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Abstract—The shortest path network interdiction (SPNI) prob-
lem poses significant computational challenges due to its NP-
hardness. Current solutions, primarily based on integer pro-
gramming methods, are inefficient for large-scale instances. In
this paper, we introduce a novel hybrid algorithm that can utilize
Ising Processing Units (IPUs) alongside classical solvers. This ap-
proach decomposes the problem into manageable sub-problems,
which are then offloaded to the slow but high-quality classical
solvers or IPU. Results are subsequently recombined to form a
global solution. Our method demonstrates comparable quality
to existing whole problem solvers while reducing computational
time for large-scale instances. Furthermore, our approach is
amenable to parallelization, allowing for simultaneous processing
of decomposed sub-problems.
Reproducibility: Our source code and experimental results are
available at https://github.com/krishxmatta/network-interdiction.

Index Terms—decomposition, Ising processing hardware, net-
work interdiction, refinement, integer programming

I. INTRODUCTION

Network interdiction refers to a class of challenging com-
binatorial optimization problems that involve strategically dis-
rupting flows in a network to achieve specific objectives [30].
These problems can be characterized as a game between
attackers and defenders of a network. The defender seeks
to optimize a predefined objective across the network, such
as maximizing flow between two nodes, while the attacker
aims to impede the defender’s objective by inflicting maximum
disruption upon the network. This disruption may manifest in
a variety of forms, such as targeted attacks on the network
arcs aiming to destroy or impair them.

The topic of network interdiction has gained significant
attention due to its ability to model complex situations in the
defense domain. For example, Ghare et al. [9] demonstrated
how network interdiction can be used in wartime to capacitate
an enemy’s supply network to maximally disrupt the flow of
enemy troops. Network interdiction can additionally be used
to identify weaknesses in critical infrastructure to make them
more resilient to terrorist attacks and natural disasters. An
example of such an application can be found in a study by
Salmerón et al. [27], which details the use of network inter-
diction to model attacks on large-scale power grids. The study
then utilizes this model to determine how best to minimize
economic loss resulting from these attacks. Another study by

Nandi et al. [23] details the usage of a network interdiction
model on cyber attack graphs to pinpoint vulnerabilities in cy-
berinfrastructures, thereby helping prevent organizations from
cyberattacks. Such problems are even extremely useful outside
of military applications, e.g. in this line of work [2], [11],
[19] the authors show how network interdiction can be used
to minimize the generally defined infection spread and attacks.

Within this paper, we study the Shortest Path Network
Interdiction (SPNI) problem. In this problem, the defender
wishes to traverse the minimum length path between two
specified nodes s and t in a directed network. The attacker uses
their limited resources to destroy certain arcs, or increase their
effective length, to increase the defender’s shortest s-t path
length. Each arc is either interdicted or not, and additionally,
it is known beforehand how much an arc costs to interdict and
how much interdiction of an arc causes its effective length to
increase. When solving SPNI, we take the viewpoint of the
attacker, and thus our goal is to maximize the shortest s-t
path length.

Our contribution The SPNI is an NP-Hard problem
[16]. To the best of our knowledge, almost all current SPNI
algorithms rely on integer programming methods. On large
problem instances, these methods are time costly—for ex-
ample, in one of the most important works regarding SPNI,
the largest network solved by Israeli et al. had 240 nodes
and 1,042 arcs [16], so these methods are either not scalable
or produce large gaps or low quality results. To ameliorate
this issue, we propose a novel algorithm which may leverage
Ising processing units (IPUs) [5], specialized computational
devices specifically tailored to solve the Ising model, as well
as classical solvers that can exhibit high quality solutions for
small instances in a reasonable computational time. Examples
of IPUs include but are not limited to quantum annealers,
gate-based quantum machines equipped with the Ising model
solvers, and both digital and analog annealers [20], [22]. Since
physical limitations of existing IPU hardware severely restrict
the size of problems they can handle and connectivity between
variables, we adopt a hybrid IPU-classical approach in which a
classical computer decomposes SPNI into subproblems small
enough for an IPU, offloads them for computation, then
combines the IPU’s results into a global solution. For proof
of concept, we use exact solvers instead of a real IPU. Our
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decomposition based results demonstrate an ability to achieve
almost the same quality as the whole problem slow solvers
that are prohibitive for large-scale instances and IPU hardware.
Additionally, our approach is parallelization friendly, namely,
sub-problems obtained as a result of SPNI decomposition can
be tackled in parallel.

II. RELATED WORK

In one of the earliest works studying SPNI, Malik et al.
focused on a variant termed the k most vital arcs problem in
which the interdiction of each arc requires exactly one unit of
the attacker’s budget and interdiction of an arc results in its
complete removal [21]. Ball et al. show that the k most vital
arcs problem is NP-Hard. Since this is a variant of SPNI, it
follows that SPNI is NP-Hard as well [3]. Corley and Shaw
[6] investigated the single-most-vital-arc problem, which is the
k most vital arcs problem where k = 1, but this problem is a
simple variant of SPNI that lies in P . Rather than study the
full removal of arcs, Fulkerson and Harding [8] and Golden
[12] study related problems in which the length of an arc
increases as more budget is allocated to its interdiction. In one
of the most prominent works studying SNPI, Israeli and Wood
[16] study the problem in its more general form, proposing
two integer-programming based algorithms of different quality
depending on whether arcs are fully removed or if arc length
is increased as a result of interdiction.

More recent work on SPNI has since shifted away from
integer-programming algorithms. Huang et al., for example,
approximate SPNI using a reinforcement learning framework
[15]. However, this approach generates quite significant gaps
and the reinforcement learning is not particularly scalable.
Rocco et al. [25] study an extension of SPNI where the attacker
is not solely focused on maximizing the s-t path length, but
also wishes to minimize interdiction cost, and propose an evo-
lutionary algorithm to do so. This is a multiobjective problem
that is different than ours. For more details, we refer the reader
to the recent comprehensive survey on the network interdiction
problem [30]. To our knowledge, however, no attempts have
been made for parallelization friendly decomposition of SPNI
for IPU hardware.

Several frameworks have been proposed to solve large in-
stances of combinatorial optimization problems on small IPU
hardware. The quadratic unconstrained binary optimization
(QUBO) formulation is a popular formulation for combina-
torial optimization problems that is equivalent to the Ising
model, and thus is solvable on all IPU hardware [10]. QUBO
formulations contain only quadratic binary variables with no
constraints. A large number of work in the quantum computing
space focuses on formulating problems into one large QUBO,
then identifying sub-QUBOs that can be solved directly on
an IPU. The qbsolv tool developed by D-Wave accomplishes
exactly this, once allowing researchers to solve a 1254 binary
variable problem using quantum hardware that can only solve
problems with at most 64 binary variables [24]. An alternative
approach is, instead of first formulating the problem as a
QUBO then decomposing the QUBO itself, to decompose the

problem and then formulate these subproblems into QUBOs.
For example, Shaydulin et al. [29] take this approach to solve
the community detection problem on quantum hardware. This
is the approach we opt to take in this paper, applied to SPNI.

III. PROBLEM FORMULATION

Let G = (N,A) be a directed network with node set N
and arc set A. The length of arc k ∈ A is ck ≥ 0, and the
added interdiction length is dk ≥ 0, meaning that if arc k
is interdicted, then its effective length becomes ck + dk. If
interdiction destroys arc k, then dk can be set to a sufficiently
large value. For any node i ∈ N , let A+(i) ⊆ A denote the set
of all arcs directed out of node i, and similarly let A−(i) ⊆ A
denote the set of all arcs directed into node i. While other
forms of SNPI allow for multiple resource types and variant
interdiction costs, for our algorithmic specializations we model
a single resource type and the scenario in which interdiction
of any arc in A costs only one unit of this resource. Thus,
let r0 denote the amount of budget we have available. Let
x = {xk}|A|

k=1 where for each arc k ∈ A, xk is a binary
variable denoting whether arc k is interdicted or not by the
attacker, and let y = {yk}|A|

k=1 where yk is a binary variable
denoting whether arc k is traversed by the defender. Finally, let
s, t ∈ N denote the source and sink node in G, respectively.
The integer programming formulation of SNPI is

max
x∈X

min
y

∑
k∈A

(ck + xkdk)yk

s.t.
∑

k∈A+(s)

yk −
∑

k∈A−(s)

yk = 1∑
k∈A+(t)

yk −
∑

k∈A−(t)

yk = −1∑
k∈A+(i)

yk −
∑

k∈A−(i)

yk = 0,∀i ∈ N \ {s, t},

where X = {x ∈ {0, 1}|A| |
∑|A|

i=1 xi ≤ r0}.

Note that the above formulation is biobjective, and thus
can not be directly converted into a QUBO model. As Israeli
et al. [16] show, we may fix x, take the dual of the inner
minimization, make some modifications, then release x, and
obtain a single objective formulation

max
x,π

πt

s.t. πj − πt − dkxk ≤ ck,∀k = (i, j) ∈ A
πs = 0
x ∈ X.

(1)

We may interpret πi as the post-interdiction shortest-path
length from s to i. As such, we may impose bounds on
πi ∈ [0, |N |maxk′∈A{ck′ + dk′}]. Since each variable is
constrained and we have a single objective, we may now
convert each constraint to a penalty function and decompose
bounded variables into several binary variables, for example
using the mapping proposed by Karimi et al. [17]. Letting
P be a sufficiently large positive penalty value, our QUBO
formulation is



max
x,π,m,n

πt − P
∑

k=(i,j)∈A

(ck − (mk + πj − πi − dkxk))
2

−P (πs)
2 − P (r0 − (n+

∑
k∈A

xk))
2

s.t. πi ∈ [0, |N |max
k′∈A
{ck′ + dk′}],∀i ∈ N

mk ∈ [0, |N |max
k′∈A
{ck′ + dk′}+ dk],∀k ∈ A

n ∈ [0, r0]

x ∈ {0, 1}|A|.
(2)

Note that we have included bounded non-binary variables for
simplicity. Additionally, we have included variables m and
n to act as slack variables for inequality constraints. In the
actual QUBO formulation, all bounded variables and slack
variables should be mapped to several binary variables. The
given QUBO formulation is directly solvable on an IPU.

We now describe how to formulate subproblems of SPNI
for the purposes of our algorithm. We define a connected
partition of a network G = (N,A) as a subset of nodes
N such that its induced subgraph is weakly connected. Say
we have a connected partition of G, i.e., a subset of nodes
Np ⊆ N , a sink node t′ ∈ Np, and let Ap represent all
arcs associated with this subset of nodes, i.e. Ap = {(u, v) ∈
A|v ∈ Np}. Note that we may partition Ap = Ap,1 ∪ Ap,2

where Ap,1 = {(u, v) ∈ A|u ∈ Np ∧ v ∈ Np} and
Ap,2 = {(u, v) ∈ A|u /∈ Np ∧ v ∈ Np}. We define a
subproblem of SPNI over this partition Np and sink node t′

by restricting our free variables to only those associated with
Np—rather than define πi for all i ∈ N , we will only define
πi for all i ∈ Np, and similarly only define xk for all k ∈ Ap.
Additionally, we change the objective formula to maximize
πt′ rather than πt.

For those variables not associated with Np, we may fix their
values to constants. Assume that we have a current solution
A′ ⊆ A—by “solution,” we refer to a subset of arcs chosen
for interdiction. We use Γi to denote a constant representing
the shortest-path length from node s to i after all arcs in A′

have been interdicted. Since πi represents the postinterdiction
shortest-path length from nodes s to i, we can fix πi to the
value Γi for all nodes i not in Np. Additionally, we limit
our budget from r0 to r0 − |A′ \ Ap|, ensuring we use only
the budget we have allocated within Np. The subproblem
formulation over Np with sink node t′ is thus

max
x,π,m,n

πt′ − P
∑

k=(i,j)∈Ap,1

(ck − (mk + πj − πi − dkxk))
2

−P
∑

k=(i,j)∈Ap,2

(ck − (mk + πj − Γi − dkxk))
2

−P (πs)
2

−P ((r0 − |A′ \Ap|)− (n+
∑
k∈Ap

xk))
2

s.t. πi ∈ [0, |N |max
k′∈A
{ck′ + dk′}],∀i ∈ Np

mk ∈ [0, |N |max
k′∈A
{ck′ + dk′}+ dk],∀k ∈ Ap

n ∈ [0, r0].
(3)

Note that in the above formulation, we have restricted our
free variables to those associated with Np, thereby decreasing
computational load and potentially allowing the problem to be
solved on an IPU depending on the size of Np.

IV. ALGORITHM

In this section we present an algorithm for approximating
SPNI by leveraging small IPU hardware. Our algorithm first
proceeds by generating an initial greedy solution, then refining
this solution over several iterations.

First we define terminology and helper functions. A problem
instance of SPNI is a tuple P = (G, c,d, s, t, r0) where G =
(N,A) is a directed network, c is a vector representing arc
lengths of A, d is a vector representing added interdiction arc
lengths of A, s ∈ N is the source node, t is the sink node,
and r0 is the interdiction budget.

We define PARTITION to be a function that takes in a
graph G = (N,A) and an integer n as inputs, then returns
P ⊆ P(V ), a connected partitioning of G where ∀Np ∈ P ,
|Np| ≈ n. These partitions are how we will choose to define
subproblems. The purpose of the size restriction is to ensure
that subproblems are sufficiently small for IPU hardware.
Additionally, PARTITION is necessarily non-deterministic en-
suring different partitions on each call to prevent the solver
from being stuck in a local attraction basin.

We define CALC-LENGTH, a function that takes in a
problem instance P = (G = (N,A), c,d, s, t, r0), and a set
A′ ⊆ A where |A′| ≤ r0. It returns the shortest s-t path length
in G after all arcs in A′ have been interdicted.

We also define CALC-PATH that takes in a problem in-
stance P = (G = (N,A), c,d, s, t, r0), and a set A′ ⊆ A
where |A′| ≤ r0. It returns the set N ′ ⊆ N consisting of all
nodes in the shortest s-t path in G after all arcs in A′ have
been interdicted.

Finally, function SOLVE takes in a problem instance P =
(G = (N,A), c,d, s, t, r0), a set Np ⊆ N representing a
continuous partition of G, a node t′ ∈ Np for the sink
node of the subproblem, and a set of arcs A′ ⊆ A where
|A′| ≤ r0 representing the current working solution. It for-
mulates a subproblem based off these parameters according to
(3), solves the subproblem, and returns a new arc set A′′ ⊆ A
representing which arcs to interdict to maximize πt′ . Here
is where computational work may be offloaded to an IPU.
Note that due to the subproblem restriction, SOLVE can only
modify the interdiction status of arcs associated with Np, and
thus all arcs not associated with Np but in A′ will remain in
A′′.

Initial solution generation The pseudocode is given in
Algorithm 1. It receives in input a problem instance P =
(G = (N,A), c,d, s, t, r0) alongside an integer n representing
the approximate nodes allowed per partition. To generate an
initial solution to SPNI, the algorithm takes a greedy approach.
As each arc costs exactly one unit of the budget to interdict, the
algorithm iterates over each unit of the budget attempting to
decide which arc to allocate this unit to. To make this decision,
the algorithm first partitions the network using PARTITION



and additionally calculates the shortest s-t path with CALC-
PATH. Note that it is sufficient to only consider edges along
the s-t path for interdiction, since edges outside of this path
will not affect the s-t path length after interdiction. For each
node in the s-t path, the algorithm determines which partition
this node belongs to, then solves a subpartition using this
node as the sink node by calling SOLVE. It then takes the
output solution, and calls CALC-LENGTH to determine this
solution’s impact on the s-t path length. If this path length is
greater than the current maximum path length, the algorithm
notes it as a potential candidate solution and updates the
maximum. After repeating this process for each node in the
s-t path, the algorithm chooses a candidate solution randomly,
then continues this process until the budget has ran out. Note
that in each iteration, the algorithm incrementally adds one
arc to the current solution.

Solution refinement The pseudocode is given in Algo-
rithm 2. It receives in input a problem instance P = (G =
(N,A), c,d, s, t, r0), an integer n representing the approx-
imate number of nodes per partition, an integer λ for the
number of iterations to run the algorithm, and a solution
A′ ⊆ A to improve. Note that the given solution A′ is expected
to be the output of Algorithm 1. This algorithm attempts to
improve the initial solution. To do so, it iterates λ times,
and in each iteration, partitions the graph using PARTITION
and calculates nodes in the current s-t path given the current
interdiction solution using CALC-PATH. For each of these
nodes, alongside all nodes found in the shortest path for the
previous iteration, it determines what partition the node lies
in and solves a subproblem where this node is the target node
using SOLVE. CALC-LENGTH is then called to determine
whether the outputted solution’s s-t path length is greater than
the current s-t path length, and if so, marks this solution as a
potential candidate solution. After iterating over each node, if a
better s-t path length is found, the current solution is chosen to
be a randomly selected candidate solution. If a better s-t path
length is not found, the algorithm attempts to explore alternate
solutions by iterating over each arc in the current solution,
temporarily deleting that arc from the solution, and observing
whether this deletion can result in a better solution through a
partitioning process similar to the above. If a better solution
is found, the deletion of this arc becomes permanent and
the better solution is adopted. Note that to prevent excessive
computation, the algorithm keeps track of arcs which, upon
being temporarily deleted, have not previously increased the s-
t path length in a set named good-arcs. In future iterations, the
algorithm does not consider temporarily deleting arcs found in
good-arcs.

V. COMPUTATIONAL RESULTS

To evaluate the performance of our algorithm and similar
to other network interdiction literature, we have generated
grid networks with randomized edge weights and randomized
interdiction weights. To each grid we added the source node s
connected to all nodes in the first column, and the sink node t
connected to all nodes in the last column, with all of these arcs

Algorithm 1: Initial solution generation
Require: A problem instance

P = (G = (N,A), c,d, s, t, r0)
Require: Approximate number of nodes per partition

n
1 A′ ← {}
2 prev-nodes ← CALC-PATH(P, A′)
3 r′ ←− 1
4 while r′ ≤ r0 do
5 P ← PARTITION(G,n)
6 curr-nodes ← CALC-PATH(P, A′)
7 next-sols ← {A′}
8 best-length ← CALC-LENGTH(P, A′)
9 foreach node ∈ curr-nodes ∪ prev-nodes do

10 Np ← ∅
11 foreach N ′

p ∈ P do
12 if node ∈ N ′

p then
13 Np ← N ′

p

14 end
15 end
16 curr-sol ← SOLVE(P, Np, node, A′)
17 curr-length ← CALC-LENGTH(P, curr-sol)
18 if curr-length > best-length then
19 next-sols ← ∅
20 end
21 if curr-length == best-length then
22 next-sols ← next-sols ∪{curr-sol}
23 end
24 end
25 A′ R← next-sols ▷ Pick a solution randomly
26 r′ ← r′ + 1
27 end
28 return A′

having length 0 and interdiction length 0 to make the problem
more challenging. All horizontal arcs are oriented forward and
all vertical arcs are oriented down. All arcs not connected to s
or t have a randomly assigned length and interdiction length,
each in the range [1, 10]. Figure 1 depicts an example of grid
3x3.

Models were built using Pyomo, and were solved using
the open-source solver CBC [7]. No significant difference
was observed in experiments with Gurobi solver [13]. Graph
representation and utilities such as Dijkstra’s was done using
NetworkX [14]. Graph partitioning was done using METIS
[18]. All problems were ran on the University of Delaware’s
Caviness cluster which uses a Linux system and has exclu-
sively Intel E5-2695 v4 18 core processors in its pool.

Below we plot the results of our computational experi-
ments. The “Size” axis represents the number of nodes in
the experiment’s network (|N |). Note that by the structure of
the grid network, the number of arcs can be calculated by
|A| = 2(|N | − 2). The “Quality” axis displays a metric to
evaluate the quality of our solutions (defined in Eq. (4)).



Algorithm 2: Solution refinement
Require: A problem instance

P = (G = (N,A), c,d, s, t, r0)
Require: Approximate number of nodes per partition

n
Require: Number of iterations λ
Require: Current solution A′

1 prev-nodes ← CALC-PATH(P, A′)
2 next-sols ← {A′}
3 best-length ← CALC-LENGTH(P, A′)
4 good-arcs ← ∅
5 i← 0
6 while i < λ do
7 P ← PARTITION(G,n)
8 curr-nodes ← CALC-PATH(P, A′)
9 foreach node ∈ curr-nodes ∪ prev-nodes do

10 Np ← ∅
11 foreach N ′

p ∈ P do
12 if node ∈ N ′

p then
13 Np ← N ′

p

14 end
15 end
16 curr-sol ← SOLVE(P, Np, node, A′)
17 curr-length ← CALC-LENGTH(P, curr-sol)
18 if curr-length > best-length then
19 next-sols ← ∅
20 end
21 if curr-length == best-length then
22 next-sols ← next-sols ∪{curr-sol}
23 end
24 end
25 prev-length ← CALC-LENGTH(P, A′)
26 if best-length > prev-length then
27 A′ R← next-sols ▷ Pick a solution randomly
28 else
29 foreach arc ∈ A′\ good-arcs do
30 A′′ ← A′ \ {arc}
31 foreach node ∈ curr-nodes ∪ prev-nodes

do
32 partition = ∅
33 foreach p ∈ P do
34 if node ∈ p then
35 partition ← p
36 end
37 end
38 curr-sol ← SOLVE(P, Np, node, A′′)
39 curr-length ←

CALC-LENGTH(P, curr-sol)
40 if curr-length > prev-length then
41 A′ ← curr-sol
42 else
43 good-arcs ← good-arcs ∪{ arc }
44 end
45 end
46 end
47 end
48 return A’
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Fig. 1. Example of a generated 3x3 grid

We run both our refinement algorithm and CBC attempting
to solve Equation (1) across the entire network—we shall
hereby refer to the latter as the “full problem solver.” Note
that the full problem solver is significantly slower than the
refinement algorithm, and thus, we timeout the full problem
solver once it has exceeded the time that the refinement algo-
rithm takes, then proceed to take the current best solution. In
every problem instance below, the full problem solver always
timed out. For any given experiment, if r is the shortest s-t
path length after interdicting the arcs from the solution of our
refinement algorithm and f the shortest s-t path length after
interdicting the arcs from the full problem solver’s solution,
the ratio can be calculated by

(r − f)/max(r, f). (4)

Thus, the higher the quality, the better—positive quality indi-
cates that the refinement solver performed better than the full
problem solver.

We run three sets of experiments. In each experiment, we
set the number of refinement iterations λ to 50. (However, the
convergence is often observed earlier.) In the first set of exper-
iments, represented by Figure 2, we set the interdiction budget
r0 to 0.25% of the number of arcs in the network and limit our
subproblem size to n = 20 nodes. The average quality for this
set of experiments is −0.008, implying that a subproblem size
of only 20 nodes is sufficient for a good estimation of SPNI.
In the second set of experiments, represented by Figure 3, we
set the interdiction budget r0 to 0.5% of the number of arcs in
the network and limit our subproblem size to n = 20 nodes.
The average quality for this set of experiments is −0.013,
indicating relative consistency in estimation regardless of
budget. In the final set of experiments, we set the interdiction
budget r0 to 0.25% of the number of arcs in the network
and limit our subproblem size to n = 40 nodes. The average
quality for this set of experiments is −0.012, implying that
an increase in subproblem size is not necessary for estimation
and limited capacity IPU machines can already be integrated
to solve this problem using decomposition-based refinement.

Out of all 39 experiments ran, the difference between the
s-t path length produced by the refinement solver and the path
length produced by the full problem solver was ≥ −10 for 35



of the experiments. In 10 of these experiments, the refinement
solver performed better than the full problem solver. These
results are significant as they indicate that in the cases when
full problem solver was better the refinement missed the value
of a single arc.
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Fig. 2. Computational results for different size networks with parameters:
λ = 50, n = 20, r0 = 0.0025|A|. Each point corresponds to a graph. The
horizontal axis corresponds to the number of nodes. The vertical axis is the
quality defined in Eq. (4).
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Fig. 3. Computational results for different size networks with parameters:
λ = 50, n = 20, r0 = 0.05|A|. Each point corresponds to a graph. The
horizontal axis corresponds to the number of nodes. The vertical axis is the
quality defined in Eq. (4).

VI. DISCUSSION

A. Solving on Ising Processing Hardware

The current results shown in this paper rely on using
an exact solver to solve subproblems. We have previously
attempted to utilize classical heuristic QUBO solvers, such
as D-Wave’s qbsolv and D-Wave Ocean, to solve these sub-
problems, but such solvers provided poor quality solutions
even on much smaller problem sizes that those we experiment
with. Additionally, due to lack of accessibility to massive
experiments with the IPU hardware, utilizing exact solvers
is necessary to demonstrate the efficiency of our algorithm.
We hope that as IPUs continue to develop in capacity, their
superior solution quality and speed when compared to classical
heuristic solvers will be able to make full use of the algorithm
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Fig. 4. Computational results for different size networks with parameters:
λ = 50, n = 40, r0 = 0.0025|A|. Each point corresponds to a graph. The
horizontal axis corresponds to the number of nodes. The vertical axis is the
quality defined in Eq. (4).

presented in this paper, generating solutions that are able to
beat classical exact solvers consistently.

B. Algorithmic Challenges and Obstacles

Refinement algorithms for solving SPNI may face several
challenges, the most notable being the problem of proper
budget allocation amongst partitions. If an algorithm decides
to improperly allocate budget to a subproblem, for example
deciding to interdict an arc where this unit of budget would
ideally be spent much further away in the graph, it proves
to be very difficult to shift this budget significantly far away
from its current position. Within our refinement approach, the
movement of interdicted arcs is primarily dictated by random
partitioning—for example, in one iteration, the subproblem
solver may determine that a specific arc should be interdicted
under the context of the current partititioning configuration,
i.e. within the context of the current subproblem the arc
lies in. But when we repartition in the next iteration, the
subproblem solver reevaluates the placement of interdicted
arcs—the cost unit used to interdict the previous arc may be
relocated elsewhere based on the new subproblem formulation.
Since the cost unit used for an interdicted arc may only
shift to arcs relatively near this arc, it is unlikely for the
cost unit to travel far away in the graph. To resolve this
issue, a multilevel approach widely known in combinatorial
scientific computing and applied graph algorithms [4] may
be taken. Multilevel algorithms create a hierarchy of coarse
problem representations, find a solution to the coarsest (small-
est and most compressed) problem, then gradually derive
a solution to the original finest problem by projecting the
solution back from the coarse to fine levels and refining
it using our algorithm, thereby potentially aiding in proper
budget allocation. This approach has seen great success in
solving various (hyper)graph problems [1], [26], [28] including
hybrid quantum-classical multi- and single-level refinement
for partitioning and community detection [29], [31], indicating
that its application to SPNI may improve solution quality.



C. Performance

One of our main goals was to develop a trivial IPU
parallelization friendly algorithm. Our current implementation
of the proposed refinement does not take advantage of the
fact that subproblems produced by a given partitioning can be
solved independently of one another, since they only depend
on the current working solution. Consequently, subproblems
can be solved in parallel rather than sequentially, offering a
potentially large optimization to the current performance of
the algorithm.

D. Generalizability

The algorithm introduced in this paper does not handle
SPNI problem instances in which the binary interdiction of
a given arc may cost more than one unit of the interdictor’s
budget. The algorithm can currently handle instances where
an arc between two nodes can take on multiple values of
interdiction (e.g., if interdicted once add 1 to the length, if
interdicted twice add 2 to the length) through the introduction
of multi-edges with appropriate lengths, but instances in which
a binary decision needs to be made (i.e., interdicted or not)
and differing levels of interdiction cost are not supported.

Another scenario which the algorithm is unable to handle is
in the case of different resource types. For example of such a
scenario, let r0 and r1 represent the budget for two different
types of resources, then arc k0 may cost 1 of r0 and 2 of r1,
but arc k1 may cost 0 of r0 and 3 of r1. This restriction is
not much of a concern, however, considering that in one of
the most prominent works regarding SPNI, the authors of [16]
also do not accommodate this case for their algorithmic cases.

VII. CONCLUSION

Solving SPNI holds crucial importance in the defense,
engineering and other domains, addressing challenges in se-
curing critical infrastructure from terrorist attacks, natural
disasters and disrupting enemy supply networks among other
applications. Current solutions to SPNI, however, are often too
slow to be scalable to large networks, and thus prove to be
impractical for real world purposes. In this paper, we have
introduced a novel decomposition approach addressing SPNI
harnessing the rapid solving abilities of IPU hardware to yield
an approximate solution. We have further shown that solutions
generated by our decomposition algorithm are extremely close
in quality to state-of-the-art integer programming methods.
We anticipate that as IPU hardware advancements continue to
improve speed in solving optimization problems, our algorithm
will enable an even quicker approximation of SPNI thereby
facilitating a more efficient approach for real world scenarios
of SPNI. More work is under way to produce higher quality
approximations in even shorter amounts of time and extend
the algorithm to more general forms of SPNI.
Reproducibility: Our results and code are available at
https://github.com/krishxmatta/network-interdiction.
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