
FFTX-IRIS: A Dynamic Execution System for
Heterogeneous Platforms

Sanil Rao∗, Mohammad Alaul Haque Monil†, Het Mankad∗, Jeffrey Vetter†, Franz Franchetti∗
∗Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
†Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

∗{hmankad, sanilr, franzf}@andrew.cmu.edu, †{monilm, vetter}@ornl.gov

Abstract—FFTX-IRIS is a dynamic system to efficiently utilize
novel heterogeneous platforms. This system links two next gener-
ation frameworks, FFTX and IRIS, to navigate the complexity of
different hardware architectures. FFTX provides a runtime code
generation framework for high performance kernels. IRIS pro-
vides a heterogeneous runtime environment allowing computation
on any available compute resource. Together, FFTX-IRIS enables
seamless portability and performance without user involvement.
We show the design of the FFTX-IRIS system as well as a simple
example of a common Fast Fourier Transform(FFT).

I. INTRODUCTION

Next generation computation systems are becoming increas-
ing heterogeneous to satisfy modern application’s computa-
tional needs. This heterogeneity comes at the cost of increased
complexity to modern application developers. Developers need
to focus on portability of applications across a wide variety
of target hardware platforms as well as performance on
each platform. This new focus distracts developers from the
application itself, instead spending time on tedious porting and
specifics of computer architecture.

To combat this issue we propose FFTX-IRIS, a dynamic
system to address the complexities of next generation systems.
FFTX-IRIS handles the performance and portability of modern
applications in the backend while providing developers a
familiar library style API. In the backend, FFTX-IRIS uses
a combination of code generation, Just-In-Time compilation,
and dynamic runtime scheduling to enable efficient use of all
available computing platforms.

II. BACKGROUND

FFTX-IRIS consists of two critical software frameworks,
FFTX, and IRIS. We provide a brief overview of each frame-
work before showing by example, the new FFTX-IRIS design.

FFTX. The FFTX project is a high performance library
designed to provide common FFT transforms for new hard-
ware architectures. Unlike traditional libraries, FFTX uses a
combination of a code generator, SPIRAL [1], and Just-In-
Time compilation as its library backend. This is in contrast
to hand written routines implementing library function calls.
This approach enables increased optimization and portability
of applications across different hardware platforms.

IRIS. IRIS [2] is a programming system for extremely het-
erogeneous architectures. IRIS enables application developers
to write portable applications across diverse heterogeneous
programming platforms including CUDA, HIP, Level Zero,

OpenCL, and OpenMP. It orchestrates multiple programming
platforms in a system into a single execution/programming
environment by providing portable tasks and shared virtual
device memory.

III. FFTX-IRIS DESIGN: MULTI-DIMENSIONAL FFT
EXAMPLE

We describe the design of FFTX-IRIS by going through a
simple Multi-Dimensional FFT(MDDFT) example end to end.

1 #include <iris/iris.hpp>
2 #include <iris/iris_openmp.h>
3 #include <include/interface.hpp>
4 #include <include/mddftlib.hpp>
5 #include <stdio.h>
6 #include <iostream>
7 #include <vector>
8

9 int main(int argc, char** argv) {
10 int n,m,k;
11 n = 8;
12 m = 8;
13 k = 8;
14 std::vector<int> sizes{n,m,k};
15 double *Y, *X, *sym;
16 X = new double[n*m*k*2];
17 Y = new double[n*m*k*2];
18 sym = new double[n*m*k*2];
19 generateInputBuffer(X, sizes);
20 std::vector<void*> args{Y,X,sym};
21 MDDFTProblem mdp(args,sizes,"mddft");
22 mdp.transform();
23 for(int i = 0; i < n*m*k; i++) {
24 std::cout << Y[i] << std::endl;
25 }
26 return 0;
27 }

Fig. 1. MMDFT Application using the FFTX-IRIS system

Figure 1 shows a user written MDDFT application with
traditional C++ style. The user declares some sizes and creates
some buffers for the input and output of the FFT. They then
create and instantiate the FFTX problem object (the library
API of FFTX) and call transform to perform the computation
after which they print the result to verify correctness. FFTX-
IRIS follows a header only design, allowing for minimal if any
changes to the source application. If our example application
had already been written using a different FFT API one would
simply have to replace the library calls with FFTX while
keeping the rest the same.

To compile the application one has to go through the
traditional compilation steps using a standard C++ compiler
making sure to include the directories of FFTX and IRIS.
The user must also specify all target platforms they would
want the application to run on by setting the IRIS_ARCHS

environment variable. For this example we will say that we
are running on a compute node that has an NVIDIA GPU
as an target platform. After the MDDFTProblem is executed
the backend FFTX system is invoked. MDDFTProblem is a
derived class of the general FFTXProblem [3] which contains
the functions for all the transforms supported by FFTX. In the
FFTXProblem a transform script is generated which describes
computation being performed, using runtime information like
the sizes the user wrote, called semantics. Semantics is the
input to the SPIRAL code generation system which generates
an efficient implementation for our NVIDIA GPU target at the
user specified size. This code is written to disk so that it can
be seen by the IRIS runtime system. Writing to disk also acts
as a caching mechanism, allowing reuse in future runs of the
application.

After the generated code has been written to disk the IRIS
backend is initialized. In this phase the first step takes the
generated code and compiles to the appropriate hardware
assembly; PTX in our specific example for NVIDIA platforms.
Then the IRIS setup phase is invoked to create the IRIS
runtime task. This task is setup in the following manner.
First a simple parser is used to parse the metadata of the
generated code. This provides information such as kernel
names, kernel launch parameters, and internal device arrays.
Next iris memory objects are created which mirror the memory
objects created by the user. These memory objects are then
populated with the data of the mirrored user objects using
the general iris host-to-device call. Finally the task is created
which captures all the above information and includes the
kernel names and kernel launch parameters. These are sent to
the iris scheduler to be scheduled and executed on the target
platform, the NVIDIA GPU.

Once the execution of all the kernels is complete a data
transfer from the GPU is initialized to move the data back to
the user memory object. This allows for termination of the
IRIS system and a move back to the original application. In
the user application the user prints the output data as a result
of performing the transform, which will contain the output
of the code run on the GPU. This entire process was done
transparently to the user as it was all hidden in the backend,
while the frontend just used the high level FFTX library API.

IV. FFTX-IRIS OVERHEAD

Introducing a runtime system like FFTX-IRIS comes at
the cost of additional overhead. Code-generation and runtime
scheduling are happening at runtime when they weren’t hap-
pening before. Figure 2 shows that overhead of the example 8
by 8 by 8 MDDFT application using FFTX-IRIS. Given that
this run is a small size the overhead is significant but reduced
by an order of magnitude thanks to caching. We expect larger

sizes to be less impacted due to increased computation of the
original application and optimization of the generated code.

Fig. 2. Overhead of FFTX-IRIS System with and without caching for 8x8x8
MDDFT [4]

V. CONCLUSION

FFTX-IRIS is a novel software framework for accelerating
applications on heterogeneous platforms. It takes two inde-
pendent frameworks, FFTX and IRIS, and integrates them
to provide increased performance on many new hardware
platforms. FFTX is the user facing kernel framework, pro-
viding optimized computation kernels. IRIS is the backend
heterogeneous runtime system executing FFTX kernels on any
and all available target platforms. FFTX-IRIS is transparent to
the user, obfuscating complicated application porting. Moving
forward, FFTX-IRIS will be able to supported increased
heterogeneity by running on multiple platforms at the same
time.

VI. ACKNOWLEDGEMENTS

This research used resources of the Experimental Comput-
ing Laboratory (ExCL) at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] F. Franchetti, T.-M. Low, T. Popovici, R. Veras, D. G. Spampinato,
J. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura, “SPIRAL:
Extreme performance portability,” Proceedings of the IEEE, special issue
on “From High Level Specification to High Performance Code”, vol. 106,
no. 11, 2018.

[2] J. Kim, S. Lee, B. Johnston, and J. S. Vetter, “IRIS: A portable runtime
system exploiting multiple heterogeneous programming systems,” in 2021
IEEE High Performance Extreme Computing Conference, HPEC 2021,
Waltham, MA, USA, September 20-24, 2021, pp. 1–8, IEEE, 2021.

[3] S. Rao, A. Kutuluru, P. Brouwer, S. McMillan, and F. Franchetti,
“GBTLX: A First Look,” in 2020 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, 2020.

[4] “CuFFT.” Available at https://docs.nvidia.com/cuda/cufft/index.html.

