
ANEDA: Adaptable Node Embeddings for Shortest
Path Distance Approximation

Frank Pacini
Department of Computer Science

Boston University
Boston, USA

fgpacini@bu.edu

Allison Gunby-Mann
Thayer School of Engineering

Darmouth College
Hanover, USA

allison.mann.th@dartmouth.edu

Sarel Cohen
Hasso Plattner Institute

Potsdam, Germany
sarel.cohen@hpi.de

Peter Chin
Thayer School of Engineering

Darmouth College
Hanover, USA

pc@dartmouth.edu

Abstract—Shortest path distance approximation is a crucial
aspect of many graph algorithms, in particular the heuristic-
based routing algorithms that make fast, scalable map navigation
possible. Past literature has introduced deep learning models
which try to approximate these distances by training on graph
embeddings (i.e. node2vec, Gra100, ProNE, Poincare). We pro-
pose ANEDA, a more lightweight technique than the embedding
and graph neural network scheme, which involves training the
embeddings directly, using either previous embedding techniques
or geographic coordinates as a good initialization. We demon-
strate the applications ANEDA to deep A* routing and learned
road maps. Through experiments on several road and social
networks, we show our model’s error reduction of up to 75%
against two recent deep learning approaches, and its competitive
performance against the larger, state-of-the-art architecture.

Index Terms—graph embedding, shortest path distance, neural
networks

I. INTRODUCTION

Given a graph G = (V,E) and an embedding dimension
D, the goal of this line of research is to find a combination
of an embedding map ϕ : V → RD and a distance measure
M : RD × RD → R+ such that for nodes u, v ∈ V and
distance between them du,v ,

d̂u,v = M
(
ϕ(u), ϕ(v)

)
≈ du,v.

Finding such an embedding map is useful because we can
represent the graph by effectively approximating the |V |×|V |
adjacency matrix, which may be infeasible to store or calculate
for large graphs, in a |V | × D embedding matrix containing
the vectors ϕ(v). Querying for a distance approximation would
then take O(1) to retrieve ϕ(v) and (for reasonable choices)
O(D) to apply M .

A. Heuristic-based Routing

An important application for embedding matrices is network
routing. Dijkstra’s is the well-known standard algorithm for
finding shortest path routes between a source node u and target
v, however, in practice, it is too slow to be feasible for large-
scale routing or very large networks. A∗ [1] is an optimization
to Dijkstra’s that uses an adjustable heuristic function h to
improve performance, at the (usually small) sacrifice of finding
an approximate shortest path. In order to prioritize visiting
nodes that are expected to bring the algorithm closer to the

target v, A∗ queries h for approximations of the distance
between each candidate node w and v. A∗’s performance is
heavily dependent on the quality of h, so we want to provide
A∗ with a distance approximation function with as minimal
prediction error as possible, given the distance data that we
can feasible calculate for G. Figure 1 illustrates the impact
of heuristic choices by comparing nodes visited in a route
navigation task between Dijkstra’s (which is equivalent to A∗

with h = 0), A∗ with h = the geographic distance between
the nodes and A∗ with an embedding model from early in our
investigation.

B. Node Embedding Techniques

Common approaches to produce an embedding map ϕ
for graphs include various random walk strategies [2], [3],
[4], [5], [6], [7] which define node representations based
on co-occurrence in these walks, and matrix factorization
techniques [8], [9], [10], [11] which manipulate the graph
adjacency matrix to more explicitly represent multi-level graph
structure. We focus our investigation on two well-established
techniques utilizing each approach: Node2Vec [3] and GraRep
[9]. Node2Vec utilizes the Skip-Gram model to generate
embeddings, which encodes pair associations as a function
of the dot product. GraRep on the other hand computes and
then merges k-step transition probability matrices of the node
pairs to produce their final representations.

Figure 2 from [12] visualizes the difference between pairs
of embeddings generated by Node2Vec and GraRep on the
Winterthur, Switzerland OSMnx [13] graph, where the shortest
path distances have been divided by the graph diameter. In
GraRep (with order 100), we can see that the embedding
difference approximates the distribution of graph distances
fairly well, whereas Node2Vec produces larger embedding
distances that may result in faster training when used in our
model.

C. Distance Approximation Networks

An important issue when trying to use node embeddings
for distance approximation is that most well-known techniques
are not explicitly designed for distance preservation, and are
instead evaluated on more general downstream tasks such as
classification or clustering. In response, several deep learning

Fig. 1. Santa Ana, CA routing visits with different A* heuristics

architectures have been proposed to train on graph embedding
inputs as a strategy for distance approximation [14], [15],
[12]. They formulate the distance approximation problem as
a machine learning task by simply precomputing the shortest
path distances on a subset of node pairs, and using the model
to generalize to a full representation matrix. These approaches
all use an existing graph embedding technique for ϕ and then
try to find an optimal measure M using deep learning, or train
both jointly.

Fig. 2. WTUR 2d vector difference with SP distance labels

II. ANEDA

As opposed to previous networks, our approach is instead
to explicitly choose a function M for the vectors, initialize
ϕ = ϕ0 from another graph embedding and then try to find
an optimal ϕ through training. Our model is therefore an
embedding matrix similar in spirit to Node2Vec, initialized
with a graph embedding not explicitly trained for distance
approximation. We then tune this initialization in order to
get improved shortest path approximations with respect to a
chosen distance measure, such as the Euclidean distance or
dot product. We focus our research on finding good choices
for initialization (II-B) and distance measure (II-C). For
simplicity, in the rest of the paper we also denote u = ϕ(u)
when ϕ is our model.

Besides comparable performance to state-of-the-art
techniques, we believe the merits of our approach are:

1) Adaptability. Our model can be used to find node
representations in a particular space by tweaking the
distance measure. This could be useful in order to
create distance-preserving graph embeddings in spaces
with desired properties, or tailor representation for
graphs with known or theorized properties. The model
can also be easily exported as a 2d array and queried
for downstream tasks.

2) Size. Our model is an embedding matrix of size
|V | × D, whereas an approach like Vdist2vec [15]
contains an embedding layer of the same size as part of
its larger model. This smaller size is likely to improve
train and evaluation time. Our model can also optionally
be initialized with another embedding of size |V | × k,
where k ≤ D, that can be discarded after initialization.
Vdist2vec on the other hand requires a one-hot input of
size 2|V | per example to train.

3) Simplicity. Our model requires only an embedding ma-
trix and trainer (we use node2vec as our base code),
plus a simple distance measure in order to implement
the model for a specific task.

A. Data Processing

In order to produce node pairs with distance labels for the
model to train with, we follow a similar approach to [14],
which is to randomly select l nodes from the graph to use as
landmarks, and compute the distance between this landmark
and all other nodes using Dijkstra’s. Given landmark u and
other node v, each training example in our dataset is simply <
u, v, du,v >. Since we are tuning the embeddings directly, we
only need the node indices as inputs. Our embedding is instead
introduced when evaluating the loss, similar to Node2Vec [3],
whereas the approach in [14] may need to store the full vector
input since it is a function of the node embeddings for u and
v. This greatly reduces the dataset space requirements of our
approach, since each example requires storing 3 values instead
of D + 1 values.

Another notable difference is [14] makes their validation
sets include entirely distinct nodes from the test set. We cannot
do this for our model since it would prevent embeddings for

the validation nodes from ever being trained, so we instead
remove train landmarks from the validation sets to prevent the
two sets from having any of the same pairs. As suggested by
[12], for weighted graphs we also normalize the edge weights
by dividing by the largest across all edges before computing
the distance labels.

B. Initialization

In order to improve training time and potentially perfor-
mance, we use two embedding types as initializations for the
model.

For any graph, we can train graph embeddings not designed
specifically for distance approximation, such as Node2Vec,
and then tune our model to produce embeddings that ap-
proximate graph distances very well. We test specifically with
Node2Vec [16] and GraRep [9] embeddings.

If the graph is geographic, we can also use geographic
coordinates of each node as an initialization. We evaluate
several geographic networks with either latitude-longitude
coordinates or UTM coordinates of the nodes included. For
latitude-longitude coordinates, where φ ∈ [−π

2 ,
π
2] = latitude

and λ ∈ [−π, π] = longitude, in general, we convert to 3-
dimensional Cartesian coordinates using the identity

x = cos(φ) cos(λ), y = cos(φ) sin(λ), z = sin(φ)

This is done since differences in latitude and longitude reflect
distances differently depending on location, and the change
also results in coordinates on the same scale as the normalized
graph distances. No changes are made to UTM coordinates
other than normalization since these have a pre-applied pro-
jection into 2-dimensional Euclidean space.

We make use of k-dimensional coordinate vectors when
available to initialize the first k of our D-dimensional em-
beddings. The remaining D − k dimensions are initialized at
random from a normal distribution with a small variance of
1/D. This allows us to train embeddings of a much larger
size than the 2 or 3 dimensional geographic coordinates, or add
additional dimensions to initial embeddings for tuning. In gen-
eral, though, for trainable graph embeddings (like Node2Vec)
we use D = k.

The different initialization techniques also offer the op-
portunity to choose distance measures for training with an
expected relationship to the initial embedding. For instance,
when using the Euclidean distance for training and latitude-
longitude initialization (transformed as mentioned above), the
initial distance measure is an underapproximation (although
very accurate for small sections of the Earth like cities) of
the geographic distance between the nodes. This measure is a
reasonable baseline approximation for downstream tasks like
routing, as we observe in later experiments. In Figure 3, we
visualize how these initial coordinates are projected by the
model in a graph where the geographic distance does not per-
form adequately. This is done by applying the transformation
from Lat-Long to Cartesian for the initialization, applying the
reverse on the output embeddings and then modifying the
graph coordinate attributes. The Santa Ana, CA graph from

OSMnx has two ”islands” which, except for several bridging
edges, are separated by highways that extend outside the city
boundaries. The model moves these islands up and farther
left and right, while also condensing them. Nodes in regions
with many short edges are generally condensed, while holes
in the graph are created in areas with fewer, longer streets.
This model was trained with D = k = 3, so this visualization
may not fully reflect the representations learned in embeddings
with many additional dimensions.

Fig. 3. Initial coordinate modification by ANEDA (D = 3)

C. Distance Measures

We tested several different distance measures to train the
embeddings on, including common norms for Euclidean ge-
ometry and measures for hyperbolic and elliptical geometry.

1) p-norm: Using several different p values, we tested the
p-norm of the difference between two node embeddings which
is given by

d̂u,v =

(D∑
i=1

(ui − vi)
p

)1/p

.

2) Poincare Hyperbolic: We additionally use two measures
of distance in hyperbolic geometry based on the Poincare Disk
and Minkowski Hyperboloid models for hyperbolic space.

In the 2d Poincare Disk model, points are fixed inside
the unit disk, with the edge of the disk representing infinite
distance. As mentioned in [17], we can extend this idea to the
D-dimensional unit ball and then the distance measure is

d̂u,v(u, v) = arcosh
(
1 + 2

||u− v||2

(1− ||u||2)(1− ||v||2)

)
.

3) Minkowski Hyperbolic: In the Minkowski Hyperboloid
model, points are fixed inside the forward sheet of a two
sheeted hyperboloid in D + 1 dimensional space. All points
x ∈ RD+1 must satisfy

x2
0 − x2

1 − · · · − x2
D = 1.

Then the distance measure between 2 points u, v ∈ RD+1 is

d̂u,v(u, v) = arccosh(u0v0 − u1v1 − · · · − uDvD).

In practice, in order to enforce the constraint for each point x,
we keep its values in the last D dimensions and set the first
dimension, x0 to:

x0 =
√

||x||2 + 1

The measure then becomes

d̂u,v(u, v) = cosh−1
(√

(||u||2 + 1)(||v||2 + 1)− u · v
)
.

4) Elliptic: We also tested using measures in a positive cur-
vature geometry since this is the true geometry of geographic
points. Assuming a radius of 1, the elliptical distance is simply
the angle between the points in radians, which can be obtained
from the dot product:

d̂u,v = cos−1

(
u · v

||u||||v||

)
.

A natural initialization to use with the elliptic distance is
geographic coordinates (still with the Cartesian transforma-
tion), since this gives the geographic distance exactly, and so
should in theory provide a better initialization than with the
Euclidean distance measure.

5) Inverse Dot: With inspiration from the elliptic distance,
we tried several other functions besides inverse cosine which
would take the normalized dot product δ and ”invert” it by
mapping δ = −1 to a large distance and δ = 1 to 0. We found
the most effective to be

d̂u,v =

(
1− u · v

||u||||v||

)
∗ dmax/2

where dmax is the graph’s diameter. In practice, if dmax is
unknown for a large graph it can estimated, as long as the
estimate is greater than dmax. We need this so that the measure
is still able to predict dmax despite the restriction of δ to
[−1, 1].

III. EXPERIMENTS

A. Datasets

TABLE I
DESCRIPTIONS OF DATASETS USED IN OUR EXPERIMENTS

—V— —E— AVG DEG dmax

HARTFORD (HF) 1581 2470 2.75 12 KM
SURAT (SU) 2591 3670 2.86 51 KM
EGO-FACEBOOK (FB) 4039 88234 2 8
DONGGUAN (DG) 8315 11128 2.32 160 KM

We ran experiments on several graphs in order to compare
our model to previous work. Hartford, Connecticut is a geo-
graphic driving network from OSMnx [13]. Surat, India and
Dongguan, China are geographic networks from the CSUN lab
[18], and ego-facebook-original is a social network graph from
the SNAP dataset [19]. The Facebook graph is unweighted as
opposed to all of the geographic graphs.

B. Baselines
We compare our model against three previous deep learning

architectures for distance approximation: Qi et al. [15] which
introduces Vdist2vec, Rizi et al. [14], and Brunner [12]. We
tailor our experimental setup for comparison purposes. We use
D = k = 128 embeddings for all experiments except against
Qi et al. We train Node2Vec with the recommended settings of
walk length = 80, p = q = 1, 10 walks per node, 100 epochs,
256 batch size and lr=0.01, however we use a window size of
10 for Brunner and 5 for Rizi et al. since they differed in this
respect. For Qi et al. we also use a window size of 10. For
GraRep, the order was consistently set to 100. We also use
10 SVD iterations for all experiments and averaging to merge
the k-step representations.

IV. RESULTS

Table II compares our best performing technique for each
approximation experiment against the comparison models. We
produce models which surpass two current approaches to
distance approximation on geographic and social networks.
Against the state-of-the-art approach for geographic networks,
Vdist2vec, we achieve a superior error on one of our com-
parison graphs, and surpass their base model in MAE and
MRE on the other graph. Of our models, Inv-Dot performed
the best at distance approximation and routing consistently in
the geographic networks we tested. However, it failed on the
unweighted social network graph and the L6-Norm was most
successful, as we discuss later.

A. Experiment A: Vdist2vec Results
In Table III and Table IV, we show results against Vdist2vec

on two geographic networks: SU and DG from [15]. We
observe that at least in geographic networks, our Inv-Dot
model is competitive with Vdist2vec but does not surpass it
entirely in error as we will see with the other experiments.
On SU, Inv-Dot performs between the initial Vdist2vec and
Vdist2vec-S in terms of MRE regardless of initialization.
When additionally trained on MAE, our model surpasses the
base Vdist2vec entirely. On DG, our Inv-Dot with node2vec
initialization model achieves state-of-the-art in terms of MRE,
which occurs whether we train with MAE or MRE as the loss.

B. Experiment B: Rizi et al. Results
In the non-geographic setting, we show a significant per-

formance increase over the Rizi et al. model as evidenced by
Table V showing approximation errors on the ego-facebook-
original graph. Two of our models, elliptic and L6 norm with
node2vec, show serious performance jumps relative to the Rizi
et al. model. We display their result with the best (averaging,
denoted ⊘) or second best (subtracting, denoted ⊖) performing
input vector merging scheme for this graph. We should note
that the elliptic measure result could be considered more
significant since it was achieved after lowering, rather than
raising the learning rate from the default for the experiment.
Tweaking the learning rate down was helpful for most models,
which is perhaps related to the low number of epochs set by
Rizi et al. for this experiment.

TABLE II
EXPERIMENTS SUMMARY

A - Surat A - Dongguan B - Facebook C - Surat
Method MAE MRE Method MAE MRE Method MAE MRE Method MAE MRE
Inv-Dot n2v 0.0098 0.027 Inv-Dot n2v 0.0196 0.01 Elliptic 0.0272 0.0157 L6 0.0291 0.0357
L6 n2v 0.0194 0.0261 L6 n2v 0.0267 0.0143 Inv-Dot 0.0161 0.0229
Vdist2vec 0.0113 0.027 Vdist2vec 0.0118 0.015 Rizi ⊘ 0.118 0.038 CN 0.0265 0.0378
Vdist2vec-S 0.0067 0.0114 Vdist2vec-S 0.0062 0.014 Rizi ⊖ 0.197 0.071 SCN 0.0238 0.0309

TABLE III
EXPERIMENT A - SURAT

Technique Initialization Performance ParamsMAE MRE

L6-Norm
Random 0.0206 0.0266

lr=0.001Coord 0.0328 0.034
node2vec 0.0194 0.0261

Inv-Dot

Random 0.0161 0.0197
Coord 0.0163 0.0207
node2vec 0.0159 0.019
GraRep 0.0164 0.0209

Inv-Dot MAE node2vec 0.0109 0.0239
Inv-Dot MSE node2vec 0.0098 0.027 lr=0.0003
Vdist2vec base N/A 0.0113 0.027
Vdist2vec-S 0.0067 0.014

TABLE IV
EXPERIMENT A - DONGGUAN

Technique Initialization Performance ParamsMAE MRE

L6-Norm
Random 0.0355 0.0286

lr=0.001Coord 0.0679 0.0374
node2vec 0.0349 0.0304

Inv-Dot
Random 0.0207 0.0345
Coord 0.021 0.0121
node2vec 0.0196 0.01

Inv-Dot MAE node2vec 0.0178 0.0123
Inv-Dot MSE node2vec 0.0211 0.0171
Vdist2vec base 0.0118 0.015
Vdist2vec-S 0.0062 0.014

C. Experiment C: Brunner Results

Against Brunner we find that with coordinate initialization
several of our measures are competitive with their graph neural
network architecture, as shown in Table VI. L4, L6, and L8 are
all within the same range of performance as these networks,
illustrating that rich representations can be learned even when
the distance measure is not an ideal approximation with
respect to the provided initial coordinates. The more typical
L2 distance also performs in the range in MAE, even though
we train on MRE. As expected, hyperbolic distance models do
not perform as well as p-norms or dot product, which are more
intuitive measures for graphs representing physical geometries.
As with the previous experiment on geographic networks, our
best performance comes from the Inv-Dot measure, which
surpasses all comparison models on this experiment.

Since Qi et al. and Brunner both ran experiments on the SU
graph, we can also get some sense of how the difference in
experiment setup affects the performance of our methods. We

TABLE V
EXPERIMENT B - FACEBOOK

Technique Initialization Performance ParamsMAE MRE
L2-Norm Random 0.114 0.0586 lr=0.008

L6-Norm
Random 0.0482 0.022 lr=0.001
node2vec 0.0267 0.0143 lr=0.03GraRep 0.1317 0.056

Elliptic Random 0.0272 0.0157 lr=0.0003
Poincare Random
Minkowski Random 0.4068 0.1464 lr=0.005

Inv-Dot Random 0.6278 0.1637 lr=2e-5
node2vec 0.5001 0.1365

Rizi node2vec ⊘ 0.118 0.038
Rizi node2vec ⊖ 0.197 0.071

found the Brunner setup to be much more stable generally and
so required no hyperparameters tweaks for specific models. In
comparison to the Qi experiment, it used a lower learning
rate (0.01 → 0.001), smaller batch size (2500 → 512) and
more train epochs (20 → 100). Most significantly, Qi et al.
train on all node pairs, whereas the Brunner experiments use
10% train ratio and tested on the remainder. We can see
that between these two experiments L6 and Inv-Dot setups
performed similarly. This is good news since it suggests
that the models achieve good representations without simply
memorizing distances for the provided node pairs. In the
future, experiments with lower train ratios and larger graphs
may be more useful to evaluate performance, since this line
of research in distance approximations with embeddings or
neural networks is only useful when |V | is too large to be
able to generate the shortest path distances for all node pairs
in a feasible amount of time with modest space available.

D. Experiment D: Hartford Routing Results

Finally, we evaluate our methods on an A∗ routing task on
the Hartford network, and show results in Table VII, in com-
parison to a baseline distance heuristic using the geographic
coordinates. From our results, we can see that in comparison to
the baseline geographic distance heuristic, all methods produce
better average Q, but not to a very significant degree in most
cases.

They also differ greatly in the performance distribution
by which their average error is achieved. For instance, the
Poincare Hyperbolic and Elliptic measures produce the second
and third-best 99th percentile Q, but second and third-worst
median Q. They may produce generally well-distributed em-
beddings but are unable to fit in error very closely. For this

TABLE VI
EXPERIMENT C - SURAT

Technique Performance
MAE MRE

L2-Norm 0.0411 0.0605
L4-Norm 0.0299 0.0385
L6-Norm 0.0291 0.0357
L8-Norm 0.0307 0.0372
Poincare 0.0951 0.0404
Minkowski 0.3525 0.2101
Inv-Dot 0.0161 0.0229
CN 0.0265 0.0378
SCN 0.0238 0.0309
SECN 0.0433 0.0450
SACN 0.0419 0.0436

reason, we think it is worth investigating how they could be
redesigned so that they produce embeddings in hyperbolic and
elliptic geometry, respectively, but with improved performance
in model training. On the other hand, the L6 norm performed
the second best in 50th and the worst in 99th percentile Q.
Considering the intuition for performance of higher p-norms,
this may be because the model is attempting to represent the
graph adjacency matrix in the embedding space by ignoring
some parts of the network, at least more so than the other
methods. This would allow for better median performance at
the expense of edge case performance.

V. DISCUSSION

In general, we found on the tested graphs that higher norms
had better output performance. To see potentially why this
could be, suppose we have a 2-dimensional embedding matrix,
MAE loss, and that |u1 − v1| = du,v for a particular training
pair (u, v). Then we have the loss for this example as

L =

∣∣∣∣((u1 − v1)
p + dpu,v

)1/p∣∣∣∣
which is minimized for a larger range of u1 − v1 around 0
when p is large. This means if the distance is already well
approximated by some coordinate, the gradient update for the
other coordinates will be small as long as the difference is
not excessively large, so they can instead be tuned for other
examples. Given this, the theoretical optimal embedding for
the norm measure would be using the ∞-norm with d as the
maximum degree of G, and would have that for each pair
(u, v) there is a corresponding coordinate i∗ in the embedding
such that i∗ = argmaxi|ui − vi| = du,v . Such an embedding
would be similar to an adjacency matrix for G. It is not obvious
whether such an embedding is possible generally or for any
G, so this question is something to pursue in future work.
However, we can say that higher p-norms are most likely
better able to approximate the adjacency matrix in the lower
dimensional embedding space |V | ×D.

However, the model can only train for a certain number of
iterations, and higher p values result in lower initial prediction
values. Given the experimental setups we use, it appears

empirically that the L6-Norm is the optimal point in this
tradeoff between poor initialization and better optima.

The other best performing measure was Inv-Dot as a mea-
sure was motivated by empirical issues with using the Elliptic
measure on geographic networks. Ignoring scaling into the
proper range x ∈ [−1, 1] and y ∈ [0, dmax] performed for
both measures, the change is simply to replace cos−1(x) with
−x, which is a much simpler gradient and is constant as long
as the input x ∈ (−1, 1). Since this change is small, we
hypothesize the performance in geographic networks is mainly
due to the change in gradient which allows faster training.
Further investigation is necessary to understand the interesting
results on Ego Facebook and whether these results generalize
to other social networks.

VI. CONCLUSION

We’ve proposed a simple embedding approach, ANEDA,
to learn distance preserving graph embeddings in explicit
representation spaces, and demonstrated comparable or better
performance against state-of-the-art deep learning architec-
tures.

For future investigation, we consider the following areas of
extension or improvement of our work:

1) Verify whether using specific measures is successful in
most cases at embedding into the respective mathemat-
ical space (within some margin of error).

2) Modify measures for certain geometries (e.g. hyperbolic,
elliptic) to produce better gradients.

3) Introduce a loss or training constraint to better enforce
the triangle inequality so that our model defines a metric
space.

4) Design a custom loss to target worst-case distance ap-
proximation, particularly for use in downstream routing
tasks.

5) Apply the technique in an online learning setting, where
embeddings must be updated as changes to the graph
occur.

REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal
basis for the heuristic determination of minimum cost
paths,” IEEE transactions on Systems Science and Cy-
bernetics, vol. 4, no. 2, pp. 100–107, 1968.

[2] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: On-
line learning of social representations,” in Proceedings
of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 701–
710.

[3] A. Grover and J. Leskovec, Node2vec: Scalable fea-
ture learning for networks, 2016. arXiv: 1607 .00653
[cs.SI].

TABLE VII
EXPERIMENT D - HARTFORD ROUTING
(Q = PERCENT UNNECESSARY VISITS)

Technique Initialization Q-Average Q-50th Q-90th Q-99th Routing Time
L2-Norm Coord 14.45 8.7 37.5 86.06 18:25

L6-Norm Coord 20.09 8.33 67.86 97.14 22:21
node2vec 17.12 7.55 54.05 96.16 21:58

Inv-Dot Coord 22.55 13.89 60.98 89.77 20:27
node2vec 12.53 7.14 32.56 82.59 18:44

Poincare Coord 15.86 9.76 40.32 86.23 18:32
Spherical Coord 15.33 9.43 38.36 85.71 19:01
Geographic Dist 23.86 8.33 54.29 96.81 22:54

[4] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo,
“Struc2vec,” Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, Aug. 2017. DOI: 10 . 1145 / 3097983 .
3098061. [Online]. Available: http : / / dx . doi . org / 10 .
1145/3097983.3098061.

[5] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, Don’t
walk, skip! online learning of multi-scale network em-
beddings, 2017. arXiv: 1605.02115 [cs.SI].

[6] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, Harp: Hi-
erarchical representation learning for networks, 2017.
arXiv: 1706.07845 [cs.SI].

[7] J. Schlötterer, M. Wehking, F. S. Rizi, and M. Granitzer,
“Investigating extensions to random walk based graph
embedding,” 2019 IEEE International Conference on
Cognitive Computing (ICCC), pp. 81–89, 2019.

[8] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V.
Josifovski, and A. J. Smola, “Distributed large-scale
natural graph factorization,” in Proceedings of the
22nd International Conference on World Wide Web,
ser. WWW ’13, Rio de Janeiro, Brazil: Association
for Computing Machinery, 2013, pp. 37–48, ISBN:
9781450320351. DOI: 10 . 1145 / 2488388 . 2488393.
[Online]. Available: https://doi.org/10.1145/2488388.
2488393.

[9] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph
representations with global structural information,” in
Proceedings of the 24th ACM international on confer-
ence on information and knowledge management, 2015,
pp. 891–900.

[10] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asym-
metric transitivity preserving graph embedding,” in
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, ser. KDD ’16, San Francisco, California, USA:
Association for Computing Machinery, 2016, pp. 1105–
1114, ISBN: 9781450342322. DOI: 10.1145/2939672.
2939751. [Online]. Available: https://doi.org/10.1145/
2939672.2939751.

[11] J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding,
“Prone: Fast and scalable network representation learn-
ing,” in Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19,

International Joint Conferences on Artificial Intelli-
gence Organization, Jul. 2019, pp. 4278–4284. DOI:
10 . 24963 / ijcai . 2019 / 594. [Online]. Available: https :
//doi.org/10.24963/ijcai.2019/594.

[12] D. Brunner, “Distance preserving graph embedding,”
2021.

[13] G. Boeing, “Osmnx: New methods for acquiring, con-
structing, analyzing, and visualizing complex street
networks,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, vol. 65, 2017, pp. 126–139.

[14] F. S. Rizi, J. Schloetterer, and M. Granitzer, “Shortest
path distance approximation using deep learning tech-
niques,” in 2018 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining
(ASONAM), IEEE, 2018, pp. 1007–1014.

[15] J. Qi, W. Wang, R. Zhang, and Z. Zhao, “A learning
based approach to predict shortest-path distances,” in
EDBT, 2020.

[16] A. Grover and J. Leskovec, “Node2vec: Scalable feature
learning for networks,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ser. KDD ’16, San
Francisco, California, USA: Association for Computing
Machinery, 2016, pp. 855–864, ISBN: 9781450342322.
DOI: 10.1145/2939672.2939754. [Online]. Available:
https://doi.org/10.1145/2939672.2939754.

[17] P. Tabaghi and I. Dokmanić, “Hyperbolic distance
matrices,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 1728–1738.

[18] A. Karduni, A. Kermanshah, and S. Derrible, “A pro-
tocol to convert spatial polyline data to network for-
mats and applications to world urban road networks,”
160046, vol. 3, Scientific Data, 2016. [Online]. Avail-
able: https://doi.org/10.6084/m9.figshare.2061897.v1.

[19] J. Leskovec and A. Krevl, Snap datasets: Stanford large
network dataset collection, 2014.

