
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Composable Just-In-Time Programming
Framework with LLMs and FBP

Andy Vidan
Composable Analytics, Inc.

Cambridge, MA USA
andy@composableanalytics.com

Lars Fiedler
Composable Analytics, Inc.

Cambridge, MA USA
lars@composableanalytics.com

Abstract— This paper introduces a computing framework that
combines Flow-Based Programming (FBP) and Large Language
Models (LLMs) to enable Just-In-Time Programming (JITP).
JITP empowers users, regardless of their programming expertise,
to actively participate in the development and automation process
by leveraging their task-time algorithmic insights. By seamlessly
integrating LLMs into the FBP workflow, the framework allows
users to request and generate code in real-time, enabling dynamic
code execution within a flow-based program. The paper explores
the motivations, principles, and benefits of JITP, showcasing its
potential in automating tasks, orchestrating data workflows, and
accelerating software development. Through a fully implemented
JITP framework using the Composable platform, we explore
several examples and use cases to illustrate the benefits of the
framework in data engineering, data science and software
development. The results demonstrate how the fusion of FBP and
LLMs creates a powerful and user-centric computing paradigm.

Keywords—just-in-time programming, large language models,
flow-based programming;

I. INTRODUCTION
In the ever-evolving landscape of software development,

traditional approaches often struggle to keep up with dynamic
user requirements. To address this challenge, we introduce the
concept of Just-In-Time Programming (JITP) and develop a
JITP computing framework by integrating Flow-Based
Programming (FBP) and Large Language Models (LLMs). This
paper explores the motivations, principles, and benefits of JITP,
showcasing its potential for orchestrating complex data
workflows, building task automation processes and developing
software solutions. We demonstrate a fully implemented JITP
framework using the Composable DataOps Platform [1] and
show that flow-based programming techniques and large
language models provide a powerful framework for end-users to
implement algorithms during task execution.

To motivate and provide context for Just-In-Time
Programming, we first consider Just-In-Time Analytics. Just-In-
Time Analytics is an approach that focuses on providing end-
users with the ability to query and interrogate data directly to
build analytical products that contain timely and relevant
insights. It involves the real-time analysis of data and the
delivery of actionable information precisely when it is needed
during their decision-making processes. By minimizing delays
and optimizing data processing and delivery, Just-In-Time
Analytics enables users to make informed decisions based on
up-to-date and contextually appropriate information.

Just-In-Time Analytics has demonstrated the value of real-
time insights in data analysis, empowering organizations to
make timely and informed decisions. This success highlights the
potential for a similar concept in programming. Traditional
programming methods often require extensive upfront planning
and design, which may not align with the dynamic nature of user
tasks. Just-In-Time Programming aims to bridge this gap by
allowing users to implement algorithms during task execution,
aligning software functionality with immediate needs.

Just-In-Time Programming is centered around empowering
users to actively engage in programming and task automation
during task execution, rather than relying solely on pre-designed
software solutions [2]. In this paradigm, the user takes on a
central role, irrespective of their programming expertise or
experience level. Whether a novice user or an experienced
programmer, individuals can benefit from a JITP approach.

For novice users, JITP offers a user-friendly and accessible
entry point into programming. It enables them to recognize
algorithmic opportunities and implement computing solutions in
real-time, without the need for extensive prior programming
knowledge. By embracing JITP, novices can leverage their
domain expertise and insights gained during task execution to
create software solutions tailored to their specific needs without
being constrained by the limitations of pre-designed software.

Experienced programmers can also find value in JITP as it
provides them with a more interactive and dynamic
programming experience. Instead of following a linear and
predetermined development process, they can embrace the
flexibility and agility of JITP to rapidly prototype, test, and
refine their algorithms during task execution. This real-time
feedback loop allows programmers to fine-tune their code based
on immediate results and user requirements, leading to more
efficient and effective solutions. Additionally, experienced
programmers can leverage JITP to explore innovative
approaches, as they have the capability to envision and
implement complex algorithms on the fly.

Regardless of the user’s programming expertise, JITP
empowers individuals to be actively involved in the
development process, aligning it with their specific goals and
requirements. By placing the user at the forefront, JITP fosters a
more inclusive computing environment, bridging the gap
between users and developers. It encourages users to embrace
their algorithmic insights, regardless of their programming
background, and provides them with the tools and capabilities to

transform these insights into functional and practical software
solutions.

II. JUST-IN-TIME PROGRAMMING PARADIGM
Computing paradigms, such as procedural, object-oriented

and functional programming, represent different approaches or
models for solving computational problems [3]. These
paradigms provide a conceptual framework and guidelines for
structuring and organizing the development of software systems.
They define the fundamental principles, methodologies, and
patterns that shape how computations are performed and how
problems are solved within a specific paradigm. Developers
often choose a computing framework and paradigm based on the
specific requirements of their software projects, the nature of the
problem being solved, and the desired trade-offs in terms of
performance, scalability, maintainability, and ease of
development.

Just-In-Time Programming takes a task-oriented focus,
where users concentrate on tasks (and their subtasks), with task
completion as the primary goal [2]. During task execution, users
envision algorithms to complete subtasks and improve
efficiency. JITP enables the immediate implementation of these
algorithms, leveraging the user’s insights and enhancing task
completion in real-time.

JITP offers the following benefits as a computing paradigm:

1) Dynamic and Adaptive Computing: JITP addresses the
limitations of pre-designed software by enabling users to
develop and program tasks while they are in progress. This
dynamic and adaptive nature allows for real-time adjustments
to meet evolving requirements, making computing more
responsive and aligned with immediate user needs. JITP
leverages user insights and domain expertise, resulting in
tailored solutions that optimize task completion efficiency.

2) User Empowerment: JITP places the user at the center of
the programming process. Whether the user is a novice or an
experienced programmer, JITP enables individuals to recognize
algorithmic opportunities during task execution and implement
them just in time. This user-centric approach empowers non-
programmers to augment software engineers and reduces the
reliance on dedicated software development teams, fostering a
more inclusive and efficient computing environment.

3) Increased Productivity: By developing, implementing
and automating potential computer subtasks during task
execution, JITP significantly enhances productivity. JITP
allows users to capitalize on their algorithmic insights
immediately, resulting in faster and more efficient task
completion.

4) Improved Task Understanding and Innovation: JITP
encourages users to gain a deeper understanding of their tasks
and subtasks. By actively engaging with the programming
process during task execution, users become more aware of the
underlying algorithms and automation possibilities within their
domain. This heightened understanding can lead to innovative
solutions, as users are more likely to identify new approaches
and optimize existing ones based on their firsthand experience.

5) Flexibility and Adaptability: JITP thrives in
environments characterized by rapidly changing requirements
and dynamic task execution. As tasks evolve or new insights
emerge, users can quickly modify and extend their
implemented algorithms to accommodate these changes,
fostering a flexible and agile computing framework.

6) Rapid Prototyping and Iterative Development: JITP
supports rapid prototyping and iterative development. Users
can experiment with different algorithms and automation
strategies on the fly, testing their effectiveness and refining
them iteratively. This iterative development process allows for
continuous improvement, reducing the time between idea
conception and deployment. JITP’s inherent modularity
facilitates easy integration and replacement of components,
enabling efficient prototyping and experimentation.

7) Enhanced Error Detection and Debugging: JITP
provides the opportunity for immediate error detection and
debugging. Since users are actively involved in the
programming process, they can quickly identify and address
issues as they arise, minimizing the impact on task completion.

Just-In-Time Programming (JITP) represents a user-centric

computing paradigm, empowering users to implement
algorithms and develop tasks during task execution. By
embracing JITP, users gain the ability to leverage algorithmic
insights in real-time, resulting in increased productivity,
flexibility, and innovation.

III. JUST-IN-TIME PROGRAMMING COMPUTING FRAMEWORK
For JITP to achieve mainstream adoption, it is important to

develop a framework that provides a structured approach to
building software applications and can accommodate any
required computation, as it must be responsive to any user input.
Here, we demonstrate that integration of flow-based
programming techniques and large language models provide an
ideal JITP computing framework.

Flow-Based Programming (FBP) offers a structured,
modular and reactive workflow model that aligns well with the
dynamic nature of task execution and algorithm implementation
[4,5]. Similarly, Large Language Models (LLMs) allows for the
expressive capacity to represent and manipulate any computable
function [6]. The combination of FBP and LLMs allows us to
define a general-purpose, Turing-complete programming
environment.

A. Principles of Flow-Based Programming
Flow-Based Programming is a programming paradigm that

focuses on the flow of data between components, emphasizing
modularity, reusability, and reactive processing. In FBP, the
execution of a program is driven by the flow of data, rather than
being strictly controlled by a predefined sequence of operations.

The key principles of FBP include:

1) Component-Based Design: FBP encourages breaking
down a system into smaller, self-contained components. These
components have well-defined inputs and outputs, facilitating
modularity, code reuse, and easy maintenance.

2) Data Streams and Connections: FBP emphasizes the
flow of data streams between components. Components can
receive input data, process it, and produce output data that is
then passed to downstream components. The connections
between components define the flow of data, allowing for
flexible and reactive execution.

3) Asynchronous and Reactive Execution: FBP promotes
an asynchronous and reactive execution model. Components
react to incoming data, processing it as soon as it becomes
available, enabling real-time responsiveness and dynamic task
adaptation.

The integration of Flow-Based Programming (FBP) within

the JITP framework offers several benefits that enhance task-
time development:

1) Modularity and Reusability: FBP’s component-based
design fosters modularity and code reusability. Components
can be easily connected and combined, allowing users to create
flexible and scalable solutions. This modularity also enables
incremental development and iterative improvements, aligning
well with the JITP approach.

2) Dynamic Task Adaptation: FBP’s reactive execution
model enables components to react to incoming data in real-
time. This flexibility allows for dynamic task adaptation, where
the solution can adjust and respond to changing task
requirements or data inputs. JITP leverages this adaptability to
accommodate evolving user needs and algorithmic insights
during task execution.

3) Scalability and Parallelism: FBP inherently supports
parallel processing and scalability. By leveraging the flow of
data between components, tasks can be distributed across
multiple processing units, improving performance and
efficiency. This scalability is particularly beneficial when
dealing with computationally intensive tasks or large datasets.

4) Visualization and Debugging: FBP frameworks often
provide visual representations of the data flow and component
connections, facilitating visualization and debugging of the
automation solution. This visual feedback enhances user
understanding and aids in identifying and resolving issues
during algorithm implementation.

B. Large Language Models
Large Language Models (LLMs) are advanced artificial

intelligence (AI) models designed to understand and generate
human language [7,8,9]. These models, built using deep learning
techniques, have been trained on vast amounts of text data from
diverse sources such as books, articles, and websites. LLMs
excel at tasks such as natural language understanding, text
generation, translation, summarization, and have found
applications in a wide range of domains, including chatbots,
virtual assistants, content generation, language translation,
content filtering, and more [10].

LLMs can also be extensively trained on diverse code
repositories and documentation, so that the models acquire an
understanding of programming syntax, structures, and patterns
[11]. LLMs can therefore generate software code by leveraging

their language processing capabilities and knowledge of
programming concepts. When tasked with generating software
code, LLMs can take high-level instructions or prompts
provided by users and generate corresponding code snippets or
even complete programs. They can analyze the context, infer the
desired functionality, and generate code that aligns with the
specified requirements.

LLMs can be considered Turing complete [12]. While LLMs
are not specifically designed for general-purpose computation
like traditional programming languages, they possess the
underlying capability to simulate other Turing-complete
systems given enough time and resources. This property stems
from the expressive capacity of LLMs to represent and
manipulate information in the form of text sequences. In the
context of JITP, LLMs provide the required “back-end” for a
Turing complete JITP environment by responding to user
requests, generating code in real time, and seamlessly
integrating the code within the rest of the (flow-based)
execution.

Integrating Large Language Models (LLMs) with Flow-
Based Programming (FBP) can create a powerful framework for
Just-In-Time Programming (JITP), combining the capabilities
of advanced language models with the modular and reactive
workflow of FBP. LLMs leverage their language understanding
and code generation capabilities to enable users to express their
algorithmic insights and automate tasks in real time. Flow-based
programming, with its visual representation of tasks and data
flow, provides the overall structured approach by facilitating the
incorporation of dynamically generated code into the overall
execution workflow.

C. Framework Implementation Strategy
To develop an effective JITP framework, we integrate LLMs

with FBP in the following way, taking into account certain
considerations.

1) Identify Task-Specific LLMs: Begin by identifying the
LLMs that are most relevant to the specific task domain. Select
LLMs that align with the programming language or task
requirements to enhance the JITP capabilities.

2) Define LLM Components: Next, define LLM
components within the FBP framework and design the
components to encapsulate the complexity of interacting with
the LLMs and provide a simple interface for other components
to utilize.These components encapsulate the interactions with
LLMs, such as sending input text, retrieving generated code or
responses, and managing the LLM state.

3) Establish Data Flow: Design the data flow between the
LLM components and other components within the FBP
framework. Determine the input data required by the LLM
component, such as task descriptions, code snippets, or user
instructions. Define the outputs from the LLM components,
such as generated code, text responses, or relevant suggestions.

4) Enable Reactive Execution: Leverage the reactive
execution model of FBP to trigger LLM interactions based on
incoming data or events. For example, when a user provides a
task description or requests assistance, the relevant LLM
component can be triggered to generate code that is then

subsequently executed. Ensure that the LLM components are
reactive and responsive to changes in data inputs, enabling
dynamic JITP capabilities.

5) Handle LLM State Management: LLMs often have a
limited context window, meaning they may not have full access
to the entire task history. To overcome this limitation, consider
incorporating mechanisms to manage the state of the LLMs.
This can involve maintaining a context buffer or session
management to provide relevant contextual information to the
LLM component during task execution.

6) Visualize and Debug LLM Interactions: Utilize
visualization and debugging tools provided by the FBP
framework to monitor the interactions with LLM components.
This enables users to understand the flow of data, identify
potential bottlenecks, and troubleshoot any issues related to
LLM interactions. Visualization tools can also aid in
interpreting LLM-generated outputs and ensuring they align
with the desired outcomes.

7) Iterate and Improve: Continuously iterate on the LLM
integration within the JITP framework based on user feedback,
task requirements, and performance evaluation. Refine the
LLM components, data flow, and reactive execution to
optimize the JITP experience. Incorporate user preferences and
algorithmic insights gained during task execution to further
enhance the efficiency and effectiveness of the JITP
framework.

By integrating LLMs with FBP, developers can leverage the

language modeling capabilities of LLMs within the JITP
framework, enabling users to generate code, receive
suggestions, or obtain relevant information in real-time. This
integration combines the strengths of advanced language models
with the modularity, scalability, and adaptability of FBP,
resulting in a powerful JITP framework capable of supporting a
wide range of use cases.

IV. COMPOSABLE JUST-IN-TIME PROGRAMMING PLATFORM
Composable DataOps Platform [1] is a cutting-edge

platform initially developed at MIT that is able to integrate
Flow-Based Programming and Large Language Models into a
robust JITP computing framework. This innovative combination
empowers users to leverage the power of LLMs and harness the
flexibility of flow-based programming to create, automate, and
optimize software solutions in real time.

As a computing framework, Composable provides a
structured and comprehensive platform with a set of pre-defined
components and built-in tools and libraries for building software
applications. By incorporating FBP principles, Composable
offers a visual and intuitive environment for designing and
orchestrating complex workflows. Users can graphically
represent their tasks, data flow, and interactions, enabling a
holistic view of their processes. This visual representation
simplifies the understanding and manipulation of data pipelines,
making it easier to identify bottlenecks, optimize performance,
and ensure maintainability.

Flow-based programs in Composable, called “DataFlows”,
are represented as event-driven workflows, as shown in Figure

1. Each DataFlow consists of one or more Modules that are
connected together to produce higher-level functionality.
Composable Modules are atomic processing elements with
strongly typed inputs and outputs. All information required for
a Module to execute is retrieved from its inputs through
connections. Modules can be reused easily and interchanged
with other Modules. As shown in Figure 1, a Module takes in
one or more inputs, and produces one or more outputs. These
outputs can then be connected to any number of other Module
inputs.

Fig. 1. Schematic representation of a flow-based program, called a DataFlow
within the Composable platform. Composable Modules are functional blocks
that take in one or many inputs, and produces one or many outputs. These
outputs can then be connected to any number of other Module inputs to form a
DataFlow.

End-users can compose unique DataFlow Applications by
dragging and dropping Modules and connecting them together
in an “infinitely configurable” modular design. Composable is
designed to handle all data types, and is flexible regarding the
consumption of all data sources.

Modules that execute LLM computations can be created. In
this article, we demonstrate the use of OpenAI’s publicly-
available ChatGPT application as the back-end LLM for the
JITP framework [13,14]. While ChatGPT is primarily trained on
vast amounts of text data and excels at natural language
understanding and generation, and other LLMs may be better
suited for software code generation, ChatGPT, with its simple
API interface [15], is sufficient for our demonstration purposes.
Composable is not limited to using just this LLM, and can, in
fact, be extended to utilize other purpose-built LLMs [16].

The following sections demonstrate several examples of the
Composable JITP implementation.

A. JIT Code Generation Module
First, we will define a “JIT Code Generation” DataFlow that

will serve as an “App Reference” Module (a Module that calls
another DataFlow Application) within other DataFlows. The
“JIT Code Generation” DataFlow, shown in Figure 2, simply
consists of a WebClient Robust Module that accepts a single
string input as a prompt, makes a http request against the
ChatGPT API, and returns the response. Note that while we are
using OpenAI’s ChatGPT API as our LLM, we can simply “plug
in” other LLM implementations.

The WebClient Robust Module uses the following
parameters:

• Uri: https://api.openai.com/v1/chat/completions

• Method: POST

• Content-Type: application/json

• Header: A Key Value Pair Module with Key
“Authorization” and Value “Bearer < API _key>”

We externalize one input and two outputs:

• Input: We use an External String Input Module, so
that we can externalize the input to other DataFlows.
The string input is used as a parameter in the String
Formatter Module, to format the end-user prompt
with the syntactically correct json request payload.

• Output: Status code of the web request (e.g., 200).

• Output: String output, after first extracting the json
value using the JSONPath Query Module, followed
by a Regex Replace Module. We use the Regex
Replace Module because ChatGPT usually returns
code proceeded with backticks (`), that we use to parse
out the actual raw code from the extraneous natural
language within the response.

Fig. 2. “JIT Code Generation” DataFlow.

We can use the “JIT Code Generation” DataFlow as an “App
Reference” Module within our main execution DataFlow. One
of the powerful features of Composable’s FBP framework is that
DataFlows can be called in this way from within other
DataFlows. Figure 3 shows how we can find the newly created
DataFlow shown in Figure 2 in the Module Palette, and simply
drag and drop it onto the Designer canvas. The App Reference
Module shows the single externalized input for the request
prompt and the two externalized outputs for the web request
status code and raw code text response.

Fig. 3. The “JIT Code Generation” DataFlow can be used as an App Reference
Module within a new DataFlow.

B. Simple, Just-In-Time Arithmetic
As an initial simple Just-In-Time Programming example, we

can use the following prompt:

Write a python function called gptFunction that adds two
integers. Only return the raw python code.

We can add a Python Code Module to the DataFlow, which
executes a given Python code block with a defined function, as
well as two integer inputs, as shown in Figure 4. Figure 5 shows
the new output given a slightly altered prompt requesting
subtraction rather than addition, showing how easy it is to
program just-in-time.

Fig. 4. Simple Just-In-Time Programming DataFlow that requests the addition
of two integers, generates code and executes the code for two given inputs. The
results after execution is shown for two given inputs.

Fig. 5. Simple Just-In-Time Programming DataFlow that requests the
subtraction of two integers, generates code and executes the code for two given
inputs. The results after execution is shown for two given inputs.

C. Primality Test
In this next example, we request a just-in-time algorithm for

determining whether an input number is prime.

Figure 6 shows a DataFlow that provides a single integer
input and uses the following prompt:

Write a python script that checks if a given command line
integer input is prime. Only return the raw python code.

The “JIT Code Generation” DataFlow returns a Python
script that is immediately executed, and with an input of 31 as
shown in Figure 6, it returns “31 is prime!”.

Fig. 6. Primality Test DataFlow showing the just-in-time code being
generated and executed.

This DataFlow may be better integrated with other
DataFlows if the Primality Test result is simply a Boolean (0 or
1). We can therefore simply adjust the input prompt:

Write a python script that returns a 1 if a given command
line integer input is prime and a 0 if not. Only return the raw
python code.

The new just-in-time DataFlow and execution results are
shown in Figure 7.

Fig. 7. Revised Primality Test DataFlow showing the just-in-time code being
generated and executed.

D. Generating New Data
In this next example, we show that Just-In-Time

Programming can allow a user to generate a dataset.

Here, we use as our prompt:

Define a pandas dataframe called composable_table_out
with column State that contains all States in the USA that border
the ocean.

The “JIT Code Generation” DataFlow returns the Python
script that is executed by the DataFlow shown in Figure 8.

Fig. 8. Generating a new data table using Just-In-Time Programming with the
input requesting a list of U.S. states that border the ocean.

E. Table Manipulation
More complex data processing workflows generally require

the manipulation of tables. Here we show a request to select only
records that appear more than once in an input table.

Our prompt is:

For a given pandas dataframe called input_dfs[0], define
composable_table_out to contain only those records that are
duplicates.

The generated Python is shown in Figure 9, and the
DataFlow and results are shown in Figure 10.

Fig. 9. Just-in-time code snippet that was generated by the LLM for the input
requesting the selection of duplicate records in a dataframe.

Fig. 10. Table and Data manipulation using JIT programming. We pass in a
table with duplicate records, and retrieve only those duplicate records.

V. ENSURING TRUST
While pre-trained foundational LLMs can generate software

code, as shown in the above examples with OpenAI’s ChatGPT,
a language model specifically trained on software source code
can provide greater accuracy and contextual understanding.
Specifically, models that are trained on a massive dataset of
source code can capture code structures and coding conventions
and can produce code that is more contextually appropriate,
adheres to coding best practices, and aligns with the desired
functionality. The domain-specific understanding of a LLM for
code can ensure that the generated code is of higher quality and
meets the specific requirements of software development tasks,
and more practically, the generated responses can contain just
raw code, and not any extraneous text or language.

 When developing software, even in a just-in-time
programming paradigm, we want to ensure trust in the software
[17]. In this context, we define trust to mean that the code
performs its intended functions correctly and predictably, and
that the resulting end-to-end system delivers accurate results,
responds to inputs appropriately, and operates without
unexpected failures or errors. When the LLM generates just a
raw block of text as code to be executed, it is difficult to ensure
trust as it requires an expert programmer to read each block of

#python
import pandas as pd
Assuming input_dfs[0] is your pandas dataframe
Find duplicate records
duplicates = input_dfs[0][input_dfs[0].duplicated()]
Create composable_table_out with only duplicate records
composable_table_out = duplicates.copy()
Display composable_table_out
print(composable_table_out)

generated code, check it for accuracy, and test it. We see this in
the above examples, where the complexity increases from the
simple algorithms (for arithmetic operations) to more complex
algorithms (primality test) and even more complex data
manipulation (finding duplicates).

To overcome this limitation and ensure trust in the JITP
framework, we use a LLM to generate not just a block of text to
be used as executable code, but rather generate a complete,
visual, flow-based program. Specifically, we generate a
DataFlow, a visual algorithm composed of pre-defined
functional blocks (Modules), to ensure consistency, accuracy
and reliability. Our approach leverages two key features of
Composable and FBP:

• Strongly Typed Modules: The Composable FBP
framework enforces strong typing of Modules,
ensuring that data types are explicitly defined and
consistent throughout the DataFlow.

• Loose Coupling: The Composable FBP framework
promotes loose coupling between Modules, meaning
that Modules are decoupled from each other and
communicate through well-defined data interfaces.

By generating flow-based programs just in time, we benefit
from the following features:

• Visualization of Control Flow: Visual flow-based
programs provide a graphical representation of the
program’s control flow. The flowchart-like diagrams
make it easier to comprehend the program's logic and
control structures. This visualization aids in
understanding the program's intended behavior,
making it less prone to errors and enabling better
accuracy during development and debugging.

• Clear Representation of Data Flow: Visual flow-based
programming emphasizes the flow of data between
different components. By explicitly representing data
connections and transformations, it becomes easier to
track and validate the data flow within the program.
This clarity helps in ensuring correctness and
identifying potential issues or bugs related to data
handling.

• Reduced Functional Errors: Since the logic is
constructed using pre-built functional components,
flow-based programs can largely eliminate the
potential for underlying errors in the required functions
and improve the overall correctness.

• Reduced Cognitive Load: Visual flow-based
programming reduces the cognitive load on developers
by providing a more intuitive and visual representation
of the program. The use of visual blocks and diagrams
makes it easier to understand complex logic and
relationships between program components. This
decreased cognitive load leads to fewer mistakes and
better accuracy during development.

• Simpler Debugging Process: When debugging visual
flow-based programs, it is often easier to identify and
isolate errors. The graphical representation allows

developers to visually trace the execution path, track
data flow, and identify problematic areas. This ease of
debugging helps in identifying and rectifying issues
more efficiently, resulting in improved correctness and
accuracy.

As an example, we begin with a simple DataFlow that takes
two integer inputs, performs an arithmetic computation
(addition, subtraction, …), and returns an integer. The DataFlow
is shown in Figure 11, and consists of the following Modules:

• Two External Int Input Modules for the integer inputs

• A Calculator Module to perform the arithmetic
computation (e.g., addition)

• An External Int Output Module for the integer output

Fig. 11. A simple DataFlow that takes two integers, adds them, and returns an
integer.

We are able to convert this visual flow-based program into
structured source code (e.g., in C#) using Composable’s
FluentAPI, a set of C# classes that interact with Composable
services [1]. In this way, the DataFlow shown in Figure 11 can
be represented as code shown in Figure 12, and the LLM can be
trained to generate new DataFlows.

Fig. 12. nippet of code equivalent of the DataFlow shown in Figure 14.

We can see this in action by, for example, enhancing the
DataFlow in Figure 11 with the following prompt:

Generate a program that takes 2 External Integer Inputs,
feeds them into a Calculator Module for addition, then feeds it
into another Calculator Module along with a third External
Integer Inputs for addition, and returns an External Integer
Output.

The generated output is shown in Figure 13 as code and Figure
14 as a visual DataFlow.

using CompAnalytics.Contracts;
using CompAnalytics.FluentAPI;
using System;

public class Program
{
 private static CompAnalytics.IServices.Deploy.ResourceManager

CreateManager()
 {
 CompAnalytics.IServices.Deploy.ConnectionSettings

connectionSettings =
 new CompAnalytics.IServices.Deploy.ConnectionSettings();

Fig. 13. Snippet of code generated by the LLM to represent the new DataFlow.

Fig. 14. DataFlow generated by a purpose-built LLM based on a given prompt.

VI. CONCLUSION
Just-In-Time Programming offers a user-centric approach to

programming by allowing algorithm implementation during task
execution. By aligning software functionality with dynamic user
requirements, JITP empowers users to leverage their algorithmic
insights and implement tasks and subtasks in real-time. The
integration of flow-based programming techniques and Large
Language Models presents a promising avenue for a JITP
framework. Task-oriented focus lies at the core of JITP, with
LLMs generating the immediate implementation of algorithms
and FBP orchestrating task completion in real-time.

In this paper, we demonstrate the use of Composable as a
state-of-the-art JITP computing framework that seamlessly
integrates Flow-Based Programming techniques with Large
Language Models. By harnessing the power of LLMs within a
visual and intuitive environment, Composable enables users to
express their algorithmic insights in real time, automate tasks,
and rapidly prototype software solutions. The versatility of the
Composable JITP Platform extends across various domains and
use cases. In data science and analytics, users can leverage
LLMs to generate code for data preprocessing, feature

engineering, and model evaluation, while orchestrating complex
data workflows with FBP principles. In software development,
Composable facilitates rapid prototyping, automates repetitive
tasks, and allows for the development of large, microservices-
based architectures, with seamless integration of LLM-
generated code within the larger codebase. Additionally,
Composable finds applications in natural language processing,
machine learning, robotic process automation, and more, where
the combination of LLMs and FBP principles offers
unparalleled flexibility and agility.

REFERENCES
[1] [online] Available: https://docs.composable.ai
[2] R. Potter, “Just-in-time programming,” in “Watch What I Do:

Programming by Demonstration,” edited by A. Cypher, MIT Press, 1993.
Available: http://acypher.com/wwid/

[3] P. Van Roy, et al., “Programming paradigms for dummies: What every
programmer should know,” New Computational Paradigms for Computer
Music, 104, pp. 616–621 (2009).

[4] J. P. Morrison, “Flow-based programming,” Proc. 1st International
Workshop on Software Engineering for Parallel and Distributed Systems,
pp. 25–29, 1994.

[5] J. P. Morrison, “Flow-Based Programming, 2nd Edition: A New
Approach to Application Development” Scotts Valley, CA, USA:
CreateSpace, 2nd ed. 2010.

[6] A. Tamkin, et al. “Understanding the capabilities, limitations, and societal
impact of large language models,” arXiv:2102.02503 (2021).

[7] P. J. Liu, et al. “Generating wikipedia by summarizing long sequences,”
arXiv:1801.10198 (2018).

[8] A. Radford, et al. “Improving language understanding by generative pre-
training,” (2018). [online] Available: https://s3-us-west-
2.amazonaws.com/openai-assets/research-covers/language-
unsupervised/language_understanding_paper.pdf

[9] J. Devlin, et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding,” arXiv:1810.04805 (2018).

[10] R. Bommasani, et al. “On the opportunities and risks of foundation
models,” arXiv:2108.07258, 2021.

[11] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming
(MAPS 2022), pp.1–10, 2022.

[12] J. Roberts, “On the Computational Power of Decoder-Only Transformer
Language Models” arXiv:2305.17026, 2023.

[13] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. “Language models are
few-shot learners,” arXiv:2005.14165, 2020.

[14] OpenAI, “Gpt-4 technical report,” arXiv:2303.08774, 2023.
[15] [online] Available: https://platform.openai.com/docs/
[16] L. Fan, et al. “A bibliometric review of large language models research

from 2017 to 2023,” arXiv:2304.02020 (2023).
[17] S. Banerjee, et al. “Leveraging architectural models to inject trust into

software systems,” Proceedings of the 2005 workshop on Software
engineering for secure systems—building trustworthy applications. 2005.

using CompAnalytics.Contracts;
using CompAnalytics.FluentAPI;
using System;

public class Program
{
 private static CompAnalytics.IServices.Deploy.ResourceManager

CreateManager()
 {
 CompAnalytics.IServices.Deploy.ConnectionSettings

connectionSettings = new
CompAnalytics.IServices.Deploy.ConnectionSettings();

