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Abstract— This paper introduces a computing framework that 
combines Flow-Based Programming (FBP) and Large Language 
Models (LLMs) to enable Just-In-Time Programming (JITP). 
JITP empowers users, regardless of their programming expertise, 
to actively participate in the development and automation process 
by leveraging their task-time algorithmic insights. By seamlessly 
integrating LLMs into the FBP workflow, the framework allows 
users to request and generate code in real-time, enabling dynamic 
code execution within a flow-based program. The paper explores 
the motivations, principles, and benefits of JITP, showcasing its 
potential in automating tasks, orchestrating data workflows, and 
accelerating software development. Through a fully implemented 
JITP framework using the Composable platform, we explore 
several examples and use cases to illustrate the benefits of the 
framework in data engineering, data science and software 
development. The results demonstrate how the fusion of FBP and 
LLMs creates a powerful and user-centric computing paradigm.  

Keywords—just-in-time programming, large language models, 
flow-based programming; 

I. INTRODUCTION 
In the ever-evolving landscape of software development, 

traditional approaches often struggle to keep up with dynamic 
user requirements. To address this challenge, we introduce the 
concept of Just-In-Time Programming (JITP) and develop a 
JITP computing framework by integrating Flow-Based 
Programming (FBP) and Large Language Models (LLMs). This 
paper explores the motivations, principles, and benefits of JITP, 
showcasing its potential for orchestrating complex data 
workflows, building task automation processes and developing 
software solutions. We demonstrate a fully implemented JITP 
framework using the Composable DataOps Platform [1] and 
show that flow-based programming techniques and large 
language models provide a powerful framework for end-users to 
implement algorithms during task execution. 

To motivate and provide context for Just-In-Time 
Programming, we first consider Just-In-Time Analytics. Just-In-
Time Analytics is an approach that focuses on providing end-
users with the ability to query and interrogate data directly to 
build analytical products that contain timely and relevant 
insights. It involves the real-time analysis of data and the 
delivery of actionable information precisely when it is needed 
during their decision-making processes. By minimizing delays 
and optimizing data processing and delivery, Just-In-Time 
Analytics enables users to make informed decisions based on 
up-to-date and contextually appropriate information.  

Just-In-Time Analytics has demonstrated the value of real-
time insights in data analysis, empowering organizations to 
make timely and informed decisions. This success highlights the 
potential for a similar concept in programming. Traditional 
programming methods often require extensive upfront planning 
and design, which may not align with the dynamic nature of user 
tasks. Just-In-Time Programming aims to bridge this gap by 
allowing users to implement algorithms during task execution, 
aligning software functionality with immediate needs. 

Just-In-Time Programming is centered around empowering 
users to actively engage in programming and task automation 
during task execution, rather than relying solely on pre-designed 
software solutions [2]. In this paradigm, the user takes on a 
central role, irrespective of their programming expertise or 
experience level. Whether a novice user or an experienced 
programmer, individuals can benefit from a  JITP approach. 

For novice users, JITP offers a user-friendly and accessible 
entry point into programming. It enables them to recognize 
algorithmic opportunities and implement computing solutions in 
real-time, without the need for extensive prior programming 
knowledge. By embracing JITP, novices can leverage their 
domain expertise and insights gained during task execution to 
create software solutions tailored to their specific needs without 
being constrained by the limitations of pre-designed software. 

Experienced programmers can also find value in JITP as it 
provides them with a more interactive and dynamic 
programming experience. Instead of following a linear and 
predetermined development process, they can embrace the 
flexibility and agility of JITP to rapidly prototype, test, and 
refine their algorithms during task execution. This real-time 
feedback loop allows programmers to fine-tune their code based 
on immediate results and user requirements, leading to more 
efficient and effective solutions. Additionally, experienced 
programmers can leverage JITP to explore innovative 
approaches, as they have the capability to envision and 
implement complex algorithms on the fly. 

Regardless of the user’s programming expertise, JITP 
empowers individuals to be actively involved in the 
development process, aligning it with their specific goals and 
requirements. By placing the user at the forefront, JITP fosters a 
more inclusive computing environment, bridging the gap 
between users and developers. It encourages users to embrace 
their algorithmic insights, regardless of their programming 
background, and provides them with the tools and capabilities to 



transform these insights into functional and practical software 
solutions. 

II. JUST-IN-TIME PROGRAMMING PARADIGM 
Computing paradigms, such as procedural, object-oriented 

and functional programming, represent different approaches or 
models for solving computational problems [3]. These 
paradigms provide a conceptual framework and guidelines for 
structuring and organizing the development of software systems. 
They define the fundamental principles, methodologies, and 
patterns that shape how computations are performed and how 
problems are solved within a specific paradigm. Developers 
often choose a computing framework and paradigm based on the 
specific requirements of their software projects, the nature of the 
problem being solved, and the desired trade-offs in terms of 
performance, scalability, maintainability, and ease of 
development. 

Just-In-Time Programming takes a task-oriented focus, 
where users concentrate on tasks (and their subtasks), with task 
completion as the primary goal [2]. During task execution, users 
envision algorithms to complete subtasks and improve 
efficiency. JITP enables the immediate implementation of these 
algorithms, leveraging the user’s insights and enhancing task 
completion in real-time. 

JITP offers the following benefits as a computing paradigm: 

1) Dynamic and Adaptive Computing: JITP addresses the 
limitations of pre-designed software by enabling users to 
develop and program tasks while they are in progress. This 
dynamic and adaptive nature allows for real-time adjustments 
to meet evolving requirements, making computing more 
responsive and aligned with immediate user needs. JITP 
leverages user insights and domain expertise, resulting in 
tailored solutions that optimize task completion efficiency. 

2) User Empowerment: JITP places the user at the center of 
the programming process. Whether the user is a novice or an 
experienced programmer, JITP enables individuals to recognize 
algorithmic opportunities during task execution and implement 
them just in time. This user-centric approach empowers non-
programmers to augment software engineers and reduces the 
reliance on dedicated software development teams, fostering a 
more inclusive and efficient computing environment. 

3) Increased Productivity: By developing, implementing 
and automating potential computer subtasks during task 
execution, JITP significantly enhances productivity. JITP 
allows users to capitalize on their algorithmic insights 
immediately, resulting in faster and more efficient task 
completion. 

4) Improved Task Understanding and Innovation: JITP 
encourages users to gain a deeper understanding of their tasks 
and subtasks. By actively engaging with the programming 
process during task execution, users become more aware of the 
underlying algorithms and automation possibilities within their 
domain. This heightened understanding can lead to innovative 
solutions, as users are more likely to identify new approaches 
and optimize existing ones based on their firsthand experience. 

5) Flexibility and Adaptability: JITP thrives in 
environments characterized by rapidly changing requirements 
and dynamic task execution. As tasks evolve or new insights 
emerge, users can quickly modify and extend their 
implemented algorithms to accommodate these changes, 
fostering a flexible and agile computing framework. 

6) Rapid Prototyping and Iterative Development: JITP 
supports rapid prototyping and iterative development. Users 
can experiment with different algorithms and automation 
strategies on the fly, testing their effectiveness and refining 
them iteratively. This iterative development process allows for 
continuous improvement, reducing the time between idea 
conception and deployment. JITP’s inherent modularity 
facilitates easy integration and replacement of components, 
enabling efficient prototyping and experimentation. 

7) Enhanced Error Detection and Debugging: JITP 
provides the opportunity for immediate error detection and 
debugging. Since users are actively involved in the 
programming process, they can quickly identify and address 
issues as they arise, minimizing the impact on task completion. 

 
Just-In-Time Programming (JITP) represents a user-centric 

computing paradigm, empowering users to implement 
algorithms and develop tasks during task execution. By 
embracing JITP, users gain the ability to leverage algorithmic 
insights in real-time, resulting in increased productivity, 
flexibility, and innovation. 

III. JUST-IN-TIME PROGRAMMING COMPUTING FRAMEWORK 
For JITP to achieve mainstream adoption, it is important to 

develop a framework that provides a structured approach to 
building software applications and can accommodate any 
required computation, as it must be responsive to any user input. 
Here, we demonstrate that integration of flow-based 
programming techniques and large language models provide an 
ideal JITP computing framework. 

Flow-Based Programming (FBP) offers a structured, 
modular and reactive workflow model that aligns well with the 
dynamic nature of task execution and algorithm implementation 
[4,5]. Similarly, Large Language Models (LLMs) allows for the 
expressive capacity to represent and manipulate any computable 
function [6]. The combination of FBP and LLMs allows us to 
define a general-purpose, Turing-complete programming 
environment. 

A. Principles of Flow-Based Programming 
Flow-Based Programming is a programming paradigm that 

focuses on the flow of data between components, emphasizing 
modularity, reusability, and reactive processing. In FBP, the 
execution of a program is driven by the flow of data, rather than 
being strictly controlled by a predefined sequence of operations. 

The key principles of FBP include: 

1) Component-Based Design: FBP encourages breaking 
down a system into smaller, self-contained components. These 
components have well-defined inputs and outputs, facilitating 
modularity, code reuse, and easy maintenance. 



2) Data Streams and Connections: FBP emphasizes the 
flow of data streams between components. Components can 
receive input data, process it, and produce output data that is 
then passed to downstream components. The connections 
between components define the flow of data, allowing for 
flexible and reactive execution. 

3) Asynchronous and Reactive Execution: FBP promotes 
an asynchronous and reactive execution model. Components 
react to incoming data, processing it as soon as it becomes 
available, enabling real-time responsiveness and dynamic task 
adaptation. 

 
The integration of Flow-Based Programming (FBP) within 

the JITP framework offers several benefits that enhance task-
time development: 

1) Modularity and Reusability: FBP’s component-based 
design fosters modularity and code reusability. Components 
can be easily connected and combined, allowing users to create 
flexible and scalable solutions. This modularity also enables 
incremental development and iterative improvements, aligning 
well with the JITP approach. 

2) Dynamic Task Adaptation: FBP’s reactive execution 
model enables components to react to incoming data in real-
time. This flexibility allows for dynamic task adaptation, where 
the solution can adjust and respond to changing task 
requirements or data inputs. JITP leverages this adaptability to 
accommodate evolving user needs and algorithmic insights 
during task execution. 

3) Scalability and Parallelism: FBP inherently supports 
parallel processing and scalability. By leveraging the flow of 
data between components, tasks can be distributed across 
multiple processing units, improving performance and 
efficiency. This scalability is particularly beneficial when 
dealing with computationally intensive tasks or large datasets. 

4) Visualization and Debugging: FBP frameworks often 
provide visual representations of the data flow and component 
connections, facilitating visualization and debugging of the 
automation solution. This visual feedback enhances user 
understanding and aids in identifying and resolving issues 
during algorithm implementation. 

B. Large Language Models 
Large Language Models (LLMs) are advanced artificial 

intelligence (AI) models designed to understand and generate 
human language [7,8,9]. These models, built using deep learning 
techniques, have been trained on vast amounts of text data from 
diverse sources such as books, articles, and websites. LLMs 
excel at tasks such as natural language understanding, text 
generation, translation, summarization, and have found 
applications in a wide range of domains, including chatbots, 
virtual assistants, content generation, language translation, 
content filtering, and more [10]. 

LLMs can also be extensively trained on diverse code 
repositories and documentation, so that the models acquire an 
understanding of programming syntax, structures, and patterns 
[11]. LLMs can therefore generate software code by leveraging 

their language processing capabilities and knowledge of 
programming concepts. When tasked with generating software 
code, LLMs can take high-level instructions or prompts 
provided by users and generate corresponding code snippets or 
even complete programs. They can analyze the context, infer the 
desired functionality, and generate code that aligns with the 
specified requirements.  

LLMs can be considered Turing complete [12]. While LLMs 
are not specifically designed for general-purpose computation 
like traditional programming languages, they possess the 
underlying capability to simulate other Turing-complete 
systems given enough time and resources. This property stems 
from the expressive capacity of LLMs to represent and 
manipulate information in the form of text sequences. In the 
context of JITP, LLMs provide the required “back-end” for a 
Turing complete JITP environment by responding to user 
requests, generating code in real time, and seamlessly 
integrating the code within the rest of the (flow-based) 
execution. 

Integrating Large Language Models (LLMs) with Flow-
Based Programming (FBP) can create a powerful framework for 
Just-In-Time Programming (JITP), combining the capabilities 
of advanced language models with the modular and reactive 
workflow of FBP. LLMs leverage their language understanding 
and code generation capabilities to enable users to express their 
algorithmic insights and automate tasks in real time. Flow-based 
programming, with its visual representation of tasks and data 
flow, provides the overall structured approach by facilitating the 
incorporation of dynamically generated code into the overall 
execution workflow. 

C. Framework Implementation Strategy 
To develop an effective JITP framework, we integrate LLMs 

with FBP in the following way, taking into account certain 
considerations. 

1)  Identify Task-Specific LLMs: Begin by identifying the 
LLMs that are most relevant to the specific task domain. Select 
LLMs that align with the programming language or task 
requirements to enhance the JITP capabilities. 

2) Define LLM Components: Next, define LLM 
components within the FBP framework and design the 
components to encapsulate the complexity of interacting with 
the LLMs and provide a simple interface for other components 
to utilize.These components encapsulate the interactions with 
LLMs, such as sending input text, retrieving generated code or 
responses, and managing the LLM state.  

3) Establish Data Flow: Design the data flow between the 
LLM components and other components within the FBP 
framework. Determine the input data required by the LLM 
component, such as task descriptions, code snippets, or user 
instructions. Define the outputs from the LLM components, 
such as generated code, text responses, or relevant suggestions. 

4) Enable Reactive Execution: Leverage the reactive 
execution model of FBP to trigger LLM interactions based on 
incoming data or events. For example, when a user provides a 
task description or requests assistance, the relevant LLM 
component can be triggered to generate code that is then 



subsequently executed. Ensure that the LLM components are 
reactive and responsive to changes in data inputs, enabling 
dynamic JITP capabilities. 

5) Handle LLM State Management: LLMs often have a 
limited context window, meaning they may not have full access 
to the entire task history. To overcome this limitation, consider 
incorporating mechanisms to manage the state of the LLMs. 
This can involve maintaining a context buffer or session 
management to provide relevant contextual information to the 
LLM component during task execution. 

6) Visualize and Debug LLM Interactions: Utilize 
visualization and debugging tools provided by the FBP 
framework to monitor the interactions with LLM components. 
This enables users to understand the flow of data, identify 
potential bottlenecks, and troubleshoot any issues related to 
LLM interactions. Visualization tools can also aid in 
interpreting LLM-generated outputs and ensuring they align 
with the desired outcomes. 

7) Iterate and Improve: Continuously iterate on the LLM 
integration within the JITP framework based on user feedback, 
task requirements, and performance evaluation. Refine the 
LLM components, data flow, and reactive execution to 
optimize the JITP experience. Incorporate user preferences and 
algorithmic insights gained during task execution to further 
enhance the efficiency and effectiveness of the JITP 
framework. 

 
By integrating LLMs with FBP, developers can leverage the 

language modeling capabilities of LLMs within the JITP 
framework, enabling users to generate code, receive 
suggestions, or obtain relevant information in real-time. This 
integration combines the strengths of advanced language models 
with the modularity, scalability, and adaptability of FBP, 
resulting in a powerful JITP framework capable of supporting a 
wide range of use cases. 

IV. COMPOSABLE JUST-IN-TIME PROGRAMMING PLATFORM 
Composable DataOps Platform [1] is a cutting-edge 

platform initially developed at MIT that is able to integrate 
Flow-Based Programming and Large Language Models into a 
robust JITP computing framework. This innovative combination 
empowers users to leverage the power of LLMs and harness the 
flexibility of flow-based programming to create, automate, and 
optimize software solutions in real time. 

As a computing framework, Composable provides a 
structured and comprehensive platform with a set of pre-defined 
components and built-in tools and libraries for building software 
applications. By incorporating FBP principles, Composable 
offers a visual and intuitive environment for designing and 
orchestrating complex workflows. Users can graphically 
represent their tasks, data flow, and interactions, enabling a 
holistic view of their processes. This visual representation 
simplifies the understanding and manipulation of data pipelines, 
making it easier to identify bottlenecks, optimize performance, 
and ensure maintainability. 

Flow-based programs in Composable, called “DataFlows”, 
are represented as event-driven workflows, as shown in Figure 

1. Each DataFlow consists of one or more Modules that are 
connected together to produce higher-level functionality. 
Composable Modules are atomic processing elements with 
strongly typed inputs and outputs. All information required for 
a Module to execute is retrieved from its inputs through 
connections. Modules can be reused easily and interchanged 
with other Modules. As shown in Figure 1, a Module takes in 
one or more inputs, and produces one or more outputs. These 
outputs can then be connected to any number of other Module 
inputs. 

Fig. 1. Schematic representation of a flow-based program, called a DataFlow 
within the Composable platform. Composable Modules are functional blocks 
that take in one or many inputs, and produces one or many outputs. These 
outputs can then be connected to any number of other Module inputs to form a 
DataFlow. 

End-users can compose unique DataFlow Applications by 
dragging and dropping Modules and connecting them together 
in an “infinitely configurable” modular design. Composable is 
designed to handle all data types, and is flexible regarding the 
consumption of all data sources. 

Modules that execute LLM computations can be created. In 
this article, we demonstrate the use of OpenAI’s publicly-
available ChatGPT application as the back-end LLM for the 
JITP framework [13,14]. While ChatGPT is primarily trained on 
vast amounts of text data and excels at natural language 
understanding and generation, and other LLMs may be better 
suited for software code generation, ChatGPT, with its simple 
API interface [15], is sufficient for our demonstration purposes. 
Composable is not limited to using just this LLM, and can, in 
fact, be extended to utilize other purpose-built LLMs [16]. 

The following sections demonstrate several examples of the 
Composable JITP implementation. 

A. JIT Code Generation Module 
First, we will define a “JIT Code Generation” DataFlow that 

will serve as an “App Reference” Module (a Module that calls 
another DataFlow Application) within other DataFlows. The 
“JIT Code Generation” DataFlow, shown in Figure 2, simply 
consists of a WebClient Robust Module that accepts a single 
string input as a prompt, makes a http request against the 
ChatGPT API, and returns the response. Note that while we are 
using OpenAI’s ChatGPT API as our LLM, we can simply “plug 
in” other LLM implementations. 

The WebClient Robust Module uses the following 
parameters: 

• Uri: https://api.openai.com/v1/chat/completions 

• Method: POST 

 



• Content-Type: application/json 

• Header: A Key Value Pair Module with Key 
“Authorization” and Value “Bearer < API _key>” 

We externalize one input and two outputs: 

• Input: We use an External String Input Module, so 
that we can externalize the input to other DataFlows. 
The string input is used as a parameter in the String 
Formatter Module, to format the end-user prompt 
with the syntactically correct json request payload. 

• Output: Status code of the web request (e.g., 200). 

• Output: String output, after first extracting the json 
value using the JSONPath Query Module, followed 
by a Regex Replace Module. We use the Regex 
Replace Module because ChatGPT usually returns 
code proceeded with backticks (`), that we use to parse 
out the actual raw code from the extraneous natural 
language within the response. 

Fig. 2. “JIT Code Generation” DataFlow. 

We can use the “JIT Code Generation” DataFlow as an “App 
Reference” Module within our main execution DataFlow. One 
of the powerful features of Composable’s FBP framework is that 
DataFlows can be called in this way from within other 
DataFlows. Figure 3 shows how we can find the newly created 
DataFlow shown in Figure 2 in the Module Palette, and simply 
drag and drop it onto the Designer canvas. The App Reference 
Module shows the single externalized input for the request 
prompt and the two externalized outputs for the web request 
status code and raw code text response. 

Fig. 3. The “JIT Code Generation” DataFlow can be used as an App Reference 
Module within a new DataFlow. 

B. Simple, Just-In-Time Arithmetic 
As an initial simple Just-In-Time Programming example, we 

can use the following prompt: 

Write a python function called gptFunction that adds two 
integers. Only return the raw python code. 

We can add a Python Code Module to the DataFlow, which 
executes a given Python code block with a defined function, as 
well as two integer inputs, as shown in Figure 4. Figure 5 shows 
the new output given a slightly altered prompt requesting 
subtraction rather than addition, showing how easy it is to 
program just-in-time. 

Fig. 4. Simple Just-In-Time Programming DataFlow that requests the addition 
of two integers, generates code and executes the code for two given inputs. The 
results after execution is shown for two given inputs. 

Fig. 5. Simple Just-In-Time Programming DataFlow that requests the 
subtraction of two integers, generates code and executes the code for two given 
inputs. The results after execution is shown for two given inputs. 

C. Primality Test 
In this next example, we request a just-in-time algorithm for 

determining whether an input number is prime. 

Figure 6 shows a DataFlow that provides a single integer 
input and uses the following prompt: 

Write a python script that checks if a given command line 
integer input is prime. Only return the raw python code. 

The “JIT Code Generation” DataFlow returns a Python 
script that is immediately executed, and with an input of 31 as 
shown in Figure 6, it returns “31 is prime!”. 

Fig. 6. Primality Test DataFlow showing the just-in-time code being 
generated and executed. 

 

 

 

 

 



This DataFlow may be better integrated with other 
DataFlows if the Primality Test result is simply a Boolean (0 or 
1). We can therefore simply adjust the input prompt: 

Write a python script that returns a 1 if a given command 
line integer input is prime and a 0 if not. Only return the raw 
python code. 

The new just-in-time DataFlow and execution results are 
shown in Figure 7. 

Fig. 7. Revised Primality Test DataFlow showing the just-in-time code being 
generated and executed. 

D. Generating New Data 
In this next example, we show that Just-In-Time 

Programming can allow a user to generate a dataset. 

Here, we use as our prompt: 

Define a pandas dataframe called composable_table_out 
with column State that contains all States in the USA that border 
the ocean. 

The “JIT Code Generation” DataFlow returns the Python 
script that is executed by the DataFlow shown in Figure 8. 

 

Fig. 8. Generating a new data table using Just-In-Time Programming with the 
input requesting a list of U.S. states that border the ocean. 

E. Table Manipulation 
More complex data processing workflows generally require 

the manipulation of tables. Here we show a request to select only 
records that appear more than once in an input table.  

Our prompt is: 

For a given pandas dataframe called input_dfs[0], define 
composable_table_out to contain only those records that are 
duplicates. 

The generated Python is shown in Figure 9, and the 
DataFlow and results are shown in Figure 10. 

 

Fig. 9.  Just-in-time code snippet that was generated by the LLM for the input 
requesting the selection of duplicate records in a dataframe. 

Fig. 10. Table and Data manipulation using JIT programming. We pass in a 
table with duplicate records, and retrieve only those duplicate records. 

V. ENSURING TRUST 
While pre-trained foundational LLMs can generate software 

code, as shown in the above examples with OpenAI’s ChatGPT, 
a language model specifically trained on software source code 
can provide greater accuracy and contextual understanding. 
Specifically, models that are trained on a massive dataset of 
source code can capture code structures and coding conventions 
and can produce code that is more contextually appropriate, 
adheres to coding best practices, and aligns with the desired 
functionality. The domain-specific understanding of a LLM for 
code can ensure that the generated code is of higher quality and 
meets the specific requirements of software development tasks, 
and more practically, the generated responses can contain just 
raw code, and not any extraneous text or language. 

 When developing software, even in a just-in-time 
programming paradigm, we want to ensure trust in the software 
[17]. In this context, we define trust to mean that the code 
performs its intended functions correctly and predictably, and 
that the resulting end-to-end system delivers accurate results, 
responds to inputs appropriately, and operates without 
unexpected failures or errors. When the LLM generates just a 
raw block of text as code to be executed, it is difficult to ensure 
trust as it requires an expert programmer to read each block of 

 

#python 
import pandas as pd 
# Assuming input_dfs[0] is your pandas dataframe 
# Find duplicate records 
duplicates = input_dfs[0][input_dfs[0].duplicated()] 
# Create composable_table_out with only duplicate records 
composable_table_out = duplicates.copy() 
# Display composable_table_out 
print(composable_table_out) 
# 
 

 

 



generated code, check it for accuracy, and test it. We see this in 
the above examples, where the complexity increases from the 
simple algorithms (for arithmetic operations) to more complex 
algorithms (primality test) and even more complex data 
manipulation (finding duplicates). 

To overcome this limitation and ensure trust in the JITP 
framework, we use a LLM to generate not just a block of text to 
be used as executable code, but rather generate a complete, 
visual, flow-based program. Specifically, we generate a 
DataFlow, a visual algorithm composed of pre-defined 
functional blocks (Modules), to ensure consistency, accuracy 
and reliability. Our approach leverages two key features of 
Composable and FBP:  

• Strongly Typed Modules: The Composable FBP 
framework enforces strong typing of Modules, 
ensuring that data types are explicitly defined and 
consistent throughout the DataFlow. 

• Loose Coupling: The Composable FBP framework 
promotes loose coupling between Modules, meaning 
that Modules are decoupled from each other and 
communicate through well-defined data interfaces.  

By generating flow-based programs just in time, we benefit 
from the following features: 

• Visualization of Control Flow: Visual flow-based 
programs provide a graphical representation of the 
program’s control flow. The flowchart-like diagrams 
make it easier to comprehend the program's logic and 
control structures. This visualization aids in 
understanding the program's intended behavior, 
making it less prone to errors and enabling better 
accuracy during development and debugging. 

• Clear Representation of Data Flow: Visual flow-based 
programming emphasizes the flow of data between 
different components. By explicitly representing data 
connections and transformations, it becomes easier to 
track and validate the data flow within the program. 
This clarity helps in ensuring correctness and 
identifying potential issues or bugs related to data 
handling. 

• Reduced Functional Errors: Since the logic is 
constructed using pre-built functional components, 
flow-based programs can largely eliminate the 
potential for underlying errors in the required functions 
and improve the overall correctness. 

• Reduced Cognitive Load: Visual flow-based 
programming reduces the cognitive load on developers 
by providing a more intuitive and visual representation 
of the program. The use of visual blocks and diagrams 
makes it easier to understand complex logic and 
relationships between program components. This 
decreased cognitive load leads to fewer mistakes and 
better accuracy during development. 

• Simpler Debugging Process: When debugging visual 
flow-based programs, it is often easier to identify and 
isolate errors. The graphical representation allows 

developers to visually trace the execution path, track 
data flow, and identify problematic areas. This ease of 
debugging helps in identifying and rectifying issues 
more efficiently, resulting in improved correctness and 
accuracy. 

As an example, we begin with a simple DataFlow that takes 
two integer inputs, performs an arithmetic computation 
(addition, subtraction, …), and returns an integer. The DataFlow 
is shown in Figure 11, and consists of the following Modules: 

• Two External Int Input Modules for the integer inputs 

• A Calculator Module to perform the arithmetic 
computation (e.g., addition) 

• An External Int Output Module for the integer output 
 

Fig. 11. A simple DataFlow that takes two integers, adds them, and returns an 
integer. 

We are able to convert this visual flow-based program into 
structured source code (e.g., in C#) using Composable’s 
FluentAPI, a set of C# classes that interact with Composable 
services [1]. In this way, the DataFlow shown in Figure 11 can 
be represented as code shown in Figure 12, and the LLM can be 
trained to generate new DataFlows. 

Fig. 12. nippet of code equivalent of the DataFlow shown in Figure 14. 

We can see this in action by, for example, enhancing the 
DataFlow in Figure 11 with the following prompt: 

Generate a program that takes 2 External Integer Inputs, 
feeds them into a Calculator Module for addition, then feeds it 
into another Calculator Module along with a third External 
Integer Inputs for addition, and returns an External Integer 
Output.  

The generated output is shown in Figure 13 as code and Figure 
14 as a visual DataFlow. 

 

using CompAnalytics.Contracts; 
using CompAnalytics.FluentAPI; 
using System; 
 
public class Program 
{ 
    private static CompAnalytics.IServices.Deploy.ResourceManager 

CreateManager() 
    { 
        CompAnalytics.IServices.Deploy.ConnectionSettings 

connectionSettings = 
            new CompAnalytics.IServices.Deploy.ConnectionSettings(); 
           

 
          

 
           

  
           
             

 
          
     
       

 
          
     
     
            

 
           
           
           
           
           
           
        



 

Fig. 13. Snippet of code generated by the LLM to represent the new DataFlow. 

 

Fig. 14. DataFlow generated by a purpose-built LLM based on a given prompt.  

VI. CONCLUSION 
Just-In-Time Programming offers a user-centric approach to 

programming by allowing algorithm implementation during task 
execution. By aligning software functionality with dynamic user 
requirements, JITP empowers users to leverage their algorithmic 
insights and implement tasks and subtasks in real-time. The 
integration of flow-based programming techniques and Large 
Language Models presents a promising avenue for a JITP 
framework. Task-oriented focus lies at the core of JITP, with 
LLMs generating the immediate implementation of algorithms 
and FBP orchestrating task completion in real-time. 

In this paper, we demonstrate the use of Composable as a 
state-of-the-art JITP computing framework that seamlessly 
integrates Flow-Based Programming techniques with Large 
Language Models. By harnessing the power of LLMs within a 
visual and intuitive environment, Composable enables users to 
express their algorithmic insights in real time, automate tasks, 
and rapidly prototype software solutions. The versatility of the 
Composable JITP Platform extends across various domains and 
use cases. In data science and analytics, users can leverage 
LLMs to generate code for data preprocessing, feature 

engineering, and model evaluation, while orchestrating complex 
data workflows with FBP principles. In software development, 
Composable facilitates rapid prototyping, automates repetitive 
tasks, and allows for the development of large, microservices-
based architectures, with seamless integration of LLM-
generated code within the larger codebase. Additionally, 
Composable finds applications in natural language processing, 
machine learning, robotic process automation, and more, where 
the combination of LLMs and FBP principles offers 
unparalleled flexibility and agility. 
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using CompAnalytics.Contracts; 
using CompAnalytics.FluentAPI; 
using System; 
 
public class Program 
{ 
    private static CompAnalytics.IServices.Deploy.ResourceManager 

CreateManager() 
    { 
        CompAnalytics.IServices.Deploy.ConnectionSettings 

connectionSettings = new 
CompAnalytics.IServices.Deploy.ConnectionSettings(); 

           
 

          
 

           
  

            
 

          
     
 
       

 
 

     
            

 
           
           
           
           
           
           
 
        

 
  

 
               
               
                

 
               
               
               
             
             
 
        

 
  

 
               
               
                

 
               
               
               
             
             
 
        

   

 
              
               
              

   
               
              

   
             
             
 
        

 


