
IRIS-DMEM: Efficient Memory Management for
Heterogeneous Computing

Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara, Frank Y. Liu, Jeffrey S. Vetter
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

{miniskarnr, monilm, valerolarap, liufy, vetter}@ornl.gov

Abstract—This paper proposes an efficient data memory man-
agement approach for the Intelligent RuntIme System (IRIS)
heterogeneous computing framework along with new data transfer
policies. IRIS provides a task-based programming model for
extreme heterogeneous computing (e.g., CPU, GPU, DSP, FPGA)
with support for today’s most important programming languages
(e.g., OpenMP, OpenCL, CUDA, HIP, OpenACC). However, the
IRIS framework either forces the programmer to introduce data
transfer commands for each task or relies on suboptimal memory
management for automatic and transparent data transfers. The
work described here extends IRIS with novel heterogeneous
memory handling and introduces novel data transfer policies by
employing the Distributed data MEMory handler (DMEM) for effi-
cient and optimal movement of data among the various computing
resources. The proposed approach achieves performance gains
of up to 7× for tiled LU factorization and tiled DGEMM (i.e.,
matrix multiplication) benchmarks. Moreover, this approach also
reduces data transfers by up to 71% when compared to previous
IRIS heterogeneous memory management handlers. This work
compares the performance results of the IRIS framework’s novel
DMEM with the StarPU runtime and MAGMA math library for
GPUs. Experiments show a performance gain of up to 1.95× over
StarPU and 2.1× over MAGMA.

Index Terms—Heterogeneous computing, IRIS, memory, data
transfer

I. INTRODUCTION

This paper describes efforts to implement the Distributed
data MEMory handler (DMEM), which is a novel and dis-
ruptive method for managing data transfers on extremely
heterogeneous memory hierarchies. As part of the Intelligent
RuntIme System (IRIS) [1], [2], this work proposes the fol-
lowing advances: (1) superior performance by exploiting the
high-speed networks that connect the myriad existing devices
(e.g., hardware accelerators), (2) a reduction in data transfers
by developing more efficient memory management policies,
and (3) minimization of the many programmability constraints
for implementing scientific and high-performance computing
(HPC) codes on extremely heterogeneous architectures. These
improvements provide a highly productive programming envi-
ronment enabled by IRIS’s high-level and intelligent heteroge-
neous memory model: IRIS-DMEM.

Although deploying multiple GPUs is becoming the norm for
many HPC hardware configurations, an important gap exists
in current programming solutions in the form of efficient,
productive, and transparent support for multi-GPU implementa-
tions. We can divide high-level programming models into three
categories: (1) those based on pragmas, such as OpenMP and
OpenACC; (2) those based on C++ abstraction libraries, such

as Kokkos [3] and RAJA [4]; and (3) those based on task-
based programming models with runtimes, such as StarPU [5]
and IRIS [1].

OpenMP recently incorporated a new list of pragmas for
GPUs into its specification [6]–[8]. These new pragmas allow
for offloading the execution onto one GPU by using the
OpenMP target clause. However, no OpenMP construct
currently targets multiple GPUs. Historically, using multiple
GPUs with OpenACC [9] has required MPI [10]–[12]. Mat-
sumura et al. [13], [14] developed and proposed an extension
to the OpenACC specification to handle multi-GPU systems,
and they argued that their extension was competitive with
some MPI + OpenACC codes on NVIDIA multi-GPU systems.
Unfortunately, this extension was not included in the OpenACC
standard. Like OpenACC, Kokkos requires MPI to exploit
the use of multiple GPUs [15]. Recently, Valero et al. [16]
proposed an extension of the Kokkos front end to support
multi-GPU programming and reported better performance and
scalability than achievable by using MPI + Kokkos. IRIS and
StarPU are task-based programming models with runtimes for
heterogeneous targets. The IRIS runtime is more modular in
code structure and is written in C++ object-oriented program-
ming, whereas StarPU is a C library. Compared with StarPU,
IRIS supports more heterogeneous programming languages,
including OpenMP, CUDA, HIP, OpenCL, Xilinx CL (for
Xilinx FPGAs), Intel CL (for Intel FPGAs), and Hexagon
DSP, whereas StarPU supports mainly OpenMP, OpenCL, and
CUDA and has limited support for AMD HIP.

The rest of the paper is organized as follows: Section II
describes the different components used in this work, such
as IRIS, IRIS-BLAS, LaRIS-LU factorization, and previous
IRIS memory handlers. The novel IRIS-DMEM heterogeneous
memory handler is proposed in Section III. The performance
evaluation of the IRIS-DMEM memory handler and state-of-
the-art approaches are presented in Section IV. Finally, we
conclude the paper and describe future work in Section V.

II. BACKGROUND

A. IRIS

IRIS [1] is a task-based programming model for extremely
heterogeneous architectures. It enables application developers
to write portable applications across diverse heterogeneous
programming platforms, including CUDA, HIP, Level Zero,
OpenCL, and OpenMP. IRIS orchestrates multiple program-
ming platforms and consolidates them into a single execu-

A00 B00

X1

T000

A00 B01

X2

T001

A00 B02

X3

T002

A00 B0N

XN

T00N

H2D H2D H2D H2D H2D H2D H2D H2D

D2HD2HD2HD2H

IRIS_MEM

Task

x =BA PSA00

A00

Transpose

H2D

Task

D2H

(a) Single Task (b) Multi-task (Matrix multiplication) Xi: GEMM (Shared Input)

A00 B00

X1

T000

H2D H2D

D2H A01 B10

X2

T000

H2D H2D

D2H

(c) Multi-task
(Output to Input)

H2D

Fig. 1: IRIS task graph examples. A and B are input tiled matrices, and PS is a partial sum tiled matrix.

tion/programming environment by providing portable tasks and
shared virtual device memory.

B. IRIS-BLAS and LaRIS

IRIS-BLAS [17] is a novel heterogeneous and performance-
portable basic linear algebra subprograms (BLAS) library that
addresses the portability challenge of BLAS library use for
different heterogeneous architectures. IRIS-BLAS is built on
top of the IRIS runtime and offers multiple vendor and open-
source BLAS libraries. LaRIS [18] is a performance-portable
LAPACK library built on top of IRIS-BLAS and the IRIS run-
time. These three components (IRIS, IRIS-BLAS, and LaRIS)
support abstracting OpenBLAS, Intel MKL, NVIDIA cuBLAS,
and AMD hipBLAS kernels and can transparently use all the
devices available in a heterogeneous system.

C. Challenges of IRIS-MEM Manual Memory Handling

IRIS provides the data structure iris mem (IRIS-MEM) for
handling device memories. It also provides H2D (Host to
Device) and D2H (Device to Host) data transfer APIs with host
and IRIS memory objects. The IRIS-MEM object is not associ-
ated with the host memory object during creation. Although the
H2D and D2H commands do not specify the target, they take
the host memory object and its size as arguments. When the
task is mapped to the device by the IRIS runtime, it executes
the H2D command, which transfers the data from the host to
the target device, executes the kernel (matrix transpose), and
calls the D2H command. The D2H command then transfers the
data from target device to host memory.

Data transfers can be avoided in the following scenarios:

1) Shared Input: If two tasks depend on the same data,
then transfer of the input data can be avoided given that
the two tasks are mapped to the same device and input
data is already available in-device. Even if the data is
not available on the device, then we can still avoid one
data transfer. For example, using IRIS-MEM allows for
input data A00 to be shared across tasks X1, X2, ...,
XN, as shown in Figure 1b. However, when conducting
manual memory handling, the programmer must add H2D
and D2H commands in all tasks because the location
of the tasks’ device mapping is unknown during the

development phase and is a pure runtime decision. Cur-
rently, no programming model can efficiently represent
heterogeneous memory handling in the state of the art.

2) Dependent Data: If a task’s output data is the input data
of another task, then the data transfer can be avoided if
both tasks are mapped to the same device. An example
using IRIS-MEM for dependent data T000 between tasks
X1 and X2 is shown in Figure 1c. The data transfers of
T000 (both D2H and H2D) can be avoided if both tasks
run on the same device, but this is known only at runtime.

In the above scenarios, the manual mode of handling data
transfers (called IRIS-MANUAL) incurs unnecessary N − 1
data transfers for A00 (Figure 1b) and two unnecessary data
transfers for T000 (Figure 1c), irrespective of where the tasks
are mapped, whether on the same device or on different devices.
In this way, current heterogeneous programming models (e.g.,
IRIS, StarPU [5]) lack the ability to represent the heterogeneous
memory objects during programming but provide complete
freedom to decide or introduce the H2D and D2H commands at
runtime. Therefore, the programmer should not introduce H2D
and D2H commands in task specification; rather, this must be
decided by the runtime system (IRIS).

Currently, IRIS addresses the problem of unnecessary mem-
ory transfers with an automatic movement of data with a
memory management model. The IRIS-MEM object maintains
a device memory for each device and employs a centralized
heterogeneous memory coherency management scheme that
utilizes a shared locking mechanism to synchronize the het-
erogeneous devices’ memory objects. The IRIS-MEM object
maintains the Owners set. When the tasks are mapped to the
device, the device object of the IRIS runtime checks whether
the device owns the IRIS-MEM object using the Owners set.
To maintain the consistency, the sets are locked (i.e., mutex)
before updating the ownership information in the sets. This is
one of the drawbacks of this approach—the principal among
them is that only one device can access the Owners set due
to locks, and this limitation can create additional overhead.
This approach creates new tasks with data transfer commands
and submits them to the runtime scheduler, thereby adding an
additional performance overhead.

Iterate over each DMEM Input
parameter of kernel

Iterate over each DMEMRegion
Input parameter of kernel

Execute Kernel on Device-D

For each DMEM/DMEMRegion
output parameter,

Set dirty bit for all devices and
host except Device-D

(a) IRIS-DMEM based
task execution

IsRegions
Enabled

IsDirty(dev)

For each DMEMRegion

IsDirty(dev)

Invoke data transfer
on DMEMRegion object

yes

no

yes

no

Invoke data transfer
on DMEM object

yes

Return device object
address

IsDirty(dev)

Invoke data transfer
on DMEMRegion object

yes

Return device object
address

(c) Check and Invoke of data transfer for DMEM(b) Check and Invoke of data
transfer for DMEMRegion

nono

Fig. 2: Check DMEM/DMEM-Region data transfer requirement.

III. PROPOSED HETEROGENEOUS MEMORY HANDLER

Heterogeneous memory handling plays an important role
in application performance on heterogeneous computing re-
sources. If the data movement between tasks and the reuse of
data objects are not carefully orchestrated, then the data transfer
costs can dominate the kernel’s performance on the device.

x =BA PS
B00

X1

T000

B01

X2

T001

B02

X3

T002

B0N

XN

T00N

H

D0 D1 D2

A00

Task

A00Dirty bit

IRIS DMEM

Fig. 3: IRIS-DMEM data handler and use.

We propose IRIS-DMEM as a means of distributed control
over heterogeneous memory coherency similar to the multicore
cache coherency protocol. Unlike hardware caches, heteroge-
neous memory objects are controlled by the IRIS runtime.
IRIS-DMEM is tightly associated with the host memory data
object during its initialization, unlike IRIS-MEM. However, it
maintains a corresponding device memory for each host mem-
ory object, the same as with IRIS-MEM. Moreover, DMEM
maintains a dirty flag for each host and device memory object
(Figure 3) to determine whether the host or device memory
object possesses valid and recent data. The DMEM controller
logic sets the dirty flags based on the data transfers and task
execution. This follows the assumption that only one device
executes the task and gains the control of the DMEM object to
write at any point in time. In the example shown in Figure 3,
A00 is an IRIS-DMEM memory object and is shared to all
tasks (i.e., X1, X2, ..., XN kernels). Programmers need not
write H2D and D2H commands for the DMEM objects; the
DMEM controller in IRIS can call the H2D and D2H data
transfers based on the workflow requirements at run time.

DMEM also provides an extension to split the larger chunk of
memory into continuous address regions for parallel execution

of kernels on these independent regions of heterogeneous
compute units and applies a reduction operation at the end. A
use case for DMEM regions is the tiled matrix multiplication al-
gorithm, in which all row tiles in a multiplicand matrix (A) can
be multiplied with all column tiles of a multiplier matrix (B) in
parallel, and the partial sums outcome of these multiplications
must be combined with a sum reduction operation that adds all
partial sum matrices and produces a tile of a C matrix. Figure 4a
illustrates the tile matrix multiplication. Figure 4b shows the
traditional approach, in which the programmer writes a column
sum kernel with the number of inputs equal to the number of
rows of A. However, it is not generic to write the column sum
kernels for all possible sets of inputs because the number of
rows is a runtime parameter. The approach in Figure 4c can
use the DMEM for T000, T001, ..., T00N partial sum objects
with a single input column sum kernel (Colsum), which expects
a continuous address for all partial sum tiles. However, the
programmer must write D2H commands for all partial sum
DMEM objects to evict the data to host memory and use an
H2D command to feed the data to the device. The column sum
kernel is then executed on the device. This approach requires
unnecessary data transfers of D2H and H2D, irrespective of
where the kernels are mapped for execution.

In the proposed DMEM-Regions (R0, R1, ..., R3) approach
shown in Figure 5, DMEM provides APIs to split its device and
host memory objects into regions, and each region (DMEM-
Region) object is given as an output parameter for tile multi-
plication (X1, X2, ..., X4) kernels. The regions are created as a
cross-cut across all device objects that correspond to memory
chunks. It also maintains a dirty flag for all device chunks in
the DMEM-Region object to maintain the consistency of valid
data. Once the data is produced in its corresponding chunks of
devices, in which the tile multiplication kernels are executed,
the entire DMEM object is given as a single input to the column
sum kernel, which can then determine which regions are dirty
and which are not. The regions with a dirty flag will pull
the data from other devices by using either D2D data transfer
or D2H followed by H2D data transfer. For the example, as
shown for the device mapping (D0, D1, D2) in Figure 5, this
approach requires only two D2D data transfers and can boost
the performance and increase the parallel computing capability.

Figure 2 shows the DMEM/DMEM-Region controller al-

A00 B00

X1

T000

A01 B10

X2

T001

A0N BN0

X4

T00N

C00

Traditional Column Sum
(Variable Count of Inputs)

D2 D0 D0

D0

A00 B00

X1

T000

A01 B10

X2

T001

A0N BN0

X4

T00N

C00

Colsum

h2d

d2h d2h d2h

D2 D0 D0

D0

Host
Memory

x =BA C
Partial
Sums

+

+ : Column Sum

(a) Matrix multiplication with Column Sum

(b) Variable input column sum kernel (c) Single input Column sum
with host memory d2h and h2d

Fig. 4: Traditional tiled matrix multiplication column sum reduction without
regions.

A00 B00

X1

A01 B10

X2

A02 B20

X3

A0N BN0

X4

C00

Colsum

D2 D0 D1 D0

D0

IRIS DMEM H T00X

D0 D1 D2

X

X

R0
R1
R2
R3

D2D

D2D / D2H+H2D

Fig. 5: IRIS-DMEM with regions (R0, R1, ..., R3) based tiled matrix
multiplication column sum reduction.

gorithm with task execution and data transfers. IRIS invokes
DMEM/DMEM-Region data transfers based on the extend-
able heterogeneous data transfer policies shown in Figure 6.
Presently, five policies distinguish the data transfers into five
categories. Ultimately, the device running the task fetches the
data from either the source-adjacent device or from host mem-
ory. By following the correct policies, DMEM ensures optimal
data transfer between two compute resources. Notably, DMEM
ensures optimal data transfer for a given scheduling decision.
Although ensuring optimal scheduling is an interesting research
problem, it is beyond the scope of this work. The policies in
order of priority to provide optimal data movement are given
below:

1) D2D for homogeneous devices: For example, NVIDIA
GPUs with NVLink connections provide better and opti-
mal transfer rates when compared with PCIe data trans-
fers. IRIS-MEM lacks support for D2D data transfers.

2) Fetch from CPU device for the OpenMP-accelerated
CPU device memory to the current task device memory:
IRIS considers OpenMP multicore CPUs as devices with

Multi
core CPU

GPU0 GPU1

GPU2 GPU3

GPU0 GPU1

GPU2 GPU3

Nvidia-GPUs AMD-GPUs
D

Priority-2: H2D Transfer

Host Memory

H2D

S

Multi
core CPU

GPU0 GPU1

GPU2 GPU3

GPU0 GPU1

GPU2 GPU3

Nvidia-GPUs AMD-GPUs
D

Priority-5: D2D (Heterogenous Devices) D2H->H2D Transfer

Host Memory

H2D

S

D2H

Multi
core CPU

GPU0 GPU1

GPU2 GPU3

GPU0 GPU1

GPU2 GPU3

Nvidia-GPUs AMD-GPUs
SD

Priority-2: D2D Transfer (To OpenMP CPU Device)

Host Memory

D2H

Multi
core CPU

GPU0 GPU1

GPU2 GPU3

GPU0 GPU1

GPU2 GPU3

Nvidia-GPUs AMD-GPUs
S D

Priority-2: D2D Transfer (From OpenMP CPU Device)

Host Memory

H2D

Multi
core CPU
(OpenMP)

GPU0 GPU1

GPU2 GPU3

GPU0 GPU1

GPU2 GPU3

Nvidia-GPUs AMD-GPUs
S

D

Priority-1: D2D Transfer (Homogenous Devices)

Host Memory

D2D
S

D
D2D

Fig. 6: IRIS-DMEM data transfer policy and priorities.

their own memory. Thus, if the DMEM finds valid data
in its CPU device memory, then it is the next-best
performance efficient data transfer method for bringing
the data to the current device. IRIS-MEM introduces D2H
and then H2D data transfers to fetch the data from the
CPU device for this scenario.

3) Fetch from adjacent device to current OpenMP device:
If the current device is a CPU OpenMP device, then it
is best to fetch data from the adjacent device with valid
data by using D2H data transfer within the context of the
adjacent device.

4) Fetch from host: If DMEM has valid data in host memory,
then it is the next-best data transfer method for bringing
the data to the current device.

5) Heterogeneous device data transfer (D2H H2D): If none
of the above scenarios is satisfied, then it means the data
is available in the adjacent heterogeneous device (e.g.,
AMD device to NVIDIA device). For this scenario, a
D2H data transfer is first initiated to bring the data from
the source device to host memory. Then, the H2D data
transfer is performed to bring the data from the host
memory to the current device. If a future interface (e.g.,

CXL) enables a direct data transfer among heterogeneous
devices, then we can extend the DMEM data transfer
policy with a new category with priority for the CXL
data transfer.

We set the same priority for any CPU/host memory–related data
transfers because the data transfer bandwidth would be the same
for these three categories, and their order can be changed.

The DMEM memory handler works as a write-back cache
because it does not transfer the data to the host memory location
by default. Therefore, the programmer must explicitly write
the new IRIS command DMEM FLUSH OUT CMD (i.e., the
DMEM flush out command) after execution of all tasks/task
graph to ensure that the output is provided to the host memory
object. The flush out command execution will check whether
the host’s dirty flag is true or false. If host dirty flag is true,
then DMEM will source valid data from the device where the
dirty flag is false, by using the D2H data transfer APIs.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

For this work, we used a heterogeneous HPE-Cray system
with four NVIDIA A100 GPUs and four AMD MI100 GPUs.
Each set of GPUs is connected by NVLink (for NVIDIA
GPUs) or Infinity Fabric (for AMD GPUs) high-bandwidth
connections. All GPUs are connected to the CPU via PCIe.
Although this configuration is not very common by today’s
standards, it is a representative configuration for future and
upcoming extremely heterogeneous systems, in which different
architectures, networks, and memories coexist in the same node.

We considered two benchmark applications: tiled DGEMM
from IRIS-BLAS [17] and LU factorization from LaRIS
[18]. The effectiveness of the proposed IRIS-DMEM het-
erogeneous memory handler is shown in terms of perfor-
mance gain/speedup when compared with the traditional IRIS-
MANUAL memory handler and non-optimal IRIS-MEM cen-
tralized memory handler. We also compared the performance
results of the IRIS-DMEM memory handler with the StarPU [5]
framework and with MAGMA [19]. Moreover, we considered
different variants of IRIS-DMEM with D2D transfers and with-
out D2D data transfers (IRIS-DMEM-NoD2D). IRIS-MEM
and IRIS-MANUAL require a flattening step to flatten the 2D
tile into a continuous-memory 1D array. IRIS-DMEM has the
ability and support to transfer the 2D tiles by using vendor-
specific 2D memory copy APIs.

B. Tiled DGEMM Benchmark

The results shown in Figure 7 from the tiled DGEMM
benchmark demonstrate the effectiveness of DMEM-Region.
The size of the input (square) matrix is varied exponentially
from 1,024 to 16,384. The tiled algorithm uses massively
parallel tiled matrix multiplication with a column sum reduction
operation. The tiled algorithm is configured to generate the task
graph for the input matrices split into 4×4 tiles. This algorithm
requires an intermediate buffer size of N3, where N is the size
of the square matrix. Thus, we limited our experiments to a
maximum matrix size of 16,384. The performance results for

the tiled DGEMM benchmark are similar to the LU factoriza-
tion benchmark results. The tiled DGEMM algorithm has three
inputs, and the reuse of input tiles depends on the mapping of
tiled multiplication to compute units. The reuse factor is higher
in tiled multiplication versus in LU factorization. Therefore,
direct 2D data transfers with a greater reuse factor can provide
better performance in this benchmark. The performance gain
of IRIS-DMEM over IRIS-MEM is 4.1× on average.

(b) Task graph creation time which may include overhead of host tile data to
continuous flattened memory addressing for IRIS-MEM and IRIS-MANUAL

3.63

4.64 4.95

4.12

3.28

1

3

5

7

16

32

64

128

256

512

1,024

2,048

4,096

1,024 2,048 4,096 8,192 16,384

Sp
ee

du
p

(x
)

Ti
m

e
(m

s)

Matrix Size N for (N x N)

IRIS-MANUAL
IRIS-MEM
IRIS-DMEM-NoD2D
IRIS-DMEM

1
2
8
32
128
512

2,048

1,024 2,048 4,096 8,192 16,384

Ti
m

e
(m

s)

Matrix Size N for (N x N)

(a) Execution time of task graph

Fig. 7: Matrix multiplication results for four NVIDIA A100 CUDA GPUs
and four AMD MI100 GPUs. Y -axis is on log scale.

The effectiveness of IRIS-DMEM is also evident in Figure 8,
which shows a 26% reduction in data transfers and a 36%
reduction in the size of data transfers versus IRIS-MEM and
IRIS-MANUAL. Both IRIS-MEM and IRIS-MANUAL have a
similar number of data transfers owing to the requirement of
data transfers for the inputs of column sum operations and the
outputs of tiled DGEMM operations. IRIS-DMEM optimizes
these data transfers with the help of DMEM-Regions.

C. LU Factorization Benchmark

The comparison of IRIS-DMEM with state-of-the-art IRIS
memory handlers for the tiled LU factorization benchmark is
shown in Figure 9. The LU factorization matrix size (N ×N)
is varied from 1,024 to 32,768 on the x-axis, and the execution
time of the LU factorization is measured in milliseconds on the
y-axis. The tiled algorithm is configured to generate the task
graph for the input matrix split into 16× 16 tiles.

According to the results, the speedup of IRIS-DMEM is
7.2× over IRIS-MEM on average. For LU factorization, only
one input matrix exists, and multiple accesses of each input
tile could occur. IRIS-DMEM can intelligently explore the
data locality of input tiles with different data transfer policies
and priorities to achieve a speedup of 7.2×. Interestingly,
IRIS-MANUAL outperforms IRIS-MEM. This could be due
to overhead in IRIS-MEM, which uses a centralized memory
coherency protocol for synchronizing the data transfers. The
effectiveness of the D2D data transfers is demonstrated by com-

(b) Size of data transfers (Bytes)

0

50

100

150

200

250

300

350

0

1E+10

2E+10

3E+10

4E+10

5E+10

IRIS-DMEM IRIS-DMEM-NoD2D IRIS-MEM IRIS-MANUAL

H2D D2H-H2D D2D D2H

(a) Total number of data transfers between
tasks

Fig. 8: Comparison of data transfers for the matrix multiplication (reduction)
benchmark.

(b) Task graph creation time which may include overhead of host tile data to
continuous flattened memory addressing for IRIS-MEM and IRIS-MANUAL

(a) Total execution time of task graph

4

16

64

256

1,024

4,096

1,024 2,048 4,096 8,192 16,384 32,768

Ti
m

e
(m

s)

Matrix Size N for N x N

IRIS-MANUAL

IRIS-MEM

IRIS-DMEM-NoD2D

IRIS-DMEM

2.82 2.82

6.34

13.61

9.15 8.58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

64

128

256

512

1,024

2,048

4,096

8,192

16,384

1,024 2,048 4,096 8,192 16,384 32,768

Sp
ee

du
p

(x
)

Ti
m

e
(m

s)

Matrix Size N for (N x N)

IRIS-MANUAL

IRIS-MEM

IRIS-DMEM-NoD2D

IRIS-DMEM

DMEM vs MEM Speedup

Fig. 9: LU factorization results for four NVIDIA A100 CUDA GPUs and
four AMD MI100 GPUs. Y -axis is on log scale.

paring the results of IRIS-DMEM-NoD2D and IRIS-DMEM.
It proves the need for D2D data transfers in the IRIS runtime.

The effectiveness of data transfer policies for LU factoriza-
tion is shown in Figure 10. The exploration of data transfers
with priorities in IRIS-DMEM results in fewer data transfers
versus IRIS-MANUAL (Figure 10b). IRIS-DMEM results in
20% fewer data transfers versus IRIS-MEM and and 71% fewer
data transfers versus IRIS-MANUAL. Moreover, IRIS-DMEM
also reduced the total overall data transfer size by 42% versus
IRIS-MEM and 60% versus IRIS-MANUAL (Figure 10a).

IRIS-DMEM is more efficient in terms of the reduction in
data transfers and size of data transfers when compared to
IRIS-MEM and IRIS-MANUAL. IRIS-DMEM-NoD2D has a
similar number of data transfers and data transfer sizes as IRIS-
DMEM, but it has more H2D data transfers, which impacts the
task graph execution time.

0

1000

2000

3000

4000

5000

6000

H2D D2H-H2D D2D D2H

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

IRIS-DMEM IRIS-DMEM-NoD2D IRIS-MEM IRIS-MANUAL

(a) Total number of data transfers between tasks

(b) Size of data transfers (Bytes)

Fig. 10: Comparison of data transfers for the LU Factorization benchmark
for all variants of IRIS-DMEM, IRIS-MEM, and IRIS-MANUAL.

D. Comparison with StarPU and MAGMA

In terms of alternatives to IRIS (LaRIS), StarPU for heteroge-
neous computing with a task-based programming model and the
MAGMA linear algebra library offer interesting opportunities
for comparison. MAGMA [19], [20] offers math libraries for
CPUs, NVIDIA GPUs (CUDA), and AMD GPUs (HIP), but
it is essentially a linear algebra library rather than a true task-
based programming runtime system. StarPU [5], similar to the
IRIS runtime, supports heterogeneous computing and is an ideal
candidate to compare against. The StarPU runtime supports
asynchronous execution of tasks, whereas IRIS does not yet
offer this support. Moreover, IRIS lacks support for a static
task scheduling policy like StarPU has with DMDAS.

A comparison of IRIS-DMEM and StarPU is shown in
Table I. We also compared IRIS-DMEM results with those
of MAGMA. Although the recent versions of StarPU and
MAGMA support AMD GPUs, neither supports using both
NVIDIA GPUs and AMD GPUs concurrently. Thus, for a fair
comparison, we used the results for the multi-GPU NVIDI-
A/CUDA platform, which has four NVIDIA A100 GPUs, and
the tiled DGEMM benchmark. The performance reported in
the table is in GFLOP/s. Using random and HPL (High Perfor-
mance Linpack) policies, IRIS-DMEM performs better versus
StarPU’s dynamic scheduling and static scheduling policies.
The HPL policy [21] used by IRIS-DMEM distributes the
computational cost of linear algebra operations.We fine-tuned
this algorithm for IRIS-DMEM to distribute the tasks across

multiple NVIDIA/CUDA GPUs. Because of task creation over-
head, the MAGMA framework is better than IRIS-DMEM only
for smaller matrix sizes, such as 1,024 and 2,048.

TABLE I: Comparison of DMEM with StarPU and MAGMA.
Performance in GFLOP/s. Benchmark: Tiled matrix multipli-
cation. Platform: Four NVIDIA A100 GPUs.

Size StarPU StarPU DMEM DMEM MAGMA
(N×N) Random DMDAS Random HPL
1,024 195 228 142 463 2,683
2,048 585 973 582 1,856 3,845
4,096 2,148 3,265 2,648 6,396 4,319
8,192 5,196 7,048 5,385 10,458 5,152
16,384 12,718 16,333 13,929 18,120 6,509

V. CONCLUSION AND FUTURE WORK

This paper presents the IRIS-DMEM novel heterogeneous
memory handler for the IRIS runtime and introduces novel
data transfer policies for efficient and optimal data movement
between compute units. The proposed approach was evaluated
with tiled LU factorization and tiled DGEMM benchmarks. We
achieved up to 7× performance gains and a 75% reduction
in data transfer sizes. This work also compares IRIS with
the proposed heterogeneous memory handler with the state-
of-the-art StarPU runtime and MAGMA frameworks. Results
have shown up to 1.95× performance uplift over StarPU and
2.1× uplift over MAGMA. Future work includes exploration of
IRIS-DMEM for different static and dynamic task scheduling
policies for heterogeneous computing.

ACKNOWLEDGMENT

Notice: This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The publisher, by accepting the article
for publication, acknowledges that the U.S. Government retains
a non-exclusive, paid up, irrevocable, world-wide license to
publish or reproduce the published form of the manuscript, or
allow others to do so, for U.S. Government purposes. The DOE
will provide public access to these results in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

REFERENCES

[1] J. Kim, S. Lee, B. Johnston, and J. S. Vetter, “IRIS: A Portable Runtime
System Exploiting Multiple Heterogeneous Programming Systems,” in
Proceedings of the 25th IEEE High Performance Extreme Computing
Conference, ser. HPEC ’21, 2021, pp. 1–8.

[2] A. Cabrera, S. Hitefield, J. Kim, S. Lee, N. R. Miniskar, and J. S. Vetter,
“Toward performance portable programming for heterogeneous systems
on a chip: A case study with qualcomm snapdragon soc,” in 2021 IEEE
High Performance Extreme Computing Conference (HPEC), 2021.

[3] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Mad-
sen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg,
D. Sunderland, B. Turcksin, and J. Wilke, “Kokkos 3: Programming
model extensions for the exascale era,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2022.

[4] D. Beckingsale, R. D. Hornung, T. Scogland, and A. Vargas, “Perfor-
mance portable C++ programming with RAJA,” in Proceedings of the
24th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2019, Washington, DC, USA, February 16-20,
2019, J. K. Hollingsworth and I. Keidar, Eds. ACM, 2019, pp. 455–456.

[5] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “Starpu:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurr. Comput. Pract. Exp., vol. 23, no. 2, pp.
187–198, 2011. [Online]. Available: https://doi.org/10.1002/cpe.1631

[6] R. D. Budiardja and C. Y. Cardall, “Targeting gpus with openmp
directives on summit: A simple and effective fortran experience,” Parallel
Comput., vol. 88, 2019.

[7] T. Cramer, M. Römmer, B. Kosmynin, E. Focht, and M. S. Müller,
“Openmp target device offloading for the sx-aurora TSUBASA vector
engine,” in Parallel Processing and Applied Mathematics - 13th Interna-
tional Conference, PPAM 2019, Bialystok, Poland, September 8-11, 2019,
Revised Selected Papers, Part I, ser. Lecture Notes in Computer Science,
vol. 12043. Springer, 2019, pp. 237–249.

[8] P. Valero-Lara, J. Kim, O. Hernandez, and J. S. Vetter, “Openmp target
task: Tasking and target offloading on heterogeneous systems,” in Euro-
Par 2021: Parallel Processing Workshops - Euro-Par 2021 International
Workshops, Lisbon, Portugal, August 30-31, 2021, ser. Lecture Notes in
Computer Science, vol. 13098. Springer, 2021, pp. 445–455.

[9] L. Toledo, P. Valero-Lara, J. S. Vetter, and A. J. Peña, “Static graphs for
coding productivity in openacc,” in 28th IEEE International Conference
on High Performance Computing, Data, and Analytics, HiPC 2021,
Bengaluru, India, December 17-20, 2021. IEEE, 2021, pp. 364–369.
[Online]. Available: https://doi.org/10.1109/HiPC53243.2021.00050

[10] M. Wolfe, “Scaling openacc applications accross multiple
gpus,” 2014, GPU Technology Conference (GTC). [Online].
Available: https://on-demand.gputechconf.com/gtc/2014/presentations/
S4474-scaling-openacc-across-multiple-gpus.pdf

[11] J. Larkin, “Multi-GPU Programming with OpenACC,”
2017, GPU Technology Conference (GTC). [Online].
Available: https://on-demand.gputechconf.com/gtc/2017/presentation/
S7546-jeff-larkin-multi-gpu-programming-with-openacc.pdf

[12] J. Kraus, “Multi gpu programming with mpi and openacc,” 2015, GPU
Technology Conference (GTC). [Online]. Available: https://on-demand.
gputechconf.com/gtc/2015/presentation/S5711-Jiri-Kraus.pdf

[13] K. Matsumura, M. Sato, T. Boku, A. Podobas, and S. Matsuoka, “MACC:
an openacc transpiler for automatic multi-gpu use,” in Supercomputing
Frontiers - 4th Asian Conference, SCFA 2018, Singapore, March 26-29,
2018, Proceedings, ser. Lecture Notes in Computer Science, R. Yokota
and W. Wu, Eds., vol. 10776. Springer, 2018, pp. 109–127.

[14] K. Matsumura, S. G. de Gonzalo, and A. J. Peña, “JACC: an openacc
runtime framework with kernel-level and multi-gpu parallelization,” in
28th IEEE International Conference on High Performance Computing,
Data, and Analytics, HiPC 2021, Bengaluru, India, December 17-20,
2021. IEEE, 2021, pp. 182–191.

[15] S. Khuvis, K. Tomko, J. M. Hashmi, and D. K. Panda, “Exploring
hybrid mpi+kokkos tasks programming model,” in 3rd IEEE/ACM Annual
Parallel Applications Workshop: Alternatives To MPI+X, PAW-ATM@SC
2020, Atlanta, GA, USA, November 12, 2020. IEEE, 2020, pp. 66–73.
[Online]. Available: https://doi.org/10.1109/PAWATM51920.2020.00011

[16] P. Valero-Lara and J. S. Vetter, “A performance-portable and productiv-
ity solution based on kokkos for multigpu programming,” in Interna-
tional Workshop on Performance, Portability and Productivity in HPC,
P3HPC@SC 2022, Dallas, TX, USA, November, 2022. IEEE, 2021.

[17] N. R. Miniskar, A. H. M. Mohammad, V.-L. Pedro, F. Liu, and J. S.
Vetter, “Iris-blas: Towards a performance portable and heterogeneous blas
library,” in 29th IEEE International Conference on High Performance
Computing, Data, and Analytics, HiPC 2022, Bengaluru, India, Decem-
ber 18-21, 2022. IEEE, 2022, pp. 1–10.

[18] M. A. H. Monil, N. R. Miniskar, F. Liu, J. S. Vetter, and P. Valero-
Lara, “LaRIS: Targeting Portability and Productivity for LaPACK Codes
on Extreme Heterogeneous Systems using IRIS,” in IEEE/ACM Re-
defining Scalability for Diversely Heterogeneous Architectures Workshop,
RSDHA@SC 2022, Dallas, TX, USA, November 13–18, 2022. IEEE.

[19] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra
for hybrid GPU accelerated manycore systems,” Parallel Computing,
vol. 36, no. 5-6, pp. 232–240, Jun. 2010.

[20] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra,
“Batched matrix computations on hardware accelerators based on
gpus,” The International Journal of High Performance Computing
Applications, vol. 29, no. 2, pp. 193–208, 2015. [Online]. Available:
https://doi.org/10.1177/1094342014567546

[21] J. J. Dongarra and P. Luszczek, “Scalapack,” in Encyclopedia of Parallel
Computing, D. A. Padua, Ed. Springer, 2011, pp. 1773–1775. [Online].
Available: https://doi.org/10.1007/978-0-387-09766-4\ 151

