
Parallel Algorithms for Computing Jaccard Weights on Graphs
using Linear Algebra

Elaheh Hassani∗, Md Taufique Hussain† and Ariful Azad‡
∗ Indiana University, Bloomington, IN, USA (ehassani@iu.edu)
† Indiana University, Bloomington, IN, USA (mth@indiana.edu)

‡ Indiana University, Bloomington, IN, USA (azad@iu.edu)

Abstract—Jaccard similarity between a pair of vertices in
a graph measures the relative overlap among their adjacent
vertices. This metric is used to estimate the strength of existing
edges and predict new edges between pairs of disconnected
vertices. Computing Jaccard similarity for all pairs of vertices
or for all edges is computationally expensive. Existing sequential
and parallel algorithms are either too slow or do not scale well
for large scale graphs. We present a shared-memory parallel al-
gorithm for computing Jaccard weights. Our algorithm relies on
sparse linear algebraic operations that utilize masking, semirings,
vector iterators, and other GraphBLAS features for performance.
Our implementation, albeit simple, outperforms recent state-of-
the-art implementations by a factor of up to 20× and exhibits
an average speedup of 9×.

I. INTRODUCTION

Given two sets A and B, Jaccard Similarity or Jaccard Index
is computed by the ratio of the size of their intersection and the
size of their union: |A ∩B|/|A ∪B|. The Jaccard similarity
is widely used in many applications, such as comparing DNA
sequences [1] and data mining [2]. In this paper, we consider
the application of Jaccard similarity to measure the similarity
between two vertices within a graph. Given a pair of vertices
{u, v} in a graph, their Jaccard similarity is computed as
follows:

J(u, v) =
|N(u)

⋂
N(v)|

|N(u)
⋃
N(v)|

(1)

where N(u) denotes the set of neighbors of u. J(u, v)
takes a value between zero and one, indicating the strength
of ties between u and v. Based on this similarity, we can
quantify the extent to which two vertices exhibit similarity
in their immediate neighborhood. Such intuition can be used
to recommend friends on social networks and understand the
growth of complex networks via triadic closure [3], [4].

Computing Jaccard similarities on a graph has gained atten-
tion over the last few years. It has been proposed as a potential
graph benchmark [5]. IARPA used it as a benchmark to eval-
uate the next generation of computing architecture1. Consider-
ing the increasing interest in this problem, several sequential
and parallel algorithms were proposed in the literature. These
algorithms have various computational complexity [5] and use
different implementation techniques including MapReduce [6],
GPUs [7], [8], distributed-memory parallel algorithms [1].

1https://www.iarpa.gov/research-programs/agile

Most previous algorithms for computing Jaccard similarities
on a graph are customized for a specific computing platforms.
In this paper, we take an alternative route by mapping Jaccard’s
computation to sparse matrix operations and then using a
parallel sparse matrix library to implement the algorithm.
This two-step approach makes the algorithm general purpose,
which can be implemented for any computing platform with
the support of a sparse matrix library. We experimentally
demonstrate that our linear-algebraic Jaccard computation is 3
to 4 times faster (on multicore CPUs) than other customized
algorithms.

Linear-algebraic approach for graph algorithm has been
popularized by the GraphBLAS standard [9]. GraphBLAS
inspired many state-of-the-art graph algorithms such as con-
nected components [10] and triangle counting [11]. We
followed the footsteps of these algorithms and designed a
GraphBLAS-style Jaccard algorithm. We identify two phases
in the computation: (a) neighborhood intersection (the nu-
merator in Eq. 1) that can be mapped to a sparse matrix-
matrix multiplication (SpGEMM) and (b) neighborhood union
(the denominator in Eq. 1) that can be mapped to several
vector operations. For the neighborhood union computation,
we deviate from the GraphBLAS standard by using custom
iterators for faster calculations. Finally, we use simple load-
balancing schemes to make the algorithm scalable for irregular
graphs. These techniques together deliver a highly parallel
algorithm that scales almost linearly to 64 cores on a multicore
processor and runs up to an order of magnitude faster than a
recent degree-aware algorithm [7] for this problem.

There are two variants of the Jaccard similarity computa-
tions that have been discussed in the literature. J(u, v) is called
the Jaccard weight when {u, v} is an edge in the graph. By
contrast, the Jaccard similarity is computed between any pair
of vertices that may or may not be connected by an edge. We
maintain this distinction throughout the paper. In particular,
Jaccard weights can be computed faster by using a masked
SpGEMM where the input graph works as a mask to eliminate
unnecessary computations. On the other hand, Jaccard simi-
larity computation cannot use any masking because it needs
to compute similarities for all pairs of vertices. Even then the
Jaccard similarity matrix is expected to be a sparse matrix
for most real-world graphs. We develop algorithms for both
Jaccard weight and Jaccard similarity computations.

The contributions of the paper are as follows:

1

1) We develop algorithms for both Jaccard weight and Jac-
card similarity computations using sparse linear algebra
operations.

2) Based on the nature of Jaccard computations, we cus-
tomize linear algebra operations utilizing symmetry,
masking, semirings, and vector iterators.

3) Our implementation based on Suitesparse GraphBLAS
is up to an order of magnitude faster than Jaccard-
ML [7], a state-of-the-art algorithm for computing Jac-
card weights.

II. BACKGROUND AND RELATED WORK

To simplify Eq. 1, let γ(u, v) represent the number of
common neighbors of a node pair {u, v} and d(u), d(v)
represent the number of neighbors of u, v respectively. Then,
Eq. 1 can be written as

J(u, v) =
γ(u, v)

d(u) + d(v)− γ(u, v)
(2)

Figure 1 shows an example of computing the Jaccard
similarity score for a pair vertices {u, v}.

γ(u, v) = 2

N(u) = 4

N(v) = 3

J(u, v) =
2

5

Fig. 1: Calculation of the Jaccard similarity between a pair vertices
{u, v}. White vertices are common neighbors between u and v.

Calculating the Jaccard similarity for all pairs of nodes
in a graph can be computationally demanding because it
involves computing set intersection for all pairs. It can become
especially demanding for large graphs, for which paralleliza-
tion might be necessary to utilize the power of modern
computational resources. Like many other graph algorithms,
getting good parallel performance is challenging due to ir-
regular memory accesses and possible load imbalance across
processes. In this paper, we translate the computation of Eq. 2
for all pairs of nodes to sparse linear algebraic operations so
that we can utilize the computational techniques employed in
the sparse linear algebra domain.

A. Related work

There have been several algorithms proposed to efficiently
compute Jaccard similarity and Jaccard weight. For the cal-
culation of Jaccard distances between genomes, Besta et
al. [1] proposed a Jaccard similarity computation algorithm.
Krawezik et al. [12] presents a parallel implementation
of Jaccard similarity computation on the Emu architecture.
Aljundi et al. [7] introduced a Jaccard Weight algorithm with
an ML-based work distribution technique using GPUs. Fender
et al. [13] developed an efficient parallel Jaccard Weight
algorithm based on binary search using GPUs.

Algorithm 1 Algorithm for Jaccard similarity
Input and Output: Input adjacency matrix A ∈ Rn×n in
CSR format and output Jaccard similarity matrix J ∈ Rn×n

where J[u, v] represents value of Eqn. 2 for the vertex pair
{u, v}

1: procedure JACCARDSIMILARITY(A)
2: Let t = 0.
3: A← SYMMETRICISE(A)
4: SR ← SEMIRING(+, ∧)
5: J← SPGEMM(A, A, SR) ▷ Intersection count
6: e← 1n×1 ▷ Dense vector of all 1s
7: d← SPMV(A, e, SR) ▷ Neighbor count
8: J← UPPERTRIANGLE(J) ▷ Extract upper triangle

section
9: for (u, v) ∈ NONZEROES(J) do

10: J[u, v]← J[u,v]
d[u]+d[v]−J[u,v]

11: return J

III. JACCARD-LA: PARALLEL ALGORITHMS FOR
COMPUTING JACCARD WEIGHTS IN LINEAR ALGEBRA

A. Linear algebraic formulation of Jaccard similarity

We design the Jaccard similarity algorithm using two major
steps. The outline of our algorithm is described in the Algo-
rithm 1.

First, we calculate the numerator of the Eq. 1 by comput-
ing the square of the adjacency matrix using sparse matrix
multiplication (SpGEMM) with (+,∧) semiring (Line 5, Al-
gorithm 1. ∧ represents the logical AND operation). In most
practical graphs, the resulting matrix is expected to contain
more nonzeros than the original matrix. An example of this
computation on a toy graph is shown in Fig. 2.

Second, we calculate the denominator of Eqn 1 and divide
the numerator to get the similarity score. Because the denom-
inator represents the cardinality of the union of neighborhood
sets corresponding to a vertex pair, this operation can also
be computed by performing SpGEMM on the same operand
as the previous step except with (+,∨) semiring. Using
SpGEMM to compute the union of neighborhoods would give
us a proper GraphBLAS solution because it relies on oper-
ations defined in the GraphBLAS standard. However, using
SpGEMM for computing the union of neighborhoods could
perform a lot of redundant computations that are not needed to
compute Jaccard similarity. This redundancy originated from
the fact that Jaccard similarity defined in Eq. 1 needs to
compute {N(u) ∪N(v)} only when {N(u) ∩N(v)} is non-
empty. Hence, instead of using SpGEMM, we compute the
degree of each vertex (Line 6-7, Alg. 1) and then for each non-
zero intersection, we use the degree information to compute
the similarity using Eqn 2(Line 9-10, Alg. 1). Because Jaccard
similarity is a symmetric relationship, to further reduce the
computation we perform the second step only on the upper
triangular part of the intersection count matrix (Line 8, Alg. 1).
Note that the latter part of Alg. 1 does not use standard
GraphBLAS operations.

2

Fig. 2: Steps of our Jaccard similarity algorithm (Alg. 1) on a
toy graph of six vertices. The top row shows the neighborhood
intersection count computation. In the bottom row, different colors
represent different threads involved in computing the neighborhood
union count in parallel when three threads are employed (when sparse
matrices are stored in CSR format).

B. Computational Complexity

We analyze the computational complexity of Alg. 1 by
considering the adjacency matrix to be an Erdős-Rényi matrix.
If the adjacency matrix has n rows/columns and an average
number of nonzeros of d, then computing the intersection
count with SpGEMM would take O(nd2) time [14]. For each
possible n2 non-zero entry in the intersection count matrix
probability of the existence of the non-zero is n × d2

n2 = d2

n .
So, the expected total number of non-zeros is nd2. In the last
step, we iterate over these non-zeros to compute the Jaccard
similarity coefficient. Hence the total time complexity of our
algorithm is the same as the SpGEMM operation O(nd2).

C. Parallel Jaccard Similarity Algorithm

At first, we discuss a parallel algorithm for Jaccard similar-
ity for each pair of vertices with at least one common neighbor.
The pair of vertices may or may not be connected by an edge.
To design a parallel algorithm for Jaccard similarity, we make
use of parallel linear algebraic modules. The outline of our
parallel Jaccard similarity algorithm is described in Alg. 2. The
major steps are the same as the Alg. 1 except we use parallel
SpGEMM and sparse matrix-vector multiplication (SpMV)
to compute the intersection count matrix and degree vector
(Line 5 and 7, Alg. 2). Because the last step of our algorithm
is as expensive as the SpGEMM operation and we don’t
make use of any linear algebraic operation, we parallelize
it explicitly. We assign an equal workload to each thread
by dividing the non-zero values into chunks of consecutive
regions of the sparse matrix (Line 9-10, Alg. 2). Fig. 2 shows
how the division takes place in a toy example when we use
CSR data structures for sparse matrices. Parallelizing in this
way does not ensure that the reads from the degree vector
would always be consecutive - which creates some potential
for cache misses. However, the size of the degree vector is
much smaller compared to the non-zero array(n vs nd2), and

Algorithm 2 Parallel Algorithm for Jaccard similarity
Input and Output: Input adjacency matrix A ∈ Rn×n in
CSR format and output Jaccard similarity matrix J ∈ Rn×n

where J[u, v] represents value of Eqn. 2 for the vertex pair
{u, v}

1: procedure PARALLELJACCARDSIMILARITY(A)
2: Let t = 0.
3: A← SYMMETRICISE(A)
4: SR ← SEMIRING(+, ∧)
5: J← PARALLEL-SPGEMM(A, A, SR) ▷

Intersection count
6: e← 1n×1 ▷ Dense vector of all 1s
7: d← PARALLEL-SPMV(A, e, SR) ▷ Neighbor count
8: J← UPPERTRIANGLE(J) ▷ Extract upper triangle

section
9: T ← THREADCOUNT

10: for (u, v) ∈ NONZEROS(J)[t× nnz
T : (t+ 1)× nnz

T] in
parallel do ▷ t is thread id

11: J[u, v]← J[u,v]
d[u]+d[v]−J[u,v]

12: return J

Algorithm 3 Parallel Algorithm for Jaccard weight
Input and Output: Input adjacency matrix A ∈ Rn×n in CSR
format and output Jaccard weight matrix J ∈ Rn×n where
J[u, v] represents value of Eqn. 2 for the vertex pair {u, v}

1: procedure PARALLELJACCARDWEIGHT(A)
2: Let t = 0.
3: A← SYMMETRICISE(A)
4: SR ← SEMIRING(+, ∧)
5: J ← PARALLEL-MASKED-SPGEMM(A, A, SR,

mask=A) ▷ Intersection count
6: e← 1n×1 ▷ Dense vector of all 1s
7: d← PARALLEL-SPMV(A, e, SR) ▷ Neighbor count
8: J← UPPERTRIANGLE(J) ▷ Extract upper triangle

section
9: T ← THREADCOUNT

10: for (u, v) ∈ NONZEROS(J)[t× nnz
T : (t+ 1)× nnz

T] in
parallel do ▷ t is thread id

11: J[u, v]← J[u,v]
d[u]+d[v]−J[u,v]

12: return J

memory operation on the degree vector is only read while
memory operations on the non-zero array are both read and
write. So, cache misses on the non-zero array play a more
significant role in the parallel performance, hence we optimize
that. This parallelization part can be optimized even more by
tiling the upper triangular portion of the intersection count
matrix into appropriate chunks so that memory operations on
both arrays are optimized. However, we did not attempt it as
we did not notice any evidence of performance degradation
due to this issue in our experiments.

3

Fig. 3: Neightborhood intersection count for Jaccard Weight using
Masked-SpGEMM (Alg. 3) on a toy graph of six vertices.

D. Parallel Jaccard Weight Algorithm

The Jaccard Weight algorithm is a special case of the
Jaccard Similarity algorithm, where we compute the Jaccard
similarity between two endpoints of each edge in the graph.
Because it only needs to compute for a subset of pairs involved
in Jaccard Similarity, we further optimize the algorithm by
computing the intersection count of only relevant pairs. We
do it by employing Masked-SpGEMM instead of general
SpGEMM operation with the adjacency matrix as the mask
and the same semiring as the Jaccard Similarity algorithm(Line
5, Alg. 3). Given a mask, a Masked-SpGEMM operation
computes non-zero entries of the resulting SpGEMM operation
only at the location of the given mask. Fig. 3 shows the
neighborhood intersection count computation of Alg. 3 using
Masked-SpGEMM operation.

IV. RESULTS

A. Platform

We evaluate the performance of parallel Jaccard algorithms
on Big Red 200, an HPE Cray EX supercomputer at IU. Each
compute node is equipped with 256 GB Memory and two
64-core 2.25 GHz AMD EPYC 7742. We used Suitesparse
GraphBLAS [15] (version 7.3.3) in C to implement our linear-
algebraic algorithm for computing Jaccard weights.

B. Dataset

Table I describes a representative set of graphs from
the SuiteSparse matrix collection [16]. In the preprocessing
step, we symmetrize each input matrix and remove diagonal
entries (self-loops) from them. The preprocessed matrix A is
considered as the adjacency matrix of an undirected graph and
passed to the Parallel Jaccard algorithm as input. Here, the
“#Jaccard Weights” and “#Jaccard Similarities” indicate the
number of nonzero Jaccard values computed in the Jaccard
Weight algorithm and Jaccard Similarity algorithm, respec-
tively.

C. Relative performance of algorithm

We compare the performance of the Jaccard weights al-
gorithm with the state-of-the-art algorithm Jaccard-ML [7],
which is a degree-aware CPU kernel utilizing machine learning
for tuning the work distribution on the CPU. We also compared
our parallel Jaccard weight and Jaccard similarity algorithm
with the naive-Jaccard GraphBLAS algorithm. With naive-
Jaccard, which uses only GraphBLAS operations, computing

the intersection matrix (the numerator in Eq. 1) is identical
to our parallel Jaccard algorithm. Then, we computed neigh-
borhood union (the denominator in Eq. 1) by first building a
matrix S where every entry sij denotes sij = di + dj where
di and dj represent the degree of nodes i and j in the input
adjacency matrix A. To compute the output Jaccard matrix J ,
we used the intersection matrix B and an ElementWise Matrix
operation J = J/S−J . Building Matrix S requires extracting
nonzero positions from intersection matrix B and generating
a vector containing values of di and dj for every entry of S.
These operations are time and memory-consuming compared
to our Jaccard algorithm. The comparison of runtimes for the
calculation of Jaccard similarity and Jaccard weights using
different Algorithms is shown in Table II and III, respectively.

As shown in Table II, our Jaccard Similarity algorithm is
3× faster than the Naive GraphBLAS algorithm. This happens
due to the load-balancing of our parallel iteration in the
neighborhood union calculation part. Plus, computing Jaccard
Similarities using Naive GraphBLAS Jaccard algorithm failed
to be completed to big graphs due to memory consumption
for building matrix D. For Jaccard Weights computation, our
Parallel algorithm is 2.5× faster than the Naive GraphBLAS
algorithm and 9× faster than Jaccard-ML. This is because
SpGEMM benefits from the sparsity of matrices in matrix
multiplication. As shown in Table III, the number of cal-
culated Jaccard Weights is normally much smaller than the
number of Jaccard Similarities for the same graph. Especially
in big social graphs Parallel Jaccard Weights algorithm is much
faster due to the sparsity of the output matrix. Table III clearly
shows the benefit of linear algebraic approaches where even
naive implementation is faster than Jaccard-ML.

D. Scalability

Table IV shows runtimes the Jaccard similarity and Jaccard
weight algorithms on single core and 64 cores of Big Red
200. This table also shows the speedups for these algo-
rithms relative to their runtimes on a single core. Jaccard
Similarity could not be computed for big social graphs such
as webbase-2001 and uk-2002 because the intersection
matrices do not fit in memory. On average, Jaccard Similar-
ity and Jaccard Weight algorithms are 31.23× and 20.53×
faster on 64 cores, respectively. These results show that our
algorithms scale very well on the multicore processor used in
our experiments. For smaller graphs, Jaccard weight is not as
scalable as Jaccard similarity. Figure 4 shows the scalability of
(a) parallel Jaccard similarity and (b) parallel Jaccard weight
algorithms on Big Red 200 for several graphs. The average
speedup on 128 cores relative to the same algorithm on a
single core is 32.4 with stdev=6.4 for the Jaccard Similarity
algorithm and 30.4 with stdev=21.4 for the Jaccard Weight
algorithm. There is a high standard deviation in the speedup of
the Jaccard weight algorithm due to the sparsity of the output
Jaccard matrix for some graphs. For example in a road network
like europe-osm, we can not benefit from a high number of
cores because of the small number of Jaccard weight values
we compute.

4

TABLE I: Test problems for evaluating Jaccard algorithms.

Graph #Vertices #Edges Max Degree Avg. Degree #Jaccard weights #Jaccard Similarities

com-Youtube 1,134,890 2,987,624 28,754 5.25 1,397,278 1,259,704,147

com-Orkut 3,072,441 234,370,166 33,313 76.28 101,196,543

soc-LiveJournal1 4,847,571 68,993,773 20,333 17.68 38,694,506 4,200,885,672

cage15 5,154,859 99,199,551 94 19.24 47,022,346 461,934,194

wb-edu 9,845,725 57,156,537 25,781 9.39 42,747,719 4,244,285,350

uk-2002 18,520,486 298,113,762 194,955 16.096 261,200,630

webbase-2001 118,142,155 1,019,903,190 816,127 8.633 816,367,013

europe osm 50,912,018 108,109,320 13 2.12 183,231 65,645,839

TABLE II: Runtime comparison of Jaccard Similarity
algorithms on 128 cores of Big Red 200.

Graph Naive Jaccard Parallel Jaccard
Similarity

com-Youtube 23.27 6.23

soc-LiveJournal OOM 17.94

cage15 6.05 1.633

wb-edu OOM 11.20

europe osm 2.28 1.28

TABLE III: Comparison of Jaccard Weight algorithms runtime on
128 cores of Big Red 200 in sec.

Graph Jaccard-ML Naive
Jaccard

Parallel Jaccard
Weight

com-Youtube 0.76 0.41 0.24

com-Orkut 119.97 34.91 8.45

soc-LiveJournal 34.05 5.25 1.64

cage15 2.24 1.00 1.64

wb-edu 6.20 1.86 0.61

uk-2002 51.13 9.02 4.84

webbase-2001 185.03 27.75 14.22

europe osm 4.28 1.28 0.27

TABLE IV: Speedup of Parallel Jaccard-LA Algorithms. Jaccard Similarity could not be computed for big social graphs such as
webbase-2001 and uk-2002 because intersection matrices are dense and go out of memory.

#Cores=1 #Cores=64 Speedup

Graph Jaccard Weights(sec) Jaccard Similarity(sec) Jaccard Weights(sec) Jaccard Similarity Jaccard Weights Jaccard Similarity

com-Youtube 3.31 237.26 0.25 6.99 13.39 33.94

com-Orkut 499.57 OOM 29.61 OOM 16.87 -

soc-LiveJournal1 84.15 1,108.98 4.13 30.89 20.37 35.90

cage15 14.69 98.46 0.62 2.98 23.66 33.00

wb-edu 27.55 794.14 1.11 23.74 24.74 33.46

uk-2002 336.48 OOM 11.88 OOM 28.32 -

webbase-2001 856.56 OOM 38.81 OOM 22.07 -

europe osm 3.80 17.16 0.26 0.76 14.83 22.57

E. Breakdown of runtime

The breakdown of runtimes of (a) Jaccard similarity and (b)
Jaccard weight algorithms for different input graphs on 128
cores of Big Red 200 is given in Figure 5. Here, “Degree”
denotes the time to compute the degree of all vertices, “In-
tersection” denotes the time to compute the intersection of all
pairs of nodes, “Masked Intersection” is the time to calculate
the intersection of adjacent nodes, “Selection” shows the time
to select the upper triangle of intersection matrix, and “Union”
indicates the computation time to iterate over intersection
matrix and compute Jaccard in parallel. Figure 5(a) shows
that the Jaccard similarity algorithm spends around 50% of
the runtime on calculating the intersection matrix and selecting

the upper triangle of it. This is because the intersection matrix
is usually much denser than the input matrix. For the Jaccard
weight algorithm, “Masked Intersection” took nearly 80% of
the runtime. Due to the sparsity of the intersection matrix,
the “Union” and “Selection” parts are quite fast. As shown in
Table I, the number of Jaccard similarities calculated is more
than 100x larger than the Jaccard weights to be calculated. The
parallel computation of the union is faster on most graphs after
we have the intersection matrix, as it is load-balanced.

V. CONCLUSION AND FUTURE WORKS

Research on Jaccard similarity computation on a graph has
gained significant attention due to its role in many important

5

20 21 22 23 24 25 26 27

20

21

22

23

24

25

Number of Cores

Sp
ee

du
p

com − Y outube

soc − LiveJournal1

wb − edu
europeosm

(a) Scalability of Jaccard Similarity algorithm.

20 21 22 23 24 25 26 27

20

21

22

23

24

25

26

Number of Cores

Sp
ee

du
p

com − Y outube

soc − LiveJournal1

wb − edu
europeosm

(b) Scalability of Jaccard Weight algorithm.

Fig. 4: Scalability of Jaccard Similarity and Jaccard Weight algorithm.

co
m-Y

ou
tub

e

so
c-L

ive
Jo

urn
al1

Cag
e1

5

wb-e
du

eu
rop

e
os

m
0%

20%

40%

60%

80%

100%

Degree Intersection Selection Union

(a) Jaccard Similarity.

co
m-Y

ou
tub

e

so
c-L

ive
Jo

urn
al1

Cag
e1

5

wb-e
du

eu
rop

e
os

m
0%

20%

40%

60%

80%

100%

Degree Masked Intersection Selection Union

(b) Jaccard Weights.

Fig. 5: Breakdown of runtimes for Jaccard Similarity and Jaccard Weights algorithms.

applications. In this work, we propose a linear algebraic (LA)
formulation of Jaccard similarity computation. Such a formu-
lation is especially helpful when graphs are large and parallel
computing is necessary. While non-LA formulation requires
many different manual tuning to get a good performance, LA
formulation has the potential to give good parallel performance
out of the box by utilizing all the optimization techniques
developed in the sparse linear algebra domain. We showed
experimental evidence that our algorithm could make one
variant of Jaccard similarity computation significantly faster
than the state-of-the-art method. We hope our exploration
opens up opportunities for new scientific discoveries.

This work opens up several possible scopes for future
exploration. The neighborhood intersection count matrix be-
comes significantly denser than the input adjacency matrix. We
reduce the density in half by selecting the upper triangular
part. However, it might be possible to reduce the memory
footprint and computation even further by only generating
the upper triangular portion during the SpGEMM process.
We saw in our experiment that our algorithm was unable

to compute the Jaccard similarity for large graphs due to
the memory requirement being too high. Distributed memory
parallel method may overcome the issue but that would bring
additional complexity of communication and load-balance
between processes. That is another scope for future studies.

VI. ACKNOWLEDGEMENTS

This research is partially supported by the Applied Math-
ematics Program of the DOE Office of Advanced Scien-
tific Computing Research under contracts numbered DE-
SC0022098 and DE-SC0023349.

REFERENCES

[1] M. Besta, R. Kanakagiri, H. Mustafa, M. Karasikov, G. Rätsch, T. Hoe-
fler, and E. Solomonik, “Communication-efficient jaccard similarity
for high-performance distributed genome comparisons,” in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2020, pp. 1122–1132.

[2] J. Scripps and C. Trefftz, “Parallelizing an algorithm to find communities
using the jaccard metric,” in 2015 IEEE International Conference on
Electro/Information Technology (EIT). IEEE, 2015, pp. 370–372.

6

[3] D. Easley, J. Kleinberg et al., Networks, crowds, and markets: Rea-
soning about a highly connected world. Cambridge university press
Cambridge, 2010, vol. 1.

[4] M. S. Granovetter, “The strength of weak ties,” American journal of
sociology, vol. 78, no. 6, pp. 1360–1380, 1973.

[5] P. M. Kogge, “Jaccard coefficients as a potential graph benchmark,” in
2016 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW). IEEE, 2016, pp. 921–928.

[6] J. Bank and B. Cole, “Calculating the jaccard similarity coefficient with
map reduce for entity pairs in wikipedia,” Wikipedia Similarity Team,
vol. 1, p. 94, 2008.

[7] A. A. Aljundi, T. A. Akyildiz, and K. Kaya, “Degree-aware kernels
for computing jaccard weights on gpus,” in 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2022,
pp. 897–907.

[8] H. Anzt and J. Dongarra, “A jaccard weights kernel leveraging indepen-
dent thread scheduling on gpus,” in 2018 30th International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD). IEEE, 2018, pp. 229–232.

[9] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke et al., “Math-
ematical foundations of the graphblas,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 2016, pp. 1–9.

[10] Y. Zhang, A. Azad, and Z. Hu, “Fastsv: A distributed-memory connected
component algorithm with fast convergence,” in Proceedings of the

2020 SIAM Conference on Parallel Processing for Scientific Computing.
SIAM, 2020, pp. 46–57.

[11] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop. IEEE, 2015, pp.
804–811.

[12] G. P. Krawezik, P. M. Kogge, T. J. Dysart, S. K. Kuntz, and J. O.
McMahon, “Implementing the jaccard index on the migratory memory-
side processing emu architecture,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC), 2018, pp. 1–6.

[13] A. Fender, N. Emad, S. Petiton, J. Eaton, and M. Naumov, “Parallel
jaccard and related graph clustering techniques,” in Proceedings of the
8th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems, 2017, pp. 1–8.

[14] G. Ballard, A. Buluc, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz,
and S. Toledo, “Communication optimal parallel multiplication of sparse
random matrices,” in Proceedings of the twenty-fifth annual ACM
symposium on Parallelism in algorithms and architectures, 2013, pp.
222–231.

[15] T. A. Davis, “Algorithm 1000: Suitesparse: Graphblas: Graph algorithms
in the language of sparse linear algebra,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 45, no. 4, pp. 1–25, 2019.

[16] T. A. Davis and Y. Hu, “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, pp. 1–25, 2011.

7

