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Abstract— Operational technology (OT) systems use hardware and
software to monitor and control physical processes, devices, and infras-
tructure - often critical infrastructures. The convergence of information
technology (IT) and OT has significantly heightened the cyber threats in
OT systems. Although OT systems share many of the hardware and
software components in IT systems, these components often operate
under different expectations. In this work, several hardware root-of-
trust architectures are surveyed and the attacks each one mitigates are
compared. Attacks spanning the design, manufacturing, and deployment
life cycle of safety-critical operational technology are considered. The
survey examines architectures that provide a hardware root-of-trust
as a peripheral component in a larger system, SoC architectures with
an integrated hardware root-of-trust, and FPGA-based hardware root-
of-trust systems. Each architecture is compared based on the attacks
mitigated. The comparison demonstrates that protecting operational
technology across its complete life cycle requires multiple solutions
working in tandem.

I. INTRODUCTION

Operational Technology (OT) systems consist of sensor inputs to
understand an environment, actuation outputs to impact an envi-
ronment, and monitoring outputs to report system and environment
status to human operators. Often, an OT system’s interaction with
the physical environment makes its operation safety-critical. Nuclear
Power Plants (NPPs) represent a good illustrative example. The
potential public safety risks for these plants are great. Therefore, they
do require high-security and high-assurance of their OT to prevent
and mitigate cyber-attacks that aim to degrade safety and functionality
[1]. System architects and operators face several challenges when
maintaining the security of OT systems in NPPs. Complex supply
chains create risks of counterfeit parts [2], [3]. Integration by third
parties provides attackers an opportunity to tamper with otherwise
trusted components and firmware [4], [5]. Maintenance often requires
physical access, opening systems to risk of physical access-based
attacks, including fault injections [6].

The safety-critical nature of OT systems makes them valuable
targets for attack. In May 2021, the Colonial Pipeline operations were
disrupted by a ransomware attack on the company’s infrastructure
[7]. In December 2015, a cyber-attack on the Ukrainian power grid
caused power outages for approximately 225,000 people for several
hours [8]. As safety-critical OT systems become more connected,
attackers will have more opportunities to infiltrate and disrupt them.
Future OT systems must be designed with security in mind to ensure
their safe operation well into the future.

The use of hardware root-of-trust (RoT) solutions helps mitigate
many of the OT security challenges by enabling a system to validate
the integrity of hardware and software sub-components. Hardware
RoT solutions leverage intrinsic hardware characteristics to create the
first link in a chain of trust throughout the system. One characteristic
is the static nature of hardware; a physical component is not as easily
changed or updated as a software component. Another characteristic
is the difficulty of directly observing the internal hardware state of
integrated circuits due to both small size and time scales.
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Fig. 1: Operational Technology life-cycle.

In all, OT systems are complex heterogeneous compute and control
systems with legacy software and hardware, third party devices,
ad-hoc or changing connected networks, etc. These systems face
many cyber threats including ransomware, malware, insider threat,
denial of service (DoS) attacks, among others. Therefore, addressing
security concerns in OT systems presents many challenges covering
software, firmware, hardware, and networking aspects. In this work,
we focus our analysis on the key hardware-centric security aspects of
OT systems, in particular, how cybersecurity concerns are addressed
using hardware root-of-trust techniques. Three categories of hardware
roots-of-trust, including hardware RoT peripheral devices, integrated
System-on-Chip (SoC) architectures, and FPGA-based solutions are
examined. Each solution is compared based on the attacks mitigated.
The scope of attacks considered spans component manufacturing
time, system integration, deployment, and operation. Based on the
survey, we select a subset of attacks to use as a benchmark when
evaluating future hardware RoT architectures for OT systems. Direc-
tions for future research are discussed.

II. THREAT MODEL

Attacks against OT systems can occur at any stage of the device
life-cycle. In this work, we consider four major OT system life-cycle
stages, as presented in Figure 1:

1) Design and Development: The software and hardware of an OT
system are described in preparation for manufacturing. Software
is written, and schematics for the hardware are created.

2) Manufacturing: Individual components (integrated circuits,
printed circuit boards, system enclosures, etc.) are fabricated.

3) Integration: Individual components are incorporated into sub-
modules and complete systems.

4) Operation and Maintenance: Systems are deployed to the field,
with regular inspection and repair.

One or more un-trusted parties in the supply chain may act in a ma-
licious manner to attack a system. Previous attacks on infrastructure
have been attributed to nation-states [9] and demonstrated risks to a
victim’s national security [10]. Therefore, this work assumes attackers
are sophisticated, with plenty of resources at their disposal. Attacker
capabilities are described in terms of attack potential, defined in [11].
Attacker capabilities are broken down into six categories: elapsed
time, expertise, knowledge of the Target of Evaluation (TOE), access
to TOE samples, equipment and tools, and window of opportunity.

Elapsed Time: Due to the long deployments of OT systems,
attackers are assumed to have months or years to develop attacks.



Expertise: Supply-chain attackers are assumed to possess
proficient-level understanding of attack paths, techniques, and tools.

Knowledge of TOE: Supply-chain attackers are assumed to have
access to sensitive information related to their supply-chain task.

Access to TOE samples: Before integration time, attackers will
not have access to a complete system, unless it is obtained as an
end-user. After integration time, attackers will have access to nearly
complete systems.

Equipment and Tools: Supply-chain attackers will have access
to specialized equipment related to their position in the design,
manufacturing and integration process.

Window of Opportunity: An attacker has the entire time frame
required to complete their design, manufacturing, or integration task
to execute an attack. Attackers are assumed to have a window of
less than a day to execute attacks after deployment, i.e. during
maintenance, due to access controls and high up-time requirements.

III. HARDWARE ROT PERIPHERAL DEVICES

A. Smart Cards

Smart cards provide a hardware RoT in a small form factor that is
suitable for use alongside a more complex compute element, such as a
SoC or FPGA [12]. Smart cards provide a number of cryptographic
functions that may be used in protocols such as measured boot in
order to verify and attest to the state of the hardware and firmware of
the host machine [13]. These functions include secure key generation
and storage, encryption/decryption, and signature generation [14].

Isolating the cryptographic functions can protect them from hard-
ware or software attacks against the host machine and allow the smart
card to act as a RoT for the host. This allows smart cards to protect
against hardware attacks such as malicious insertion or substitution
and software attacks such as firmware and boot process manipulation.
Additionally, smart cards’ secure key storage prevents attackers from
gaining access to these keys through RAM/storage manipulation. In
addition to built-in features, smart cards can support user-defined
applications to provide additional custom security features. Support
for custom software allows system developers to tailor security
features to specific system requirements and threats.

Systems may interface with smart cards through a card reader or
by directly mounting discretely packaged versions of the Integrated
Circuits (IC) inside a card on the system’s printed circuit board. Smart
Card ICs generally communicate with the host machine using serial
bus communications, including Inter-integrated Circuit (I2C) or Serial
Peripheral Interface (SPI) [12], [15], or with a wireless protocol such
as Near-Field Communication (NFC) [16]. Two common smart card
operating systems are Java Cards and MULTOS [14]. MULTOS has
greater security restrictions for its applications, generally providing
greater security. However, these extra restrictions increase the pro-
gramming complexity for MULTOS applications [12].

B. OpenTitan

OpenTitan is an open source silicon RoT designed to provide a
number of security features across a variety of use cases, including
acting as a TPM [17]. OpenTitan supports customization and third-
party validation. Provided security features include full boot attesta-
tion measurements, a key manager implementation that is only able
to unlock stored secrets if its boot chain is signed correctly, and a
key versioning scheme that supports updating.

OpenTitan’s TPM features focus on supporting a secure boot
process, which begins in ROM. As the ROM cannot be updated after
manufacturing, it only performs basic setup and authentication of the
next boot stage. The enhanced Physical Memory Protection (ePMP)

Fig. 2: The DTPM Architecture.

registers ensure that only the code of the current stage of boot is
executable. The ROM extension (ROM EXT) region is an updatable
region responsible for initializing the key manager and performing
boot services such as attestation of device state. After setting up
the key manager, attesting to the device state, and configuring the
ePMP to allow for standard execution and block writes to the boot
stages, the ROM EXT jumps to the start of the device owner’s
code and secure boot ends [18]. This robust boot process, along
with its other security features, protect OpenTitan from a number of
attacks, including firmware manipulation, boot process manipulation,
malicious insertion or substitution, and scan-chain state modification.
Other TPM implementations follow a similar boot process that starts
with ROM [19]. However, unlike some other hardware RoT designs
such as Apple’s T2 chip [20], OpenTitan is open source, making it
usable and verifiable by third parties.

An implementation of the OpenTitan is the OpenTitan Earl Grey
microcontroller, a low-power secure microcontroller. It has a single
RV32IMCB core that achieves a CoreMark per MHz of 2.36 [18],
similar to Intel’s Pentium MMX (2.33) or Core 2 Duo T7200 (2.64)
[21]. Power and area usage are not reported in OpenTitan’s design
specifications.

IV. INTEGRATED HARDWARE ROT SOC ARCHITECTURES

A. DTPM

The Dynamic Trusted Platform Module (DTPM), shown in Fig-
ure 2, is an on-chip TPM merged with the processor pipeline. The
DTPM is similar to a TPM in that it is also used to verify executables.
However, TPMs only verify these programs at load time, meaning
an attacker can modify the program after it is loaded. The DTPM
is designed to check programs at runtime to defend against attacks
after program load time [22].

The DTPM verifies programs at runtime by calculating the hash of
each trace in a program and comparing that to pre-computed hashes
stored on disk. In order to balance pipeline stalls, number of hashes,
and the size of the input to the SHA-1 hash function used, each
trace is made up of at most four basic blocks. Each basic block is
a section of code with one entry point and one exit point. To verify
these traces, the DTPM must be built directly into the processor
pipeline. Each time a new trace is loaded into the CPU, the DTPM
begins hashing and verifying the trace. The trace must be verified
before any instruction in the trace can commit.

While DTPM provides mitigation against runtime control-flow
attacks, it carries significant performance overheads - including an
average execution cycle increase of 250x. Thus, its designers imple-
mented a number of different optimizations to reduce this impact.
The first is to only check the 10% of the code that is most frequently
executed, as processors spend 90% of their time executing this code.
The second optimization is a 32 KB Hash Trace Cache (HTC).
The HTC caches the hashes fetched from the disk, thus reducing
the number of disk accesses needed. These optimizations reduce the
performance impact from 250x to 1.35x. A third optimization is to



use part of the RAM in the operating system address space as another
layer of caching. This reduces the performance impact from 1.35x to
1.18x. While the DTPM is the only surveyed hardware RoT that can
defend against runtime control-flow attacks, the protection of only the
10% most commonly executed code means that programs running on
a machine with an active DTPM are only protected from these attacks
90% of the time.

The DTPM has an area overhead of 2.5%. Its total dynamic power
at maximum frequency was 0.0968 W, and its total standby leakage
power was 0.0257 W. The DTPM does not require Instruction Set
Architecture (ISA) or code modification [22].

B. RECORD

Reconfigurable Edge Computing for Optimum Resource Distribu-
tion (RECORD) is a System-on-Chip (SoC) architecture designed
with a hardware RoT for low-power edge devices [23]. RECORD
is made up of the RoT Unit, an RV32I RISC-V core, and domain-
specific accelerators. The RISC-V core and the accelerators share a
dedicated bus and communicate through data memory and are not
logically connected to the RoT unit to isolate it from attack.

The RECORD Root-of-Trust Unit includes several features de-
signed to mitigate attacks against unattended edge systems, where
attackers may gain physical access. RECORD aims to mitigate
firmware manipulation, boot process manipulation, malicious in-
sertion and substitution, scan-chain state modification, off-chip
RAM modification, clock fault injections, and timing side channels.
RECORD does not defend against other side-channel attacks such as
power and Electromagnetic (EM) side-channels.

The RoT unit is made up of a Built-In Self-Test (BIST) mod-
ule, data bus access control modules, a programmable Finite State
Machine (FSM), e-fused boot memory, programmable instruction
memory, a programmable interrupt controller (PIC), and it executes
RoT Unit code on the built-in RISC-V core. The programmable
FSM receives inputs from the microcontroller and each accelerator.
The FSM outputs set memory access policies enforced by the
access control modules attached to each memory bus. The FSM
configuration memory is e-fused at deployment time to prevent an
attacker from altering it in the field. The BIST module checks the
circuitry of the RoT unit for manufacturing defects and eliminates
the need for a scan-chain that attackers could use to observe or
alter internal processor state. RECORD’s boot memory stores code
used by the RoT unit for its software features. E-Fuses ensure the
boot memory cannot be altered after deployment. The remaining
programmable instruction memory code is verified using the hard-
coded public key, allowing for updates from trusted parties only.
These features allow RECORD to operate using little power while
mitigating several powerful attacks based on physical access. The
RoT unit requires 201 FPGA slices and 62 BRAM tiles, constituting
a total of 13.7% slice overhead and 34.4% BRAM tile overhead.

C. Stratix 10 Security Device Manager

The Stratix 10 FPGA’s Security Device Manager (SDM) [24]
includes a microcontroller and other “hard” Intellectual Property (IP)
blocks to protect an FPGA-based system from tampering. Features in-
clude cryptographic accelerators, secure key storage, temperature and
voltage tamper sensors, redundant microcontrollers, scan-chain autho-
rization, and a Physical Unclonable Function (PUF) [24]. Combined,
the features of the SDM support tamper detection and prevention. The
SDM features have been developed to mitigate bitstream/firmware
tampering, bitstream cloning, and key theft attacks.
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Fig. 3: Intel Stratix 10 FPGA (a) bit-stream encryption, and (b) scan-
chain authentication.

Bitstream encryption significantly increases the difficulty of IP re-
verse engineering. An attacker must successfully decrypt a bitstream
before they can begin to understand the logic circuit the bitstream
describes. Understanding the logic circuit is an essential step in
a bitstream tampering attack, as an attacker must understand the
device circuit before malicious modifications can be made. Bitstream
encryption based on e-Fused key storage and PUF challenge-response
pairs are supported. Device-specific keys, either PUF based or stored
in e-Fused secure memory, prevent duplication of FPGA bit-streams,
i.e. an encrypted bitstream for one device cannot be used to configure
another. To modify the bitsteams of multiple FPGAs with per-
device keys, an attacker must obtain the unique key for each FPGA,
further raising the difficulty of an attack. Secure debug authorization
mitigates scan-chain attacks that might otherwise leak information
about internal system state. To use a system’s scan chain, a device
user must authenticate against a secret key stored on the device.
Additional inputs from the configurable logic fabric enable user-
defined tamper detection triggers. Custom tamper triggers support
anti-tamper enclosures around the device, increasing the difficulty
for an attacker to access bitstream configurations or secret key
memory. The device configuration interface can also be disabled
with e-Fuses in response to a tamper event. The SDM supports
several levels of tamper response, including alarm-only, configurable
fabric reset, fabric reset and memory/key zeroization, and a device
“self-kill”, which sets off e-Fuses to prevent future FPGA bit-stream
configurations. Figure 3(a) depicts the Stratix 10 bitstream encryption
and Figure 3(b) depicts the Stratix 10 scan-chain authentication and
e-Fuses.

V. FPGA-BASED HARDWARE ROT ARCHITECTURES

A. Reconfiguration-Based Instruction Decoder Obfuscation

The authors of [25] leverage reconfigurable logic to implement
an obfuscated CPU instruction decode unit. Reconfigurable logic
allows for the creation of designs that cannot be directly targeted
in manufacturing-time attacks. Therefore, the obfuscated instruction
decode logic is used as a RoT in a system that aims to mitigate
a narrow set of manufacturing-time hardware Trojans, namely code
injection hardware Trojans.

Implementing the CPU’s Instruction Decode Unit (IDU) in an
FPGA means that the CPU’s instruction decoding circuitry is not
revealed to the manufacturer, significantly increasing the difficulty
of a manufacturing-time attack. Instruction-decode hardware Trojans
must target the reconfigurable logic, instead of directly targeting
the decoding circuit, increasing Trojan complexity. Additionally, the
regular patterns of reconfigurable logic could be leveraged to simplify
hardware Trojan detection with destructive reverse engineering. Re-
configurable decode logic ensures instruction-decode Trojans cannot
directly issue instructions in the processor pipeline. Figure 4 depicts
a code injection Trojan and the reconfigurable IDU mitigation.

The designers found that this increases the minimum area of a
code injection Trojan by 82.7%. Given that the FPGA IDU increases
the area of the processor by 34.7%, a 1% increase in the area of the
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Fig. 5: MORPH defends against hardware Trojans by configuring
hardware resources to different locations within the FPGA.

processor requires a 2.38% increase in the area of a code injection
Trojan [25]. While this design only defends against one type of
hardware Trojan, it can be effective in increasing the difficulty and
size of potential hardware Trojans.

B. MORPH

Morph Onion-encryption Replication PRR HAL (MORPH) is an
FPGA-based hardware RoT designed to protect against design- and
fabrication-time hardware Trojans. It is implemented in an FPGA,
in which a Partial Runtime Reconfiguration (PRR) based Hardware
Abstraction Layer (HAL) acts as the trusted computing base and per-
forms a number of security operations to defend against application
code or data leaks. These security operations defend MORPH from
many different kinds of attacks. MORPH’s trusted computing base
includes its BOOT HAL, HAL, and cryptographic key storage. If
these structures are not compromised, MORPH is the only hardware
RoT surveyed that can defend against design-time and fabrication-
time hardware Trojans [26].

This defense is achieved through its morph operation, as even if an
attacker knows the configuration of MORPH they will not know the
location of the IP cores used. Movement of IPs is depicted in Figure 5.
In this operation, the HAL rearranges hardware resources to different
locations within the FPGA. This form of moving target defense
varies the attack surface at runtime, increasing the difficulty of attack.
The second security operation is onion-encryption, in which memory
is encrypted in multiple layers along its path through the system.
Memory is encrypted between the processor and the L1 cache, and
between the L1 and L2 caches. This encryption helps protect against
leakage of code and data - a compromise of one of the layers of
encryption will not compromise data or code confidentiality. MORPH
also includes three L2 cryptographic modules and a voting protocol
between these three. This replication helps defend against design-
time hardware Trojans, as any Trojan would need to successfully
attack two of the three cryptographic modules. This replication is
limited to the outermost cryptographic modules used in the onion-
encryption. PRR is used by MORPH to dynamically relocate IP
blocks on the FPGA fabric without interrupting the normal flow of
execution, i.e. resets or reboots. Periodic reconfiguration of FPGA
resources greatly increases the difficulty of a hardware Trojan attack,
as the manufacturer cannot know the exact location of specific logic
signals targeted by a hardware Trojan. The HAL in MORPH is
more active than the HALs generally used in operating systems. It
is responsible for bootstrapping the SoC, managing cryptographic

keys, and randomly morphing itself and SoC cores. Code running on
MORPH executes without knowledge of these operations.

MORPH’s HAL processor uses 96 FPGA slices and 16 BRAMs,
and the five AES modules required for MORPH use 370 FPGA slices.
SoC reconfiguration takes about 10 ms, adding a 10% overhead to
a baseline boot process. While its dynamic power usage was not
quantified as this is application specific, its static power overhead
was less than 1% [26].

VI. ENUMERATED ATTACK DESCRIPTIONS

This section describes each attack mitigated by at least one sur-
veyed hardware RoT architecture. For each attack, the requirements
for successful mitigation are defined.

a) Design-Time Hardware Trojans: A malicious designer or
IP vendor may leverage their knowledge of the target to insert a
hardware Trojan into the system design. Trojans may be inserted at
the Register Transfer Level (RTL) level, or as discrete components
on a Printed Circuit Board (PCB). Third-party IP provides a powerful
avenue of attack for hardware Trojans [27]. The complexity of
modern IC design means that system architects frequently purchase
third-party IP modules for use in their systems. To protect their
IP, vendors often release modules as black boxes that are difficult
for users to inspect. A well-designed hardware Trojan will not be
observable during functional testing. To successfully mitigate design-
time Trojans, a system must maintain continued and safe operation
while under attack. Mitigation may include steps at design-time to
establish trust in IP or reaction at runtime to reduce or limit the
impact of a Trojan payload.

b) Fabrication-Time Hardware Trojans: A malicious manu-
facturer may exploit their access to specialized equipment to alter an
otherwise secure design provided by a customer. Hardware Trojans
may be inserted during intermediate steps in the manufacturing
process. The specialized nature of the required equipment and tools
makes it difficult for a customer to validate that a manufactured
product matches their design. Examples include A2 [28] and MOLES
[29]. The A2 hardware Trojan is inserted into a complete design
between placed cells and routed wires. The A2 Trojan connects a
sensitive control wire (e.g. processor privilege level) to a software
controllable flag (e.g. floating point divide by zero). Fabrication-time
hardware Trojans may also exist at different system abstraction levels
ranging from the circuit level within an IC to whole components on
a PCB. Ensuring a design from an un-trusted manufacturer is Trojan
free is often not possible without destructive reverse engineering.
Therefore, mitigation is limited to deployment and runtime for
operational systems. Successful mitigation should detect or disrupt
a Trojan payload, limiting the scope of damage it may cause.

c) Firmware Manipulation: System firmware is typically
stored in non-volatile memory, commonly in external flash chips.
Non-volatile firmware storage presents a simple target for attackers
interested in gaining low-level control over a system. Attackers may
corrupt sensitive portions of the firmware or entirely replace it with a
malicious version, granting them control over the software execution
environment of a system [30]. Re-writing firmware is possible without
specialized tools and requires little expertise. Executing an attack that
erases and re-writes firmware can take as little as a few minutes,
enabling attacks at system integration time or during operation and
maintenance. Successful mitigation of firmware manipulation should
detect and prevent modified firmware from executing on a system.

d) Malicious Insertion: Insertions by an attacker can include
hardware and software additions. Hardware Trojans are added to
a device at design or fabrication time, while malicious insertion



refers to the addition of components after fabrication time. During
system integration, an un-trusted link in the supply chain may insert
additional components into a design. Alternatively, valid components
may be replaced with counterfeits. Counterfeits may have functional
differences or merely a reduced operating range across voltage or
temperature. A system integrator’s position in the supply chain
provides them with the detailed knowledge required for a malicious
insertion. Components may be replaced or inserted without additional
equipment or tools beyond what is needed to integrate the system.
Successful mitigation of malicious insertions should identify inserted
components and limit their access to system resources.

e) Scan-Chain State Modification: An attacker with physical
access to a device may access the scan-chain to observe or modify
internal systems not accessible through system I/O. Scan-chain based
attacks occur after device deployment on an operational system, or
on a system removed from operation by the attacker. Successful scan-
chain attack mitigation should prevent an attacker from changing or
leaking internal system state through the scan-chain.

f) Off-Chip RAM Modification: Off-chip memory is vulnerable
to tampering by an attacker with physical access to a system. Memory
may be arbitrarily written by an attacker capable of probing the
bus between the processor and memory. The tools required in a
probing attack depend on the speed and complexity of the targeted
memory. High-frequency memory buses will require more specialized
equipment to probe, while low-speed buses may be probed with
consumer-grade tools. These attacks may be mitigated by moving
RAM on-chip or by encrypting data before storing it off-chip.

g) Timing Side-Channels: Attackers may observe timing side
channels to leak information about a system. For instance, timing
side channels in cryptographic operations may leak secret keys.
Timing side-channels can be exploited with both physical and remote
access to a system. Cache-based timing side channels have proven
to be especially powerful tools for attackers to leak information [31]
[32]. Side-channel attacks occur during system operation, limiting
the window of opportunity for an attacker. However, supply-chain
attackers can leverage their access to find or insert side-channels that
support an attack during operation [29]. A system should ensure
that its execution time is not dependent on sensitive or secret
information (such as cryptographic keys) to mitigate timing side-
channels. Systems may target a constant runtime or an obfuscated
runtime with additional noise to prevent leakage of secret information.

h) Clock Fault Injection: With physical access to a system,
attackers may tamper with input and output signals to the system
and specific components. By altering a clock signal to operate beyond
the device specification, an attacker can trigger incorrect behavior in
digital circuits [33]. This incorrect behavior can cause processors to
skip critical instructions or force digital logic to register an incorrect
result. Successful mitigation of clock fault injection requires fault
detection or prevention. Detection of faults allows for potential cor-
rection. Elevating the difficulty of successful fault injection increases
the skill and effort required by an attacker, reducing the likelihood
of a successful attack.

i) Runtime Control-Flow Attacks: Runtime control-flow at-
tacks occur when an attacker can alter the execution path of a program
in order to gain control of the victim’s machine. Examples include
return-to-libc [34], Return-Oriented Programming [35], and Control-
Flow Bending [36]. These attacks are often enabled by memory
corruption attacks such as buffer overflow and format string overflow
[37]. Attackers can leverage successful runtime control-flow attacks
to execute arbitrary code - [34] showed return-to-libc attacks to
be Turing complete. Successful mitigation must either remove the

software vulnerability that enabled the attack or prevent an attacker
from impacting the system’s state.

VII. ROT ARCHITECTURE COMPARISON AND DISCUSSION

This section provides a comparison of the surveyed architectures
and describes how each architecture mitigates an attack. Table I sum-
marizes the comparison and attacks mitigated by each architecture.

a) Smart Cards: Smart cards support mitigation of firmware
manipulation in a connected system by providing signature verifi-
cation of firmware [13]. Malicious insertions can be mitigated with
sealed keys based on the system configuration [13]. As a peripheral
device, smart cards cannot mitigate main memory modification for
their host device. However, direct memory modification attacks on
the smart card itself are mitigated with on-chip memory, eliminating
external memory buses for an attacker to probe. Similarly to memory
modification, a smart card cannot mitigate timing side-channels
or clock fault injections against its host system, but can mitigate
direct attacks on the smart card. Cryptographic algorithms can be
implemented to execute in constant time, decoupling execution time
from secret data [14]. Use of an internal clock for critical logic can
mitigate clock fault injection attacks.

b) OpenTitan: The OpenTitan platform provides a hardware
RoT that mitigates firmware manipulation with firmware and boot-
loader authentication executed by code stored in ROM [17]. When
acting as a Trusted Platform Module (TPM), OpenTitan can prevent
malicious insertion on additional devices by authenticating the current
system configuration before proceeding with a boot process. The
OpenTitan Earl Grey microcontroller mitigates off-chip memory
modification by eliminating off-chip memory [18]. Clock fault in-
jections are mitigated with on-chip clocks and related control logic.

c) Dynamic Trusted Platform Module (DTPM): The DTPM
is built directly into a processor pipeline to measure and validate the
processor’s execution trace at runtime [22]. Runtime validation of the
execution trace mitigates attacks between a TPM’s Time-of-Check
(TOC) and Time-of-Use (TOU) [22]. Instead of verifying firmware
and applications at boot-time, the DTPM validates them at runtime,
mitigating firmware manipulations that can occur after the TOC, early
in the boot process. Control flow attacks are mitigated by verifying
hashes of basic block traces, thus detecting execution of unexpected
basic blocks [22]. The DTPM demonstrates the advantage of runtime-
based defenses over one-time checks before application execution.

d) RECORD: The RECORD SoC architecture mitigates
firmware manipulation during operation or maintenance with
hardware-enforced signature verification on all programmable code
and data [23]. When the device powers on, e-Fused boot memory
executes a signature verification program before allowing execution
of other software. A built-in self-test replaces an externally exposed
scan chain for sensitive processor state, mitigating scan-chain attacks.
Memory modification and probing attacks are made more difficult by
including all memory on-chip. The RECORD SoC does not include
a cache hierarchy, mitigating all cache-based timing side-channels.
The single-cycle microcontroller executes each instruction with the
same latency, simplifying the development of constant time software
to mitigate other timing side-channels. Including an on-chip oscillator
increases the difficulty of clock fault injection attacks, as the attacker
cannot supply an arbitrary clock signal to the device.

e) Stratix 10 Security Device Manager: Little independent
literature exists to evaluate the effectiveness of the Stratix 10 security
features. However, public documentation is available to provide an
understanding of the device’s security features [24]. The Stratix 10
FPGA SDM features described in the public documentation focus



TABLE I: Hardware RoT Architectures and Mitigated Attacks

Threat/Attack Smart
Cards

Open-
Titan DTPM RECORD 

SoC
Stratix 10

SDM
Reconfig. 

IDU MORPH

Design-Time
Hardware Trojans ✓

Fabrication-Time
Hardware Trojans ✓ ✓

Firmware Manipulation ✓ ✓ ✓ ✓ ✓
Malicious Insertion ✓ ✓ ✓
Scan-chain State 
Modification ✓ ✓ ✓

Off-chip RAM 
Modification ✓ Some ✓ ✓

Timing Side-Channels ✓ ✓
Clock Fault Injection ✓ Some ✓ ✓
Control-Flow Attacks ✓

on anti-tamper and bit-stream authentication capabilities. Support
for signed and encrypted bit-streams mitigates bit-stream (firmware)
manipulation [24]. Built-in scan-chain authentication aims to prevent
unauthorized users from accessing internal device state. Hard and
user-configurable anti-tamper sensors can be used to detect power
or clock fault injections, triggering a tamper response by the device.
Tamper responses allow the FPGA to erase sensitive state to protect
secret information and even completely disable device configuration,
preventing future attacks.

f) Reconfiguration-Based Instruction Decoder Obfuscation:
Re-configurable instruction decode logic increases the complexity
of a manufacturing-time Trojan attack, as the final device config-
uration is shared with the device manufacturer. Trojans targeting
the re-configurable instruction decode logic must either test for
the current configuration before successfully executing an attack or
provide dedicated decode logic outside of the re-configurable fabric
[25]. Duplicating decode logic increases Trojan area by at least
82.7% [25], increasing their overhead and making them easier to
detect. Reconfiguration is also leveraged to support instruction set
randomization, preventing the identification of critical operations for
attack or Trojan triggering [25]. Additionally, any Trojans inserted by
the manufacturer may be defeated with updates to the configurable
logic once they are discovered. However, ROM-based code injection
Trojans are only one of many different Trojan attacks. A manufacturer
capable of developing a ROM Trojan can likely target other areas of
a processor beyond the instruction decode unit. Additional hardware
modules could be replaced with re-configurable logic with a higher
performance overhead, but such overheads have not been evaluated.

g) MORPH: The MORPH architecture includes several secu-
rity features that aim to mitigate design-time and fabrication-time
Trojans. A hardware abstraction layer controls IP core placement on
an FPGA fabric to obscure the exact location of a module from the
manufacturer [26]. Partial runtime reconfiguration supports dynamic
placement of IP cores to further ensure a manufacturer cannot
know the location at manufacturing-time, limiting manufacturing-
time attacks to targeting the fixed FPGA fabric [26]. Encryption
at each layer of the cache hierarchy prevents data leakage without
compromising the encryption of every layer [26]. This encryption
also prevents off-chip RAM modification from being able to control
the chip’s function. To prevent design-time Trojans from breaking
encryption, multiple independently designed, functionally equivalent
cryptographic modules are used in a voting scheme [26]. The
MORPH architecture relies on a hard boot processor to configure the
dynamic IP cores. Visual inspection or destructive reverse engineering
may be used to validate the small boot core responsible for managing
the FPGA reconfiguration [26]. Validating a small core is considered
more tractable than validating an entire processor.

A. Benchmark Attack Selection

Generally, a single solution cannot mitigate every attack possible.
As such, the following attacks are selected as a benchmark to support
evaluation of future hardware RoT systems:

1) Firmware Manipulation: Altering the firmware of a system
requires relatively little specialized hardware or software, compared
to hardware-based attacks examined in this work. Widely available
software tools lower the barriers required to execute such an attack.
Often, the ability to write arbitrary firmware provides complete
control of the software execution environment of a device. The
relatively low effort required and risks to system integrity should
make firmware manipulation a priority for evaluation and mitigation.

2) Hardware Trojans: Trojan attacks are high-effort, high-
reward attacks. Inserting a Trojan requires a deep understanding of the
system design and, for manufacturing-time Trojans, control over the
component fabrication. However, the difficulty in detecting Trojans
makes them one of the most challenging attacks to mitigate. Trojan
attacks have been selected to represent a worst-case scenario supply-
chain attack where an attacker has detailed knowledge of the design
and manufacturing process.

3) Malicious Insertion: Instead of altering the construction
of a component, malicious insertions replace whole components.
Switching components in a system requires less effort than a Trojan
insertion, but still provides opportunity to gain a high degree of
control over a system. Additionally, malicious insertion may be
motivated by cost-cutting pressure instead of a desire to directly
attack a system. The reduced effort required, combined with the
potential financial cost-cutting incentive, make malicious insertion
an important threat to evaluate mitigations against.

Attacks including fault injections, physical probing, and many
side-channel attacks require more resources, i.e., time and access,
from an attacker than the other selected attacks. Such attacks have
been omitted from the initial benchmark to emphasize the lower-cost
supply-chain attacks. Analysis that aims to mitigate more capable
attackers may extend the selected benchmarks with additional phys-
ical access-based attacks. Software-based vulnerabilities, including
runtime control-flow attacks, are omitted because they are not unique
to OT systems and may be mitigated with more general solutions.

VIII. CONCLUSION AND FUTURE WORK

This survey has examined several hardware root-of-trust architec-
tures that mitigate hardware and software attacks across the life-
cycle of operational technology systems. The breadth of attacks faced
by OT systems means that no single solution can mitigate attacks
across design, manufacturing, integration and operation stages. The
survey demonstrates that design-time attacks are especially difficult
to mitigate, requiring focused solutions in custom architectures.
Meanwhile, small, limited systems, such as smart cards, provide
the strongest security protections at the expense of performance and
flexibility. Results of the survey show that, together, reconfiguration
and run-time monitoring can create a hardware root-of-trust capable
of mitigating a variety of supply-chain attacks, including hardware
Trojans and firmware manipulation. Reconfiguration adds resiliency
to design, manufacturing, and integration time attacks, while run-
time analysis detects malicious system behavior. Incorporating both
techniques into systems offers a promising solution for the devel-
opment of future operational technology systems resilient to supply-
chain attacks.
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