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Abstract—A known problem in parallel computing is how to
partition a matrix such that work can be distributed among
several processors efficiently. One technique to do this is spectral
graph partitioning, which uses the eigenvectors of the graph
Laplacian to determine the optimal way for the matrix to
be divided. This partitioning method is particularly suited for
parallelization, specifically for GPUs, as it mainly relies on linear
algebra operations. However, this increased parallelism may come
at the cost of accuracy.

In this work, we present a novel improvement to spectral graph
partitioning by replacing the exact eigensolver (LOBPCG) with
a randomized eigensolver roughly an order of magnitude faster.
While the accuracy of the eigensolver is typically worse, we show
that for graph partitioning this is sufficient. Qur algorithm is
implemented in the Sphynx spectral graph partitioner, contained
in the Zoltan2 package of Trilinos. Results show this randomized
method in general gives a substantial speedup with minimal loss
in the quality of the edge cut. In some cases the randomized
method even gives slightly better edge cuts than the LOBPCG
eigensolver.

I. INTRODUCTION

Graph partitioning is a classic problem in computer science.
We focus on the balanced partitioning problem, which aims
to minimize the edge cut subject to the parts having (approxi-
mately) the same size. Since the problem is NP-hard, work in
this area [1] has led to a wide variety of heuristic algorithms.
Perhaps the most popular algorithm is the multilevel algorithm
[2], which has been implemented in software such as Chaco,
Metis, Scotch, and KaHip. Although multilevel methods are
fast and generally give good quality, they have a couple of
drawbacks. First, they require a lot of memory (all the levels
must be kept in memory). Second, they are hard to parallelize,
especially on GPUs. The spectral partitioning algorithm [3]
addresses both of these concerns: it is single-level, so requires
less memory, and it is suitable for GPU because it relies on
linear algebra. However, it is often slower and generally gives
poorer cut quality. Our goal here is to improve the speed of
spectral partitioning using randomized linear algebra. We will
demonstrate the usefulness of our approach by modifying the
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Sphynx [4], [5] partitioner. We will show that the speed can
be improved significantly, at little or no expense in quality. We
believe this makes randomized spectral partitioning a viable
option for some applications.

Our approach is general and may be adapted to similar
problems, such as graph clustering [6], community detection
via modularity, and embeddings in machine learning.

A. Contributions

The main contributions of this paper are:

o A parallel implementation of a randomized spectral graph
partitioner that runs on multiple GPUs. We build on the
Sphynx partitioner in Trilinos/Zoltan2.

« An empirical study of the time and cut quality for large,
highly irregular graphs, such as web graphs and circuit
simulation. We also give comparison to LOBPCG (a
standard eigensolver).

« Empirical evaluation of the time vs. quality trade-off in
using g steps of the power method (subspace iteration) in
the randomized eigensolver, for various q.

B. Related Work

Spectral methods have long been used both for (balanced)
partitioning and clustering. Using a randomized method was
first proposed in [7] and later described and analyzed [8], but
there was only one experiment for a single eigenvector on a
small example. We use a more modern randomized method
and compare against a state-of-the-art eigensolver (LOBPCG)
on large graphs. We also compute multiple eigenvectors to
partition into k£ > 2 parts. Espinoza [9] outlined our algorithm
but used a combination of Matlab and Sphynx to produce
results. Here, we present an HPC implementation based on
Trilinos [10] that is performance portable via Kokkos so it
can run on multiple platforms (CPU and GPUs).

Graph partitioning is a well-studied problem [1]. Generally,
connectivity-based methods that use the graph structure give
best quality, but may be slow. Geometric methods that only
use the geometry and not the connectivity are fast but typically
yield lower quality cuts. Our focus is on irregular graphs
from web networks, social networks, etc., where there is no
geometry. In that case, the multilevel method [2] and the
spectral method are the most effective ones.



We focus on spectral partitioning since it is more suitable
for GPUs. Naumov [11] first implemented spectral partitioning
on GPU, but the focus was on clustering, so there is no option
for balanced partitioning. Also, the code is limited to a single
GPU. Acer et al [4], [5] developed the Sphynx partitioner in
Trilinos/Zoltan2. That code base was chosen for the current
work because it both supports balanced partitioning and runs
on multiple GPUs.

Randomized numerical linear algebra [12], [13] has gained
much popularity in the last decade or two. The key advantage
is that randomized methods can quickly find approximate
solutions to some linear algebra problems, such as low-rank
approximations, range-space, and SVD. The randomization
allows one to approximate certain steps of the algorithm while
saving the expense of computing those values exactly.

II. EIGENSOLVERS AND SPECTRAL GRAPH PARTITIONING
A. Spectral partitioning

Spectral graph partitioning is based on computing a few
eigenvectors of the graph Laplacian. Given a graph G =
(V, E), the combinatorial Laplacian is

L=D— A,

where A is the adjacency matrix and D is a diagonal matrix
of vertex degrees. For weighted graphs, the off-diagonals will
correspond to edge weights. A closely related variation is the
normalized Laplacian:

Ly =D Y2LD Y2 =1 D Y2AD" /2

The edge cut in graph partitioning is then ixTLx, where

each z; € £1. This gives an integer optimization problem,
which is NP-hard. Donath et al. [14] observed that a relaxation
of the integer optimization problem gives an eigenproblem,
where the eigenvector of interest is the second smallest (aka
the Fiedler vector [15]). This observation opened up practical
(polynomial-time) algorithms. Pothen et. al [3] first studied
the spectral method to partition graphs and sparse matrices.
Later, this method has been extended [16] and implemented
in software [17]-[19].

Spectral methods are also popular for the related problem of
graph clustering [6], [7], [20]. In clustering, the parts do not
need to be similar size; rather, the goal is to identify closely
related information in the graph.

B. The Sphynx partitioner

We review the approach used in the Sphynx [4], [5] par-
titioner (a subpackage of Zoltan2 in Trilinos), into which
our new randomized method is incorporated. Figure 1 il-
lustrates the paritioning process at a high level: First, we
will take a graph Laplacian (combinatorial or normalized)
of a test graph/matrix. From there, an eigensolver is used to
obtain approximate eigenvectors. The number of eigenvectors
d required to get k parts is d = logek + 1. Note that
graph Laplacians have an eigenvector corresponding to the
zero eigenvalue that is not used for partitioning (and thus
discarded). For Figure 1, the graph is partitioned into 4

parts, so 3 eigenvectors are needed. Sphynx will then use the
eigenvectors as coordinates to map the graph’s vertices into
(d - 1)-space. In the figure, Sphynx uses the 2nd and 3rd
eigenvectors as coordinates to map the vertices into 2D space.
Lastly, Sphynx will call the multi-jagged (MJ) algorithm in the
Zoltan2 package to partition the graph into k parts (4 parts for
this example figure).

The three main steps in Sphynx are summarized below:

1) Form the graph Laplacian L from the graph G.

2) Compute the d + 1 smallest eigenvectors of L.

3) Partition the vertices of G in R? using the spectral

embedding and a fast geometric method (Multi-jagged).
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Fig. 1: Tllustration of Sphynx partitioning a graph with 16 unit-
weight vertices into 4 parts. [4]
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C. LOBPCG Eigensolver

It is well-known that most of the computational time in
spectral partitioning is spent in the eigensolver. Any eigen-
solver can be used, but LOBPCG [21] has been shown to
work well on many graphs, so is generally preferred. LOBPCG
has the added advantage it supports preconditioning, which is
not possible with many other methods, such as, Lanczos or
Krylov-Schur.

However, LOBPCG was designed to solve eigenproblems
to high accuracy. For partitioning, fairly low accuracy is often
sufficient [4]. We therefore propose to use a randomized
eigensolver. Randomized eigensolvers are typically fast when
low accuracy is sufficient, which is precisely our use case.
For the experiments that follow, Sphynx utilizes the LOBPCG
solver implemented in the Trilinos package Anasazi [22].
We also implemented a new prototype of the randomized
eigensolver in Anasazi, which we used for comparison.

D. Randomized Eigensolver

There are several variations of randomized eigensolvers. Of
the different techniques to solve the eigenvalue-eigenvector
problem that we can utilize for our randomized method, we are
most interested in a direct numerical method. The Rayleigh-
Ritz method [23, p. 98] uses a projection of a smaller dense
matrix to approximate the eigenvalues and eigenvectors of
our original matrix. This method is of great interest because
solving for the eigenvectors of a small projected matrix,
rather than a much larger matrix, can significantly reduce our
computation cost.

Building on the idea of the Rayleigh-Ritz method, Halko,
et. al. [12] proposed a randomized projection to be used



for eigensolvers and SVD. We adopt this method due to
its simplicity. The method is detailed in Alg. 4.3 and 5.1
of [12]. (Their work does contain an example that applies
the method to graph Laplacians, but it was not used for
partitioning.) One caveat is that the method is intended to
find the largest (rightmost) eigenvalues of the matrix, not
the smallest (leftmost), as it uses a variation of subspace
iteration (the power method). We address this by applying a
simple spectral transformation to the matrix to find the desired
eigenvectors.

For completeness, we describe our method in detail here.
First recall that that the (symmetrically) normalized Laplacian
is defined as Ly = I — D™1/2AD~1/2_ We observe that Ly
has ones on the diagonal, and by Gerschgorin’s circle theorem,
all the eigenvalues are in the interval (0, 2). Let L be defined
by

L=2I-Ly=1I+D""?AD™'/2 (1)

Observe that, like Ly, L is symmetric positive semidefinite.
The largest eigenvalue of L is the smallest of Ly, and

vice versa, so we apply our method to L. Our randomized
eigensolver is:
« Part A: Compute orthogonal basis () of the range of L.
1) Create a random Gaussian matrix, 2 € R™! where
[ is chosen to be greater than the number of desired
eigenvectors.
2) Form Y = L), where q is a small integer (input
parameter)
3) Compute the tall and skinny QR factors: QR =Y.

o Part B: Solve projected (small) eigenvalue system;
project back.
1) Compute projection B = QT LQ.
2) Solve eigenproblem B = VAVT,
3) Project back to large system U = QV.

Thus, the columns of U approximate eigenvectors of L. Part
A corresponds to Algorithm 4.3: Randomized Power Iteration
from Halko, et. al. [12], and Part B corresponds to Algorithm
5.1 - Direct SVD.

Note the parameter [ must be larger than the desired number
of eigenvectors d, which again depends on the number of parts.
The difference [ — d is known as the oversampling parameter,
and is typically a small integer in the range 2 to 5.

We implement a preliminary version of the randomized
eigensolver in Anasazi to use in conjunction with Sphynx.
The eigensolver implementation uses MPI distributed paral-
lelism and can run on GPUs when available (via Kokkos and
KokkosKernels).

Complexity: First suppose L is dense (which is rarely the
case since most graphs are sparse). Then the most expensive
part is actually the matrix multiplication L99, which requires
O(anZ) flops. The QR factorization (orthogonalization) is
O(nl?), which is less since [ < n.

Now suppose L is sparse with mnz nonzeros. Then a
single sparse matrix-vector multiply is O(nnz) flops, so the
dominating matrix multiply is now O(g(nnz)l). Since Y

remains dense, it is possible the tall skinny QR cost could
dominate for very sparse Laplacians.

An open question is what is a good choice of g. Although
there are bounds on the convergence rate of subspace iteration,
this does not tell us much about the partitioning quality.
Therefore, we perform an empirical study.

III. EXPERIMENTS

Our experiments will compare the Sphynx spectral par-
titioner using two different eigensolvers, LOBPCG and the
randomized method, to obtain approximate eigenvectors for
the graph Laplacians Ly of the test matrices. We also compare
Sphynx on GPU with XtraPuLP [24], a CPU-only partitioner
known to work well with irregular graphs. Prior to computing
the graph Laplacian of our test matrices, we performed pre-
processing calculations by following the procedure laid out in
Acer, et.al [4]. This was done by symmetrizing the matrix,
setting all nonzero entries equal to 1 (equivalent to assuming
that all edge weights are one), and extracting the largest
connected component. The (normalized) graph Laplacian Ly
of the preprocessed test matrices was then computed. It should
also be noted that obtaining the largest connected component
is important for this experimental run as Sphynx cannot handle
multiple connected components.

All experiments are run on a cluster equipped with IBM
Power9 processors (dual-socket, 20 cores per socket) that have
dual NVIDIA V100 GPUs per socket. In other words, each
compute node has 40 cores and 4 V100 GPUs. The Sphynx
code is built using OpenMPI 4.1.1 and CUDA 11.2.2. For
calling XtraPuLP from Zoltan2, we use OpenMPI 4.1.1 with
OpenMP enabled. Unless stated otherwise, Sphynx experi-
ments are run on a single node using 4 MPI ranks (one rank
for each GPU). The XtraPuLP experiments are also run on one
node with 4 MPI ranks, where each MPI rank gets 10 OpenMP
threads, thus using all CPU cores available. We claim this gives
as fair comparison of Sphynx and XtraPuLP performance as
possible, given that XtraPuLP is not GPU-enabled.

A. Graphs/Matrices

Results in [9] indicate that spectral partitioning with the
randomized eigensolver works better for irregular graphs
(those with a high ratio of max/average vertex degree) than
regular graphs (which often come from meshes). Therefore
we focus our tests on 14 irregular graphs available in the
SuiteSparse collection [25], mostly coming from web graphs,
social networks, and circuit simulation. These matrices and
their properties are listed in Table 1.

B. Randomized Sphynx with increasing q

We partition each graph into 64 parts, setting Sphynx to
balance by rows. Thus, for spectral partitioning, we need to
compute log,(64) + 1 = 7 eigenvectors (including the trivial
vector of all ones). Since results from all the tested partitioners
are non-deterministic, results shown use the median edgecut
of five runs and the corresponding timing. Timings for Sphynx
include the eigenvector solve and the multi-jagged partitioning



TABLE I: Test matrices (graphs) used for the experiments.
Vertices correspond to rows/columns in the matrix.

SuiteSparse Matrices degree
name vertices edges max average
hollywood-2009 1,069,126 113,682,432 11,468 106
sx-stackoverflow 2,601,977 36,233,450 44,065 22
FullChip 2,986,914 26,621,906 2,312,481 9
com-Orkut 3,072,441 237,442,607 33,314 77
wikipedia-2007 3,512,462 88,261,228 187,672 25
cit-Patents 3,764,117 36,787,597 794 10
com-LiveJournal 3,997,962 73,360,340 14,816 18
circuitSM 5,555,791 59,519,031 1,290,501 11
wb-edu 8,863,287 97,233,789 25,782 11
uk-2005 39,252,879 1,602,132,663 | 1,776,859 41
it-2004 41,290,577 2,096,240,367 | 1,326,745 51
twitter7 41,652,230 2,446,678,322 | 2,997,488 59
com-Friendster 65,608,366 3,677,742,636 5,215 56
webbase-2001 118,142,155  1,019,903,190 816,127 15

phase. Timings for pre-processing operations (symmetrizing
and finding the largest connected component) are not included.

First we study the Randomized Sphynx graph partitioner
using increasing values of ¢, the number of times we multiply
by the matrix L. We use a block size of ¢ = 10; larger
block sizes did not seem to give any significant improvement
in the edgecuts. Table II shows edgecuts and timings for
q = 1,2,4,8,16. Recall that smaller edgecuts are preferable
in graph partitioning. Typically, edgecuts decrease with larger
values of ¢; some examples are plotted in Figure 2. This is
expected because ¢ corresponds to the number of iterations in
subspace iteration, so larger ¢ values will give more accurate
eigenvector approximations with the randomized eigensolver.
On average, the edgecuts decrease by over 40% from ¢ = 1
to ¢ = 16 and by over 30% from ¢ = 8 to ¢ = 16. However,
the improvements lessen as ¢ increases, eventually reaching
a plateau. Further, large ¢ values may lead to numerical
instability and breakdown in the orthogonalization step. This
happened for a small number of our test matrices with ¢ = 32;
thus, we stopped our experiments at ¢ = 16 in this work. We
should be able to use higher ¢ for those matrices if we added
re-orthogonalization to the randomized eigensolver.

We observe that timings only increase slightly as ¢ in-
creases. This is expected due to additional sparse matrix-vector
products (SpMVs) in the randomized eigensolver. More specif-
ically, timings from ¢ = 1 to ¢ = 16 increase, on average, by a
little over 2 times. From ¢ = 8 to ¢ = 16, the timings increase,
on average, by only about 35%. Improvements in edgecut with
higher g seem to strongly outweigh the small increase in solve
time.

C. Randomized Sphynx vs known methods

Next we compare the Randomized Sphynx partitioner with
two other existing methods: a) Sphynx using an LOBPCG
solve and b) the XtraPuLP partitioner [26]. For Sphynx with
the LOBPCG solve, we use a Jacobi preconditioner (which
is actually equivalent to no preconditioner in the normalized
case), and we run LOBPCG until the eigenvectors converge to
a tolerance of 1le—2. We compare with XtraPuLP because it is

a non-spectral partitioner known to be effective with irregular
graphs.

Timings and edgecuts for both methods are shown in Table
III. For comparison, we also include results for the randomized
partitioner using ¢ = 16, with edgecuts and timings normal-
ized against those of Sphynx with LOBPCG and XtraPuLP.
On the whole, the randomized method is typically much faster
than the other two methods but provides a worse edgecut than
XtraPuLP.

The cut quality comparison between Sphynx with LOBPCG
versus the randomized eigensolver is interesting. In 6 of
the test cases, the randomized solver actually gives better
edge cuts, while in 8 of the cases, it did worse. The two
best edgecuts are for the matrices FullChip and circuit5M,
which interestingly are both circuit simulation matrices. Both
edgecuts are about 21% smaller than those of LOBPCG. Three
matrices have edgecuts that are less than 5% larger than those
of Sphynx with LOBPCG. This is not a significant difference.
Table IV lists eigenvalues and corresponding residuals for
both the LOBPCG solves and the randomized eigensolver.
Recall that LOBPCG was set to stop when all eigenvalues had
converged to a residual of at least 1e — 2. The table shows that
many eigenvalues converged to less than that. With ¢ = 16,
however, most of the residuals are slightly higher than 1e — 2.
This demonstrates that in many cases quite low eigenvalue
accuracy is sufficient to achieve good partitioning.

As for timings, the randomized partitioner (with ¢ = 16)
was much faster than traditional Sphynx for every graph tested.
The most dramatic improvement is seen with webbase-2001,
where the randomized partitioner (¢ = 16) is 658 times faster
than Sphynx with LOBPCG. (Though this does come at a
price of a twice as large an edgecut.) Even the solve with
the smallest improvement, with com-Orkut, is still roughly
two times faster than with traditional Sphynx. (This time the
faster partitioner gives a comparable edgecut.) On average, the
randomized solver is about 65 times faster than Sphynx with
LOBPCG.

We now compare the randomized partitioner with results
from XtraPuLP. All edgecuts from PuLP were smaller than
corresponding edgecuts from Randomized Sphynx. Eight of
the fifteen randomized edgecuts were less than two times the
size of the PuLP edgecuts. The worst case is with the graph
it-2004 which had an edgecut 3.7X larger with Randomized
Sphynx than with XtraPuLP. At this time, we have not
identified a reason for the large discrepancy in edgecuts. We
leave this as a subject for future research.

Again, the randomized solver proves to typically be faster
than other methods. Eleven of the fourteen randomized timings
were faster than XtraPuLP. Our comparison used four GPUs
(and 4 MPI ranks) for Randomized Sphynx, versus 40 cores
(4 MPI ranks with 10 threads each) for XtraPuLP.

IV. CONCLUSIONS AND FUTURE WORK

We have presented and evaluated a randomized eigensolver
for spectral partitioning. We showed the randomized method
is roughly an order of magnitude faster than the LOBPCG



gq=1 q=2 q=4 q=8 q=16
Matrix Edgecut Time | Edgecut Time | Edgecut Time | Edgecut Time | Edgecut Time
hollywood-2009 1.107e8 9708 | 1.104e8 1.010 | 1.107e8 1.082 | 9.400e7 1.224 | 6.980e7 1.512
sx-stackoverflow 5.532¢7 1.446 | 5.511e7 1.529 | 5.473¢7 1.679 | 5.388¢7 2.020 | 5.022¢7 2.683
FullChip 2.289%7 5.589 | 2.220e7 7.147 | 2.051e7 10.33 | 1.815¢7 16.67 | 1.620e7  29.28
com-Orkut 2.304e8  2.134 | 2.300e8 2.334 | 2.285e8 2.626 | 2.158e8 3.268 | 1.647e¢8 4.577
wikipedia-20070206 | 8.316e7 1.923 | 8.280e7 2.088 | 8.189¢7 2.463 | 7.923¢7 3.128 | 7.006e7 4.547
cit-Patents 3.200e7 1.635 | 3.136e7 1.648 | 2.987¢7 1.752 | 2.705¢7 1.955 | 2.307¢7 2.315
com-LiveJournal 6.777¢7  1.813 | 6.698¢7 1.873 | 6.439¢7 2.005 | 5.669¢7 2342 | 4.829¢7 2.903
circuitSM 5.295¢7 3.530 | 5.275¢7 4.115 | 5.215¢7 5.129 | 4.816e7 7.293 | 3.218¢7 11.75
wb-edu 8.593¢7 2.682 | 8.395¢7 2.843 | 7.471e7 2904 | 4.257¢7 2977 | 2.113¢7 3.316
uk-2005 1.535¢9  14.54 | 1.525¢9 1540 | 1.432¢9 17.17 | 7.168e8 20.59 | 3.545¢8 27.23
it-2004 2.020e9 33.79 | 2.013¢9 35.58 | 1.961e9 3848 | 1.282¢9 40.23 | 4.161e8§ 4593
twitter7 2.365¢9  435.7 | 2.363¢9 473.8 | 2.356e9 559.1 | 2.331e9 766.8 | 1.864¢9 1,040
com-Friendster 3.550e9 800.7 | 3.544e9 934.3 | 3.527¢9 1,262 | 3.484e9 2,059 | 3.067¢9 3,741
webbase-2001 1.651e9 7445 | 1.627¢9 7493 | 1.492¢9 75.06 | 8.175¢8 79.10 | 3.329¢8 84.84

TABLE II: Results for partitioning into k£ = 64 parts with Randomized Spectral Partitioning with various ¢ values (I = 10).
Timings are in seconds. The best edgecut for each matrix and corresponding timings are in bold.

LOBPCG w/ Jacobi q=16 w.r.t. LOBPCG XtraPuLP q=16 w.r.t XtraPuLP
Matrix Iters Edgecut Time Edgecut Time Edgecut Time | Edgecut Time
hollywood-2009 155  6.840e7  8.260 1.020 0.183 6.027¢7  6.486 | 1.158 0.233
sx-stackoverflow 68 5.071e7  6.455 0.990 0.416 3.864e7 10.99 | 1.300 0.244
FullChip 96 2.062¢7  56.90 0.785 0.515 9.946e6  5.376 | 1.628 5.446
com-Orkut 44 1.629¢8  7.619 1.011 0.601 1.227e8  23.90 | 1.343 0.192
wikipedia-20070206 | 95 7.074e7  12.38 0.990 0.367 4.338¢7 19.24 | 1.615 0.236
cit-Patents 101 1.707e7  7.767 1.352 0.298 8.958¢6  10.69 | 2.575 0.217
com-LiveJournal 140  4.984e7 12.37 0.969 0.235 2917¢7  13.55 | 1.655 0214
circuitSM 144 4.110e7 35.88 0.783 0.327 1.936e7 1544 | 1.662 0.761
wb-edu 103 6.335¢6  12.02 3.335 0.276 4.390e6 1122 | 4.813 0.296
uk-2005 179  1.802¢8 176.7 1.967 0.154 1.515e8  82.50 | 2.340 0.330
it-2004 187 23598 3,384 1.764 0.014 1.112¢8  93.38 | 3.740 0.492
twitter7 284  2.100e9 36,860 | 0.888 0.028 1.695¢9 5954 | 1.100 1.747
com-Friendster 173 2.926e9 45,380 | 1.048 0.082 1.759¢9 2,304 | 1.743 1.624
webbase-2001 137 1.541e8 55,800 | 2.161 0.002 1.086e8  243.8 | 3.067 0.348

TABLE III: Results for Spectral Partitioning into & = 64 parts using LOBPCG with Jacobi Preconditioning as eigensolver, and
with Xtra-PuLP as partitioner. “Iters” indicates the number of iterations used by LOBPCG. Values are shown for the randomized
partitioner with ¢ = 16 and normalized with respect to LOBPCG and XtraPuLP. Edgecuts/timings from the randomized solver
are divided by those of other methods. Edgecut values less than 1 (in bold) indicate the randomized solver performed better.
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Fig. 2: Randomized eigensolver spectral partitioning edgecuts Fig. 3: Comparison of spectral partitioning edgecut results for

results, using the uk-2005, twitter7, it-2004, and webbase-2001  the twitter7 matrix. Values are taken from Table II and III.
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listed in the Part A of the randomized eigensolver method. domized, LOBPCG, or XtraPuLP) normalized by LOBPCG’s
values.
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LOBPCG w/ Jacobi q=16
Matrix J )‘j Tj >‘j T

1 | -6.039E-15 3.48E-11 0.1286  5.832E-02

2 3.720E-03 2.35E-05 | 0.1389  5.722E-02

3 4.724E-03 7.14E-05 | 0.1418  5.735E-02

wikipedia 4 6.210E-03 2.65E-04 | 0.1426  5.896E-02
-20070206 | 5 8.252E-03 1.52E-03 | 0.1432  5.768E-02
6 1.023E-02  8.56E-03 | 0.1482  5.770E-02

7 1.105E-02 1.32E-03 | 0.1519  5.893E-02

1 | -1.674E-12  3.26E-09 | 0.0740  3.642E-02

2 1.929E-04 1.66E-07 | 0.0777  3.671E-02

3 1.929E-04  2.90E-08 | 0.0787  3.633E-02

circuitSsM | 4 | 2.965E-04 1.31E-04 | 0.0802 3.815E-02
5 4.261E-04 7.10E-03 | 0.0818  3.749E-02

6 4.440E-04 6.77E-05 | 0.0824  3.784E-02

7 6.136E-04 6.53E-04 | 0.0843  3.756E-02

1 | -6.395E-14  2.58E-09 | 0.1454  5.829E-02

2 5.099E-04 1.83E-09 | 0.1480  5.934E-02

3 5.105E-04 6.25E-08 | 0.1503  5.870E-02

twitter7 4 1.039E-03 2.84E-07 | 0.1508  5.882E-02
5 1.099E-03 1.19E-06 | 0.1515  5.914E-02

6 | 2.348E-03 2.37E-05 | 0.1541  5.819E-02

7 2.755E-03  9.04E-03 | 0.1546  5.856E-02

TABLE IV: Eigenvalues and corresponding residuals of the
six matrices that produced better edgecuts values for the
randomized eigensolver than LOBPCG

eigensolver. While LOBPCG usually needs over 100 iterations
to converge to our tolerance, the randomized solver (subspace
iteration) usually gives good partition quality after only 16
matrix-vector multiplies. The accuracy of the eigenvalues is
generally lower, which only slightly affects the cut quality
of the partitioning in most cases. To improve the quality,
we introduce a parameter ¢ used in the randomized method.
Generally, larger ¢ gives better partitioning quality but takes
more time. Empirically, we found ¢ = 16 to be a good value.
For web graphs and social networks we found the cut quality
is similar to or worse than with LOBPCG. However, for circuit
graphs, the randomized method can, surprisingly, give better

cut quality than LOBPCG. This merits future study.

We believe our method is most useful in applications where
partitioning time is a major concern, for example, simulations
with dynamic load balancing.

There are several directions for future work:

« We only evaluated ¢ values up to ¢ = 16, due to numer-
ical issues. With reorthogonalization (commonly used in
subspace iteration), higher ¢ values would be possible,
and perhaps the edge cuts would improve further. It might
be possible to automatically estimate a good ¢ value from
the R in the QR factorization.

o A natural way to improve our results is to add a re-
finement phase. Currently, the multi-jagged method only
considers the geometry and does not directly try minimize
the edge cut. A refinement phase would improve the edge
cuts, but is hard to do in parallel, especially on GPU.

o We used the multi-jagged partitioner in Zoltan2 for the
geometric partitioning in low dimension. We do not
claim this is the best method. Any geometric partitioning
method could be used here, such as, k-means.

o For parallel computation, we assumed the matrix is
partitioned by rows. However, the sparse matrix-vector
multiply (SpMV) will likely be faster for a 2D (nonzero-
based) matrix decomposition [27]. This would speed up
the spectral partitioner (both LOBPCG and the random-
ized eigensolver).

« Finally, we remark that our approach likely extends to
spectral clustering (as opposed to partitioning). Since
low-accuracy eigenvectors are sufficient for partitioning,
we believe the same approach will work for clustering.
Only the last phase (multi-jagged) would need to be
changed. We leave this as future work, as clustering poses
other challenges.
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