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Abstract—Probabilistic computing is an emerging computing
paradigm which involves the systematic control and manipulation
of unstable stochastic units called p-bits. Multiple p-bits are
connected together to implement p-circuits which have been
shown to be capable of solving interesting computationally
hard problems. In this work, we present Tyche, a compact
and configurable hardware accelerator for scalable probabilistic
computing on FPGA. Our architecture allows p-circuits requiring
different number of p-bits to be implemented using the same
hardware. The use of a single p-bit computing core instead
of an array of processing elements provides significant logic
resource savings. A logarithmic adder tree is used for single-cycle
weight logic computation while ensuring reasonable performance
even for large number of p-bits. Various application-specific p-
circuits are experimentally demonstrated using our proposed
hardware accelerator implemented on Xilinx UltraScale+ FPGA,
thus emphasizing the viability of practical scalable probabilistic
computing on modern FPGAs.

Index Terms—FPGA, probabilistic computing, configurable
accelerator, binary stochastic neuron, p-bit, p-circuit, invertible
logic, Boltzmann machine, Ising machine, integer factorization.

I. INTRODUCTION

The rise of quantum computing technologies has not only
opened up a plethora of new opportunities in cryptography,
machine learning, bio-informatics, mathematical optimization
and other applications [1], [2], [3] but also led to the emer-
gence of several new non-conventional computing paradigms
such as stochastic computing [4], probabilistic computing
[5] and probabilistic annealing [6]. Probabilistic computing
involves the systematic control and manipulation of unstable
stochastic units, also known as probabilistic bits or p-bits,
interconnected together, also known as probabilistic circuits
or p-circuits. The behaviour of p-bits and p-circuits resembles
networks of binary stochastic neurons similar to Boltzmann
machines and Ising machines [5], [7]. Probabilistic computing
has been shown to be capable of solving interesting compu-
tationally hard problems such as combinatorial optimization,
quantum emulation, Bayesian inference, integer factorization
and invertible logic [5], [8], [7], [9], [10].

Fig. 1 summarizes the key differences between the three
computing paradigms - digital (classical), probabilistic and
quantum, and an immediate observation is that probabilis-
tic computing lies somewhere in the middle of digital and
quantum [11]. Digital computing involves the manipulation
of bits which are deterministically either 0 or 1. Quantum
computing involves the manipulation of qubits which can

exist in a superposition of 0 and 1, a phenomenon unique to
quantum physics. In contrast, p-bits in probabilistic computing
fluctuate rapidly between 0 and 1. Unlike qubits which require
near-absolute-zero temperatures for correct functionality, it is
possible to realize p-bits and p-circuits at room temperature
thus providing a methodology for practical quantum emula-
tion. Although probabilistic computers are not expected to
be a replacement for quantum computers, they enable various
interesting applications using existing hardware technologies
at the intersection of classical and quantum computing [12].

Previous literature has demonstrated the potential of proba-
bilistic computing by implementing p-bits and p-circuits using
a variety of technologies such as magnetic tunnel junctions
[13], resistive random access memories [14], micro-controllers
[15] and FPGAs [16], [7]. The FPGA-based implementations
were fixed p-circuit demonstrations of applications such as
invertible logic, optimization and integer factorization using
limited number of p-bits. In this work, we propose an efficient
and configurable architecture for scalable probabilistic com-
puting on FPGA. We present our hardware accelerator Tyche
and its experimental demonstration using Xilinx UltraScale+
FPGA. Our configurable architecture allows p-circuits requir-
ing different number of p-bits to be evaluated using the same
hardware. We implement a single p-bit computing core instead
of an array of processing elements to achieve significant logic
resource savings. We use a logarithmic adder tree for single-
cycle arithmetic computation to ensure reasonable perfor-
mance even for large number of p-bits. Using our configurable
accelerator, we implement application-specific p-circuits up to
52 p-bits for invertible logic, max cut, travelling salesman
and integer factorization, thus demonstrating practical scalable
probabilistic computing on a modern FPGA platform.

Fig. 1. Three computing paradigms: digital, probabilistic and quantum.



Fig. 2. Overview of p-bit operation as a binary stochastic neuron.

II. BACKGROUND

Probabilistic computing, also known as probabilistic spin
logic, is an emerging computing paradigm which involves
the systematic control and manipulation of unstable stochastic
units called probabilistic bits or p-bits. Multiple p-bits are
connected together to implement probabilistic circuits or p-
circuits which have been shown to be capable of solving in-
teresting computationally hard problems such as combinatorial
optimization, quantum emulation, Bayesian inference, integer
factorization and various Boolean functions represented as
invertible logic [5], [8], [7], [9], [10].

The operation of a p-bit can be represented as a binary
stochastic neuron, as shown in Fig. 2. For a p-circuit with Nm

p-bits mi ∈ {−1,+1} ∀ 1 ≤ i ≤ Nm, each p-bit is updated
sequentially according to the following equation:

mi = sgn( rand(−1,+1) + tanh( Ii ) )

where Ii = I0 × (hi +
∑Nm

j=1 Jij mj ) for 1 ≤ i ≤ Nm.
The synaptic weights Jij which determine the interconnections
between different p-bits are obtained from an Nm×Nm matrix
J. The bias values hi which determine the local contributions
for different p-bits are obtained from an Nm×1 column vector
h. I0 is a constant which can be used to control the strength
of the p-bit interconnections. The above equations resemble
the behaviour of Boltzmann machines [5] and the stochastic
neural network representation is similar to Ising machines [7].

Recent literature has explored the use of emerging technolo-
gies such as magnetic tunnel junction and non-volatile memory
devices to efficiently realize the binary stochastic neuron
functionality in hardware [5], [8], [13], [7], [17], [14], [12].
However, large-scale implementations of p-circuits using such
emerging devices are yet to be experimentally demonstrated.
Therefore, FPGA-based implementations provide a promising
near-term alternative [16], [7], [4]. In this work, we present
an FPGA-based compact hardware accelerator for scalable
probabilistic computing which can be configured to implement
various application-specific p-circuits with different number of
p-bits. Our hardware architecture is described in Section III
and implementation results are discussed in Section IV.

Fig. 3. Top-level architecture of the proposed compact, configurable and
scalable probabilistic computing hardware accelerator.

III. ACCELERATOR ARCHITECTURE

In this work, we design, implement and demonstrate a
compact and configurable hardware accelerator for scalable
probabilistic computing on Xilinx UltraScale+ FPGA [18].
Fig. 3 shows the top-level architecture of Tyche, our pro-
posed hardware accelerator. The architecture is designed to
support p-circuits comprised of maximum Nm(max) p-bits,
where Nm(max) is a design parameter which can be set
prior to FPGA implementation. After implementation, the
accelerator can be easily configured to implement p-circuits
with Nm ≤ Nm(max) p-bits by providing Nm as an external
input. In order to support up to Nm(max) p-bits, the accelerator
is required to store the Nm(max) × Nm(max) matrix J and
the Nm(max) × 1 column vector h, where each element of J
and h is a signed fixed-point d-bit value. As shown in Fig.
3, the J matrix memory J Mem is organized in the form of
Nm(max) banks of single-port RAMs with each bank having
Nm(max) words of d-bit each. The i-th word in the j-th bank
(1 ≤ i, j ≤ Nm(max)) stores the (i, j)-th element of J, that
is, the element in the j-th column of the i-th row. As shown
in Fig. 3, the h vector memory h Mem is organized as one
single-port RAM having Nm(max) words of d-bit each. The
i-th word (1 ≤ i ≤ Nm(max)) stores the i-th element of h,
that is, the element in the i-th row. This memory organization
ensures that all Nm(max)+1 elements required for the weight
logic computation hi +

∑Nm(max)

j=1 Jij mj corresponding to
the i-th p-bit update can be read in parallel in a single clock
cycle, as discussed later. The J and h values are written to
these memories using a d-bit data input and a pair of r-bit
address inputs (for row and column) for J Mem and a d-bit
data input and an r-bit address input for h Mem, where r =



Fig. 4. Architecture of the p-bit core in the proposed probabilistic computing hardware accelerator.

⌈ log2 Nm(max) ⌉. The input configuration module contains
address decoder logic to translate these r-bit external addresses
into appropriate internal addresses of the single-port RAMs.
It also contains control circuitry to enable the appropriate
memory banks and ensure that the inputs are written to the
correct memory locations in J Mem and h Mem.

The p-bit values are stored in an Nm(max)-bit register
m Reg with a -1 p-bit value stored as 0 and a +1 p-bit value
stored as 1. Unlike previous work which has implemented ar-
rays of p-bit processing elements [16], [7], our design contains
only a single p-bit core as shown in Fig. 3. This is based on the
observation that most p-circuits require sequential update of
p-bits for correct functionality [5], [8], that is, multiple p-bits
are not updated simultaneously and having an array of p-bit
cores would mean that only one core would be active at a time
and others would be idle. Therefore, our proposed architecture
is able to support a large set of application-specific p-circuits
while reducing the computation logic to ≈ 1/Nm(max)-th.

Our p-bit core architecture is shown in Fig. 4. Since
mj ∈ {−1,+1} ∀ 1 ≤ j ≤ Nm(max), the sum of products∑Nm(max)

j=1 Jij mj can be computed simply using additions
and subtractions instead of multiplications. If mj = +1,
then the corresponding Jij is added. If mj = −1, then the
corresponding Jij is subtracted. A set of 2’s complement
adder-subtractor modules are used for this computation. The
straight-forward implementation would require Nm(max) − 1
such adder-subtractor modules in cascade to process the
Nm(max) Jij inputs. However, the cascade architecture leads
to longer critical paths which adversely affect the overall
system performance for larger p-circuits. Therefore, we im-
plement the adder-subtractor modules in a logarithmic tree
architecture [19], [20] as shown in Fig. 4. The logarithmic
tree requires the same number of adder-subtractor modules but
reduces the circuit depth, thus improving performance. If the
propagation delay for each adder-subtractor module is tADD,

then the overall propagation delay for the logarithmic tree is
⌈ log2 Nm(max) ⌉ tADD as opposed to (Nm(max) − 1) tADD

for the cascade architecture. The variation in propagation delay
of the logarithmic tree versus the cascade architecture with
increasing Nm(max) is shown in Fig. 5, where each adder-
subtractor module is implemented as an optimized 24-bit
ripple carry circuit in Xilinx UltraScale+ FPGA [18].

All arithmetic with J and h is performed with d = 24-
bit signed fixed-point values, where the most significant bit
accounts for the sign, the next 11 bits for the integral part and
the last 12 bits for the fractional part. Although previous work
[15], [16], [4], [14] has used only integer values with smaller
d for J and h, our simulations have shown that the accuracy
of the p-circuit improves significantly with larger d and with
fixed-point values instead of integers.

The Ii = I0 × (hi +
∑Nm(max)

j=1 Jij mj ) value is computed
using another adder followed by a fixed-constant multiplier
(I0 = 1 for the p-circuits demonstrated in this work). It is
then restricted to the range [−4,+4] using a comparator and
a multiplexer. A 1024 × 32-bit lookup table for the tanh

Fig. 5. Scaling of adder propagation delay for logarithmic tree and cascade
architectures with maximum number of p-bits Nm(max).



Fig. 6. Top-level state machine of the proposed p-circuit hardware accelerator.

activation function followed by a thresholding circuit (using
a set of multiplexers) is used to compute tanh(Ii) as a 32-
bit value. A 32-bit linear feedback shift register (LFSR) [21],
[16] is used the generate the p-bit stochasticity, where the
LFSR seed is configured through external input. Finally, a 32-
bit comparator is used to compute the updated p-bit value
mi = sgn( rand(−1,+1) + tanh( Ii ) ) and written back to
the i-th bit in m Reg.

Each p-bit update takes 3 clock cycles and a complete
update of all Nm(max) p-bits requires 3Nm(max) cycles,
also known as a sample. The accelerator repeats this for
Ns samples, where Ns is configured as external input. The
sequence of p-bit update in consecutive samples must be
different in order to prevent correlation between consecutive
states leading to incorrect output [5], [8]. This is ensured by
using an Nm(max) ⌈ log2 Nm(max) ⌉-bit sequence register (as
part of the control registers in Fig. 3) which generates a new
update sequence for each sample and the update pattern is
configured using external input. The accelerator operation is
controlled by a finite state machine (FSM) circuit, as shown in
Fig. 3, which implements the six main states shown in Fig. 6.
Overall, our proposed configurable hardware accelerator takes
3×Nm×Ns clock cycles to process Ns samples of a p-circuit
with Nm ≤ Nm(max) p-bits.

Fig. 7. Experimental validation setup with Genesys ZU-5EV FPGA board.

IV. IMPLEMENTATION RESULTS

A. FPGA Implementation

We implement our configurable and scalable probabilistic
computing accelerator design on Xilinx UltraScale+ FPGA
[18]. The accelerator is designed using Verilog HDL (Hard-
ware Description Language) and the Xilinx Vivado Design
Suite version ML 2022.2 is used for FPGA synthesis, im-
plementation and simulation. We experimentally validate our
implementation on a Digilent Genesys ZU-5EV Zynq Ultra-
Scale+ MPSoC Development Board [22] with an XCZU5EV-
SFVC784-1-E device, and our setup is shown in Fig. 7.
It contains 117k look-up tables (LUTs) and 234k flip-flops
(FFs) in configurable logic blocks (CLBs), 144 block RAMs
(BRAMs) and 1248 digital signal processing (DSP) slices. Fig.
8 shows how the maximum frequency of the configurable p-
circuit accelerator scales with the maximum number of p-bits
Nm(max). As expected with our logarithmic adder tree design
discussed in Section III, the maximum frequency decreases
approximately linearly (that is, the critical path delay increases
approximately linearly) with ⌈ log2 Nm(max) ⌉. Figs. 9, 10
and 11 summarize the post-implementation FPGA resource
utilization for configurable p-circuit designs with Nm(max) ∈
{8, 16, 32, 64, 128, 256} and d = 24. As expected, resource
utilization (LUTs, FFs and BRAMs) increases with larger
Nm(max). However, it is the number of BRAMs, determined
by the size of J and h, which limits the maximum number of
p-bits that can be supported in a particular device. The Zynq
UltraScale+ device in Genesys ZU-5EV has 144 BRAMs,
therefore allowing p-circuit implementation up to ≈ 286 p-
bits. As the number of available BRAMs is increased, the
maximum number of supported p-bits Nm(max) can also be
increased, that is, the p-circuit can be scaled as discussed later.
Note that the design does not require any DSP slices since
the adder tree is implemented exclusively using LUTs and
fast addition carry chains inside CLBs. Next, we discuss the
different probabilistic computing applications (up to 52 p-bits)
experimentally validated using our FPGA setup.

Fig. 8. Scaling of maximum frequency of accelerator implemented on Zynq
UltraScale+ MPSoC with maximum number of p-bits.



Fig. 9. Scaling of number of LUTs required by accelerator implemented on
Zynq UltraScale+ MPSoC with maximum number of p-bits.

Fig. 10. Scaling of number of FFs required by accelerator implemented on
Zynq UltraScale+ MPSoC with maximum number of p-bits.

Fig. 11. Scaling of number of BRAMs required by accelerator implemented
on Zynq UltraScale+ MPSoC with maximum number of p-bits.

TABLE I
P-BIT REQUIREMENTS OF VARIOUS P-CIRCUITS

Application-Specific p-Circuit Weighted p-Bits (Nm)

Tunable RNG 1

NOT Gate 2

AND Gate 3

1-Bit Full Adder 5

6-Node Max-Cut Problem 6

4-City Travelling Salesman Problem 16

8-Bit Integer Factorization 52

B. Application Demonstration

Table I shows different application-specific p-circuits ex-
perimentally validated using our FPGA implementation along
with the required number of weighted p-bits (Nm). Note
that these p-circuits can be easily implemented using our
configurable design (supporting up to Nm(max) p-bits) by
using appropriate input Nm as long as Nm ≤ Nm(max). The
values of J and h for specific p-circuits can be calculated
from their truth tables using optimization techniques such
as gradient descent [23] or linear programming [24]. It is
important to note that the total number of p-bits (including
ancillae) required for an application-specific p-circuit must be
known to calculate the corresponding J and h. Furthermore,
the optimization procedure becomes exponentially more com-
putationally expensive with increasing number of p-bits.

The 1-p-bit tunable random number generator (RNG) sets
J = 0 and h = 0 so that the output state is either 0 or 1 with
equal probability. The J and h values for 2-p-bit NOT gate,
3-p-bit AND gate and 5-p-bit full adder (FA) are as follows:

JNOT =

(
0 −1
−1 0

)
, hNOT =

(
0
0

)

JAND =

 0 −1 2
−1 0 2
2 2 0

 , hAND =

 1
1
−2



JFA =


0 −1 −1 1 2
−1 0 −1 1 2
−1 −1 0 1 2
1 1 1 0 −2
2 2 2 −2 0

 , hFA =


0
0
0
0
0


Both the max-cut problem and the travelling salesman problem
involve graph computations with the J and h values determined
by the number of vertices in the graph and the weights of their
edges, as obtained from [25]. Solving the max-cut problem
with n nodes requires n p-bits and solving the travelling
salesman problem (TSP) with n cities requires n2 p-bits. The
8-bit integer factorization is performed using the p-circuit
for 4-bit × 4-bit integer multiplication in reverse with the
output clamped to the 8-bit integer to be factorized. This
requires 52 p-bits, where the first 4 p-bits are for the first
factor, the next 4 p-bits are for the second factor, the last



TABLE II
COMPARISON WITH STATE-OF-THE-ART INVERTIBLE LOGIC IMPLEMENTATIONS ON KINTEX ULTRASCALE FPGA

Implementation Computing Configurable Clock Cycles per AND Gate Full Adder

Paradigm Architecture p-Bit Update LUT FF LUT FF

Pervaiz et al [16] Probabilistic No 3 156 123 1345 586

Smithson et al [4] Stochastic No N/A 257 307 400 329

This Work* Probabilistic Yes 3 64 72 143 90

*re-implemented with Kintex UltraScale FPGA for fair comparison

8 p-bits are for the product and the remaining 36 p-bits are
ancillae used for storing and processing intermediate compu-
tation results. The corresponding J and h values are obtained
from [25]. Our implementation of the 8-bit factorization p-
circuit requires 156 clock cycles to update all 52 p-bits in a
sample, and achieves maximum clock frequency of ≈ 60 MHz,
as validated using our experimental setup with the Genesys
ZU-5EV Zynq UltraScale+ MPSoC Board described earlier.
Considering Ns = 5000 samples, it takes only 13 ms to
obtain the probability distribution of all possible states using
our hardware accelerator. As an example, with 143 = 11× 13
as the input, we are able to obtain the factors as (11, 13) and
(13, 11) with high probability.

C. Scalability Analysis

As discussed earlier, the number of BRAMs available in the
target FPGA device limits the maximum number of p-bits that
can be supported using our configurable p-circuit accelerator.
For up to Nm(max) p-bits, the total memory required to store J
and h is N2

m(max) d+Nm(max) d = Nm(max) (Nm(max)+1) d
bits. Therefore, the memory requirement scales quadratically
with the number of p-bits, as shown in Fig. 12.

D. Comparison with Previous Work

While most of the existing literature has explored imple-
mentation of p-bits and p-circuits using emerging technologies
such as magnetic tunnel junctions (MTJs) [5], [8] and resistive
random access memories (RRAMs) [14], purely digital FPGA-
based implementations of the basic building blocks and small
invertible logic circuits have been demonstrated by [16] and

Fig. 12. Scaling of memory requirement (in Kb) for J and h with maximum
number of p-bits Nm(max) and d ∈ {8, 16, 24}.

[4]. Table II compares the resource utilization of FPGA
implementations of probabilistic / stochastic circuits for AND
gate and full adder from [16] and [4] with our application-
specific p-circuit implementations. Since [16] and [4] were
implemented on Xilinx Kintex UltraScale devices, we have
also re-implemented our design for Kintex UltraScale FPGA
with the same design parameters as [16] and [4] for fair
comparison. Clearly, our proposed architecture with a single
p-bit computation core (instead of an array of cores) provides
significant savings in terms of logic resources compared to
previous work. Our compact design still requires 3 cycles
to update each p-bit, same as [16], so there is no loss in
performance. This further emphasizes the resource-efficiency
of our compact design which is particularly beneficial for p-
circuits requiring large number of p-bits. Furthermore, unlike
[16] and [4], our architecture allows the same accelerator to
be configured to support various p-bit requirements.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented the design and imple-
mentation of Tyche, a compact and configurable hardware
accelerator for scalable probabilistic computing on FPGA. Our
hardware architecture is configurable, thus allowing p-circuits
requiring different number of p-bits to be evaluated using the
same hardware. The use of a single p-bit computing core
instead of an array of processing elements provides significant
logic resource savings. A logarithmic adder tree is used for
single-cycle weight logic computation while ensuring reason-
able performance even for large number of p-bits. Various
application-specific p-circuits are experimentally demonstrated
using our proposed hardware accelerator implemented on
Xilinx UltraScale+ FPGA, thus emphasizing the viability of
practical scalable probabilistic computing on modern FPGA
platforms. Future extensions of this work include the design
of memory-efficient architectures for probabilistic computing,
demonstration of larger p-circuits and development of efficient
algorithms for application-specific p-circuit construction.
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