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Abstract—The rapid advancement of network link bandwidth
in modern data centers, coupled with the relatively slower
processing capabilities of host systems that include accelerators,
has given rise to a new challenge: endpoint congestion. This
paper presents a reactive scheme built upon a standard reli-
ability protocol to mitigate the impact of endpoint congestion
in a medium-scale domain of endpoints—one that is reachable
within a few switch hops. This is arguably the sweet-spot for
an accelerator scale-out domain. The proposed policy, which
overloads duplicate-ACK as a reactive congestion signal, enables
controlled pacing of packets from the initiator to match with
target processing bandwidth, thereby avoiding packet loss due to
endpoint congestion. Our results demonstrate that, for unicast
and incast streaming PUT (RDMA write) flows, the proposed
scheme effectively mitigates packet drops and achieves minimal,
or in most cases zero, packet retransmissions when there is a drop
in the endpoint processing speed. Traditional approaches fail to
achieve this behavior even with high target queue capacity. Thus,
our scheme also has the potential benefit of reducing the buffering
requirements at the endpoint and consequently, the cost. To
the best of our knowledge, our scheme is the first to explicitly
consider and mitigate packet loss due to endpoint congestion,
offering an effective approach to address this emerging challenge.

Index Terms—congestion, transport protocol, scale-out, accel-
erators, network endpoint

I. INTRODUCTION

Conventional wisdom has placed emphasis on conges-
tion within networking hardware, specifically in network
switch buffers[1]–[3]. Recently, endpoint congestion (EC) has
emerged as a significant challenge for future networking
systems[4]. This research work introduces an enhancement to
a traditional reliable transport protocol to mitigate endpoint
congestion in a medium-scale domain of accelerators.
A. Endpoint Congestion
Endpoint congestion (EC) refers to the congestion that occurs
when packets arrive at an endpoint and are subsequently
queued up within the networking hardware buffer due to the
endpoint’s limited processing capacity. Two primary factors
are contributing to this problem. The first is the remarkable
improvement in networking bandwidths in recent years, with
400 Gbps[5] and 800 Gbps[6] switches on the horizon, which
places increased demands on endpoint processing. Secondly,
technological limitations, including constraints in power con-
sumption [7] and memory speed [8], have impeded significant
improvements in host processing capabilities relative to their
networking counterparts.

*Timothy is presently pursuing a doctoral degree at Stanford University
while also serving as an intern at Intel Corp.

An analysis presented in [4] delves into the primary sources
of host congestion observed in modern-day data centers, en-
compassing factors such as IOMMU translation costs and LLC
cache misses. Our work aims to provide network-protocol level
support that addresses congestion resulting from the growing
disparity between networking and host processing speeds.
B. The Need for an EC-Aware Scheme
Endpoint congestion leads to an accumulation of incoming
packets in the network interface buffer. In a lossy fabric, which
is the focus of our work, this eventually forces the target
to drop packets. An oblivious initiator continues to transmit
packets that are ultimately discarded at the congested endpoint,
leading to wasteful network activity. Consequently, mitigating
or eliminating packet drops stemming from endpoint con-
gestion yields benefits that extend beyond mere reduction in
packet loss. These advantages include:
• Improved effective network bandwidth: With fewer drops and

packet retries, wasted bandwidth due to retransmissions is
minimized, enhancing overall network efficiency.

• Enhanced end-to-end throughput: An EC-aware congestion
control mechanism has the potential to reclaim idle host
cycles that would otherwise be wasted when the buffer is
either instantaneously depleted or stalled due to packet loss.

• Power reduction: Limiting packet drops and needless retries
also results in power savings, a critical factor in the data
center.

Although beyond the immediate scope of our work, it is
worth noting that an EC-aware scheme also brings signifi-
cant benefits to lossless fabrics. In such a system, endpoint
congestion can propagate back into the network, potentially
inducing catastrophic congestion on upstream traffic [9]. For
next generation data centers, where endpoint processing is
anticipated to become a bottleneck, a networking scheme
explicitly designed to address the challenges of endpoint-
induced congestion is vital.
C. Existing Schemes Unsuitable for Endpoint Congestion
In this study, our focus is on a medium-scale domain where
processor or accelerator nodes are interconnected through a
commodity networking fabric to collectively execute a single
task [10]. The medium-scale domain refers to a configuration
with few switch hops where the round-trip latency is bounded,
for instance, to < 10µs. Arguably, this is the sweet-spot for
a scale-out accelerator domain. Conventional networking pro-
tocols, such as TCP [11], [12], are designed with large-scale
deployments in mind, typically involving tens of thousands



of nodes with several switch hops, and hence not suitable
for a medium-scale domain. Furthermore, accelerator attached
fabric demands swift recovery and responsiveness, which TCP
fails to provide due to its conservative congestion avoidance
and slow start phases. Hence, a reactive solution is desired.

Other receiver-driven schemes, such as HOMA[13],
pHost[14], and NDP[15], empower targets to proactively throt-
tle senders. However, these methods operate under the assump-
tion that congestions occur within the network infrastructure
(i.e. network cores and downlinks). They are still vulnerable to
EC. Furthermore, these software-based protocol solutions are
primarily designed for networks with downlinks up to 10Gbps.
They may present a bottleneck when handling vast volumes
of data that arrive at a time in future data centers awaiting
processing.

Our contributions in this work are as follows:
• We propose a reactive hardware-based scheme tailored to

address endpoint congestion within a medium-scale domain
of nodes. To the best of our knowledge, this is the first
endeavor to incorporate endpoint-induced congestion con-
siderations into the design of a network protocol.

• Our policy assumes a lossy commodity network like Ether-
net, thereby obviating the need for link level credit mecha-
nisms (e.g. RoCEv2 [16]).

• Our approach is proactive in throttling and recovering trans-
mission streams by employing duplicate acknowledgments
to regulate the transmission pace of initiators.

• We evaluate the performance of our proposed policy in both
unicast and incast PUT (RDMA write) packet scenarios,
achieving near-zero packet drops.

II. ACK-BASED ENDPOINT CONGESTION POLICY

This section presents our host-congestion policy. In this work,
we define the initiator as one that initiates a PUT and the
target as one that receives the PUT.
A. Reliable Transmission
Our policy builds upon the end-to-end reliability protocol
for lossy networks that uses a traditional acknowledgement
model. A PUT packet sent from the initiator to the target
is acknowledged by the target with an ACK (standalone
or piggybacked) that contains the sequence number of the
accepted packet. In the absence of packet drops, the initiator
increments the sequence number for each outgoing packet, and
the target responds with an ACK containing the highest valid
sequence number received (that may span multiple packets).
If an out-of-order packet is received, it is dropped and a
NACK (negative acknowledgement) with the last accepted
packet sequence number is sent to the initiator. Initiator-side
retransmission can be triggered by either a NACK from the
target or a timeout if the ACK or NACK gets dropped by the
switching network.
B. Design Goals
We center our EC-aware scheme around four goals:

Minimizing Modification: Our scheme builds upon an ACK
infrastructure, avoiding extensive modifications to the baseline

end-to-end reliability protocol.
Maximizing Throughput: In the absence of host congestion,

our policy will maximize link utilization.
Congestion Prevention: To avert future packet drops, a

congestion impending signal based on the processing queue
occupancy is proactively sent to the initiator.

Rapid Recovery: Our scheme ensures timely notification to
the sender when endpoint congestion subsides, allowing for
swift recovery and transmission resumption.

These design objectives underpin our policy development
approach, guiding our EC-aware protocol formulation.
C. ACK Types
We designate labels for ACKs used in our policy as follows:

Duplicate ACK (DACK)] is an ACK that contains a
sequence number identical to that of a previously sent ACK
within the same connection.

Incremented ACK (IACK)] is an ACK that contains a
sequence number greater than that of a previously sent ACK
within the same connection.

In the TCP protocol, three consecutive duplicate ACKs
indicate a packet drop, triggering the initiator to start retrans-
mission. Unlike this, our baseline end-to-end reliability policy
uses NACKs to signify packet drops, without generating dupli-
cate ACKs. In our proposed scheme, we incorporate duplicate
ACKs based on the target buffer occupancy (§II-D). These
signals guide the initiator in adjusting its data transmission
rate (§II-E).
D. Target Logic
When the host processing bandwidth exceeds the link band-
width (no EC), the target queue should be either short or
empty. We define the system as congested when:

system_congested =
target_queue_occupancy > policy_threshold

During congestion periods, we temporarily suppress IACKs
that are sent as soon as a packet enters the processing queue.

When a packet enters the system, it is placed in the
processing queue. An IACK is sent in two scenarios: when the
system is not congested and a packet finishes processing, and
when the system is congested, but a packet transitions from
above to below the target_queue_occupancy threshold
position within the processing queue (Fig. 1). This typically
occurs after a packet is processed, and a DACK is immediately
sent before an IACK to signal congestion. The IACK can be
sent as a standalone or as a piggyback, both are considered by
the initiator to adjust transmission rate. Additionally, when a
packet enters an already congested target, a standalone DACK
is instantly sent back to the initiator to indicate congestion and
potential packet drop.

Under normal host-congestion-free conditions, IACKs are
sent as soon as they are accepted in the system. In this
scenario, no DACKs are generated, and the link bandwidth
can be fully utilized.

When the queue occupancy exceeds the policy threshold,
IACKs contain the sequence number of the packet occupying
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Fig. 1: Target queue ACKs based on buffer occupancy. ACKs
dispatched from the target to the initiator carry the highest
sequence number of the packet positioned just below the
threshold (green).

the space just below the threshold (Fig. 1). In other words,
the sent IACKs always carry the highest sequence number of
the packets occupying the space below the threshold—not the
packets that have been successful received. This is where we
differ from traditional schemes.
E. Initiator Logic
The transmission rate of the initiator is steered by an internal
state machine, depicted in Fig. 2. Under EC-free conditions,
the system remains in the halt state H∞, where the trans-
mission rate is not throttled, allowing back-to-back packet
transmission. The packet transmission is governed by a fixed
outstanding packet or data size threshold, but the rate itself is
otherwise unregulated.

Fig. 2: Initiator internal state transition diagram. Here H∞
denotes the normal non-congested state.

When a DACK is received, the initiator transitions to halt
state H(-1), where only one packet can be sent per received
IACK. When the target is congested, the initiator receives
alternating DACKs and IACKs, oscillating between H(-1) and
H(0). With two consecutive IACKs received, it enters state H1,
allowing two packets to be sent per IACK.

Upon transitioning from state H0 to H1, an internal counter
resets. Within H1, each IACK increments the counter and
permits the transmission of two packets. Should the counter
reach a predefined threshold during receipt of a new IACK
while in H1, the system reverts to the unthrottled state H∞, re-
linquishing rate regulation. The threshold governs how quickly
the initiator returns to unthrottled transmission. Empirically,
we chose a threshold value of 6.

The arrival of a DACK signals target congestion, immedi-
ately throttling the initiator to send only one packet per IACK.
This mechanism allows the target to control the initiator trans-
mission rate during endpoint congestion, and the initiator can
swiftly resume unthrottled transmission once the congestion
subsides.

F. Reacting to EC-Induced Packet Drop

In the event of packet loss, the target sends a NACK to the
initiator. The initiator, upon receiving it, is not allowed to
retransmit at an unthrottled rate, as the target’s congestion
may persist. To maintain pacing of the initiator after the packet
drop, the target continues to send DACKs for the packets that
have arrived before the packet drop and finished processing.
The initiator transmits one packet per DACK during retrans-
mission, avoiding further congestion. After retransmission, the
initiator returns to the H(-1) state and resumes normal throttled
transmission, as described in Section §II-E.

G. DACK Suppression and ACK Coalescing

Once the initiator enters H(-1), the target can pace the trans-
mission based on the buffer’s processing rate. While targets
can transmit as many DACKs as desired, the transmission of
IACKs is more restricted since a packet needs to be accepted
at the target to send an IACK.

Working in the presence of endpoint congestion (EC), our
policy allows for controlled rate increase and decrease from the
initiator while ensuring reliability and correctness of sequence
numbers. By suppressing DACKs, the target can allow the
initiator to observe two consecutive IACKs and progress to the
H1 state, effectively increasing the transmission rate. Similarly,
to decrease the rate, we can manually coalesce two IACKs into
one by skipping the first IACK.

H. Fairness Among Multiple Streams

If an initiator is in a halt state (non-H∞), it relies on
receiving IACKs from the target in order to send packets.
There is however a bias towards streams that already have
packets accepted at the target. Using DACK suppression and
ACK coalescing, targets can balance individual transmission
rates from multiple initiators. Our policy periodically samples
packet counts from each stream. If a stream’s rate significantly
surpasses others, the target performs DACK suppression on the
lower-rate stream and ACK coalescing on the higher-rate one.
This ensures fairness between data flows.

III. EVALUATION

A. Baseline and Proposed Policies

Our evaluation involves two baselines and the proposed policy,
with all using explicit NACKs to signal packet loss from target
to ensure fair baseline for reactivity.

Outstanding Packet Threshold (OPT): The OPT policy per-
mits unlimited data transmission as long as the total outstand-
ing packets does not surpass a specified threshold for data size
and packet count. Retransmissions follow the same threshold,
with no transmission rate restriction.

Additive Increase/Multiplicative Decrease (TCP-like): This
policy employs a standard additive increase, multiplicative
decrease (AIMD) congestion window that governs the amount
of outstanding data allowed at any given time [17]. The
congestion window grows linearly and shrinks in half depend-
ing on NACKs and ACKs that it receives, thereby indirectly
controlling the transmission rate.
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Fig. 3: Unicast PUT streaming trace. Packet Size: 2KB. Target Processing Bandwidth: 50% of link bandwidth
(a) OPT Policy (b) TCP-like Policy (c) Proposed Policy

(a)

(b)

(c)

Proposed Policy (detailed in §II): Under non-EC conditions,
our scheme operates identically to the OPT scheme and
follows a fixed outstanding packet threshold.

We set the maximum segment size (MSS) and target queue
occupancy threshold at 9KB for our evaluation.
B. Experimental Setup
The three policies, baselines and proposed scheme, were
simulated using BookSim [18], a network simulator designed
for research in lossless, credit-based interconnection networks.
The simulator was modified to simulate a lossy fabric with
packet drops at switches and nodes. OPT policy results were
validated against hardware results, with hardware-level param-
eters updated in BookSim.

In our experimental setup, we assumed a 100Gbps network
with fully non-blocking fat-tree topology where the round-
trip traversal between two endpoints takes approximately 8µs.
We implemented a backend interface to support Bale kernels
[19] and OpenSHMem[20], which replaces the default traffic
manager’s packet injection. In this study, we focus on PUT
packets, which often cause endpoint congestion when queued
for memory writes, and used streaming unicast and incast
PUT Bale kernel workload for evaluation. A target queue,
implemented on each endpoint, holds incoming packets. We
compare our policy to the baseline policies at different queue
drain rates as a percentage of the full link bandwidth. We
present results for target queue depth of 81KB in this paper.

IV. RESULTS

A. Unicast Trace
Fig. 3 shows unicast streaming PUT traffic trace over time.
Each marker signifies a packet event, with the y-value indi-
cating the packet’s sequence number.

The OPT policy (Fig. 3a) allows continuous packet stream-
ing until an outstanding threshold is reached, even during

retransmission. This leads to packet drops and a cycle of
packet drops and retransmissions.

The TCP-like policy (Fig. 3b), on the other hand, dynam-
ically adjusts its window size in response to NACKs from
packet drops. Although it transmits packets less aggressively
than the OPT policy, it still experiences similar packet-drop-
and-retransmission cycles, albeit at a lower drop rate.

In the proposed scheme (Fig. 3c), the target promptly
responds to imminent congestion by issuing DACKs when
the target queue threshold is reached (around the 6µs mark).
The initiator immediately throttles its transmission rate upon
receiving this signal (around the 10µs mark). Note that only
the first 20µs of the trace is shown compared to the other
policies because the system quickly stabilizes to match the
host processing bandwidth, resulting in a subsequent steady
stream of packets without any packet drops.
B. Unicast PUT Performance
We compare the normalized goodput and packet retransmis-
sion rate among the three policies over a range of target
processing bandwidths under endpoint congestion, where the
target queue is drained at a rate lower than the link band-
width. All goodput, packet retransmission rates, and endpoint
bandwidths are normalized to the maximum link bandwidth.
We consider streaming packet data sizes ranging from 512B
to 8KB, excluding a 64B header.

Goodput refers to the data rate successfully accepted by the
target, excluding the header. An ideal goodput scenario would
exhibit a linear relationship with a goodput figure of y = x.

Fig. 4 shows the goodput results for all three policies. At
first glance, all three policies exhibit goodput performance
close to the ideal scenario for a unicast PUT streaming
workload. However, with smaller packet sizes of 512B and
1KB, the less-than-ideal results are a result of a combination
of the initiator not being able to generate back-to-back packets
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packet size (Bytes):
(a) OPT Policy (b) TCP-like Policy (c) Proposed Policy

Fig. 4: Normalized Goodput for Unicast streaming PUT workload

Fig. 5: Normalized Packet retransmission for Unicast streaming PUT workload

Fig. 6: Normalized Goodput for 8-to-1 incast streaming PUT workload

Fig. 7: Normalized Packet retransmission for 8-to-1 streaming PUT workload

due to processing overhead as well as packet header size.
Specifically, for 512B packet size, the initiator is unable to
transmit packets at the full link bandwidth, regardless of the
presence of endpoint congestion.

In both the OPT and TCP-like scenarios, the round-trip
time for NACKs to arrive at the initiator and for retried
packets to reach their destination is fast enough that the target
queue is not fully drained. Consequently, we are able to fully
utilize the reduced endpoint throughput, resulting in overall
goodput close to the ideal scenario. However, this should
not overshadow the substantial drops incurred when initiators
using these two policies blindly retransmit without knowledge
of target EC. Fig. 5a and 5b illustrate that up to 1.8% of the
link bandwidth is wasted on useless work when the endpoint
can only accept traffic at 50% of the link bandwidth. Higher
endpoint processing bandwidth leads to lower packet drop
rates as the target queue drains more quickly.

The TCP-like policy reduces packet retransmission com-
pared to the OPT policy by being less aggressive. Generally,
for TCP-like policy, larger packet sizes result in lower packet
drop rates because the additive increase nature of the conges-
tion window allows for smaller packets to be streamed out at a
higher rate than larger packets, resulting in a higher number of
packets being dropped in the presence of endpoint congestion.

The lowered packet drop rates for both 512B and 1KB packets
can be attributed to the previously mentioned header overhead
and initiator processing overhead. These results starkly con-
trast with the proposed policy, which experiences zero packet
drops for the workload, as discussed in Section §IV-A.

C. Incast PUT Performance

Figs. 6 and 7 show the results for an 8-to-1 incast streaming
PUT workload, which are generally similar to the unicast case,
with our proposed policy demonstrating substantial improve-
ments in reducing packet retransmissions. The gap between
the retransmission rates of the OPT and TCP-like policies
has narrowed, suggesting that the advantages of the TCP-
like policy’s conservatism in growing its congestion window
diminish as the number of nodes in the system increases in the
presence of endpoint congestion. Additionally, the processing
overhead for smaller packet sizes has disappeared because
each individual initiator no longer needs to send packets back-
to-back to saturate target link.

The lower-than-ideal goodput numbers in the proposed
policy are due to header overhead, which is more apparent
in smaller packets. Despite this, the proposed policy still
substantially outperforms baseline policies in terms of packet
retransmission rates, enabling more useful network traffic.
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(a) OPT Policy (b) TCP-like Policy (c) Proposed Policy

Fig. 8: Normalized Goodput at 70% of link bandwidth for 8-to-1 incast streaming PUT workload

Fig. 9: Normalized Packet Retransmission at 70% of link bandwidth for 8-to-1 incast streaming PUT workload

Fig. 10: Maximum Normalized PUT rate difference for 8-to-1 incast streaming PUT workload

D. Varying Queue Depth

Fig. 8 presents the goodput and packet retransmission rate for
the 8-to-1 incast PUT workload, where the queue depth is nor-
malized to the bandwidth delay product of a 64B header-only
packet (link bandwidth × round trip time without processing
delay). The proposed policy achieves near-maximum goodput
even at low queue depths, while the other two policies result
in idle host cycles during packet drops when the queue drains
temporarily and the host is not performing any useful work,
lowering goodput. Additionally, our policy exhibits near-zero
packet retransmissions for this workload. It is worth noting that
the OPT and TCP-like policies continue to experience packet
drops even at high queue depths due to their EC-agnostic
nature, as shown in Fig. 9. In fact, the queue depth does
not significantly impact packet retransmissions when persis-
tent endpoint congestion is present for this streaming incast
workload. This is because the target queue will eventually
fill up regardless of the total available space, and blindly
retransmitting packets without considering target congestion
does not alleviate the issue. Thus, our scheme has also the
potential benefit of reducing the buffering requirements at the
endpoint and consequently, the cost.

E. Fairness

Fig. 10 shows the maximum put rate difference normalized to
maximum link bandwidth between any two initiator streams
for the 8-to-1 incast PUT workload across a range of EC
conditions. Although our policy strategy has an implicit bias
towards streams that already have packets at the target (§II-H),
our scheme utilizing DACK suppression and ACK coalescing
effectively counteracts this effect and ensures fairness compa-
rable to the baseline policies. Overall, our policy consistently

outperforms the baseline policies, particularly at lower end-
point processing bandwidth and smaller packet sizes.

V. CONCLUSION

We presented an EC-aware policy that tackles the issue of
endpoint-induced congestion. Our policy leverages ACKs to
incorporate reactive measures to regulate initiator transmits,
avoiding packet drops while enabling swift recovery in the
context of a medium-scale accelerator domain where the
round-trip latency is bounded to a few switch hops. Through
simulation, we demonstrated the effectiveness of our policy in
reducing packet retransmissions and achieving high throughput
across various endpoint congestion scenarios. Additionally,
our mechanism ensures fairness, achieving a balanced trans-
mission among initiators compared to baseline approaches.
Even with increased buffering, traditional policies fall short
of achieving the same performance. Thus our scheme can
potentially reduce the cost of endpoint interface.

Future work will evaluate our EC-aware policy for different
workloads and packet types, exploring its effectiveness in
diverse network configurations, and implementing the policy
in hardware for performance analysis and optimization. As
network link bandwidth continues to outpace host processing
bandwidth, the impact of endpoint congestion is expected
to become more pronounced in the near future. Therefore,
addressing the challenges posed by endpoint congestion be-
comes paramount for ensuring optimal network performance
and accommodating future scalability requirements in data
centers and distributed computing systems.
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