streaming widths. Overall, we have provided a solution for
composite sizes that require fewer number of computational
codelets/kernels compared to the FFTW library, hence making
forward steps in providing a flexible hardware implementation
for general sizes Fourier transforms.



ACKNOWLEDGEMENT

First, we would like to thank the reviewers for the valuable
comments that helped improve and make the paper stronger.
Second, we would also like to thank Patricia Gonzalez-
Guerrero for the feedback and directions to make the story
more concise. Finally, this manuscript has been authored by
an author at Lawrence Berkeley National Laboratory under
Contract No. DE-AC02-05CH11231 with the U.S. Department
of Energy. The U.S. Government retains, and the publisher, by
accepting the article for publication, acknowledges, that the
U.S. Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for U.S.
Government purposes.

REFERENCES

[1] D. T. Popovici, D. N. Parikh, D. G. Spampinato, and T. M. Low, “Ex-
ploiting symmetries of small prime-sized dfts,” in Parallel Processing
and Applied Mathematics: 13th International Conference, PPAM 2019,
Bialystok, Poland, September 8–11, 2019, Revised Selected Papers, Part
I 13. Springer, 2020, pp. 162–173.

[2] J.-L. Vay, A. Almgren, J. Bell, L. Ge, D. Grote, M. Hogan,
O. Kononenko, R. Lehe, A. Myers, C. Ng et al., “Warp-X: A new
exascale computing platform for beam–plasma simulations,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 2018.

[3] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, “In-
troducing ONETEP: Linear-scaling density functional simulations on
parallel computers,” The Journal of Chemical Physics, vol. 122, no. 8,
p. 084119, 2005.

[4] D. T. Popovici, F. P. Russell, K. Wilkinson, C.-K. Skylaris, P. H. Kelly,
and F. Franchetti, “Generating optimized Fourier interpolation routines
for density functional theory using SPIRAL,” in 2015 IEEE International
Parallel and Distributed Processing Symposium. IEEE, 2015, pp. 743–
752.

[5] P. McCorquodale, P. Colella, G. Balls, and S. Baden, “A local corrections
algorithm for solving poisson’s equation in three dimensions,” Commu-
nications in Applied Mathematics and Computational Science, vol. 2,
no. 1, pp. 57–81, 2007.

[6] A. Zlateski, Z. Jia, K. Li, and F. Durand, “The anatomy of efficient
fft and winograd convolutions on modern cpus,” in Proceedings of the
ACM International Conference on Supercomputing, 2019, pp. 414–424.

[7] A. Zlateski, Z. Jia, K. Li, and Durand, “Fft convolutions are faster than
winograd on modern cpus, here is why,” 2018.

[8] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A GPU performance
evaluation,” arXiv preprint arXiv:1412.7580, 2014.

[9] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[10] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proc. of the IEEE, special issue on ”Program Generation,
Optimization, and Adaptation”, vol. 93, no. 2, pp. 216–231, 2005.

[11] C. M. Rader, “Discrete Fourier transforms when the number of data
samples is prime,” Proceedings of the IEEE, vol. 56, no. 6, pp. 1107–
1108, 1968.

[12] L. Bluestein, “A linear filtering approach to the computation of discrete
Fourier transform,” IEEE Transactions on Audio and Electroacoustics,
vol. 18, no. 4, pp. 451–455, 1970.

[13] F. Franchetti, T. M. Low, D. Popovici, R. M. Veras, D. G.
Spampinato, J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F.
Moura, “SPIRAL: extreme performance portability,” Proc. IEEE,
vol. 106, no. 11, pp. 1935–1968, 2018. [Online]. Available:
https://doi.org/10.1109/JPROC.2018.2873289

[14] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Hardware
implementation of the discrete fourier transform with non-power-of-two
problem size,” in 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE, 2010, pp. 1546–1549.

[15] P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer genera-
tion of hardware for linear digital signal processing transforms,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 17, no. 2, pp. 1–33, 2012.

[16] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Proceedings of the 49th Annual Design
Automation Conference, 2012, pp. 1216–1225.

[17] M. Püschel, P. A. Milder, and J. C. Hoe, “Permuting streaming data
using rams,” Journal of the ACM (JACM), vol. 56, no. 2, pp. 1–34,
2009.


