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Abstract—The machine learning explosion has created a
prominent trend in modern computer hardware towards low
precision floating-point operations. In response, there have been
growing efforts to use low and mixed precision in general
scientific computing. One important area that has received
limited exploration is time integration methods, which are used
for solving differential equations that are ubiquitous in science
and engineering applications. In this work, we develop two new
approaches for leveraging mixed precision in exponential time
integration methods. The first approach is based on a reformu-
lation of the exponential Rosenbrock–Euler method allowing for
low precision computations in matrix exponentials independent of
the particular algorithm for matrix exponentiation. The second
approach is based on an inexact and incomplete Arnoldi pro-
cedure in Krylov approximation methods for computing matrix
exponentials and is agnostic to the chosen integration method. We
show that both approaches improve accuracy compared to using
purely low precision and offer better efficiency than using only
double precision when solving an advection-diffusion-reaction
partial differential equation.

Index Terms—differential equations, mixed precision, high-
performance computing

I. INTRODUCTION

In this paper we present two complementary concepts that
enable accurate mixed precision computation in exponential
time integators. Exponential time integrators are a class of
numerical methods for solving ordinary differential equation
(ODE) initial value problems of the form

u′(t) = f(u(t)), u(t0) = u0, t ∈ [t0, tf ], (1)

with u(t) ∈ RN . ODEs are ubiquitous across scientific
domains and may arise directly from modeling some process
or from discretizing a partial differential equation (PDE).
Exponential integrators are particularly well-suited to stiff
problems due to their exact treatment of linear terms. Alter-
native methods for stiff ODEs e.g., BDF or implicit Runge–
Kutta methods, typically require an effective and efficient
preconditioner which can be difficult to construct [30]. Ex-
ponential time integrators have been shown to be effective for
many problems where practical preconditioners have not been
developed [15], [22], [24], [27], [28], [40].
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Recent trends in computer hardware towards low precision
floating point operations have been spurred largely by artificial
intelligence and machine learning applications. Reuther et al.
provides a comprehensive survey of current AI accelerators
and their properties [36]. The typical properties of this hard-
ware indicate that leveraging low precision is necessary to
achieve the full potential of much of this hardware. This has
resulted in significant interest in mixed precision computation.
The goal of incorporating mixed precision is to utilize the
efficiency of low precision computation while maintaining an
overall accuracy consistent with high precision computation.
What constitutes low and high precision depends on the
context, but it is common to consider double precision as
high precision and low precision as anything less than double.
Mixed precision has been particularly popular in the numerical
linear algebra [1], [2], [5], [6], [19], [20], [26], [32] and
deep learning literature [10], [17], [31], [33], [41]. However,
incorporating mixed precision into numerical time integration
methods has been studied much less [8], [11], [18]. To better
utilize current and emerging hardware capabilities, further
research on incorporating mixed precision into numerical time
integration methods is needed. To this end, we present two
approaches for leveraging mixed precision computations in
exponential integrators:

1) a reformulation of the exponential Rosenbrock–Euler
method with order of accuracy O

(
h2 + ϵh

)
instead of

O
(
h2 + ϵ

)
where ϵ is the floating point precision,

2) and the incorporation of low precision matrix-vector
products in the Krylov approximation of matrix-
exponential and vector products.

These two approaches have different requirements and char-
acteristics which may dictate which is most suitable for a
particular application. They can also be combined to create
a practical and robust mixed precision exponential time-
integrator.

The rest of this paper is organized as follows. In section
II we present the reformulated exponential Rosenbrock–Euler
method. This is followed by section III where we present the
mixed precision Krylov approximation algorithm. In section
IV we demonstrate both approaches in solving an advection-
diffusion-reaction PDE. Finally, in section V we provide key
conclusions, impacts, and directions for future work.

1



II. REFORMULATION OF EXPONENTIAL EULER

The exponential Rosenbrock–Euler method [35] applied to
(1) is given by

un+1 = un + hnφ1(hnJn)f(un) (2)

where hn is the timestep, Jn = f ′(un) is the Jacobian matrix,
and un is the numerical approximation to u(tn). The function
φ1(z) = (exp(z)− 1)/z is just one member of the sequence
of functions

φ0(z) = exp(z), φk+1(z) =
φk(z)− φk(0)

z
, (3)

which are ubiquitous in the exponential integrator literature
[23]. Although we have used the conventional scalar form,
φ-functions can be lifted to square matrix-valued inputs by
analyticity.

It is well-known that the exponential Rosenbrock–Euler
method is second order accurate both in the classical sense
[35] and for stiff, semilinear problems [24]. These results
are based on the assumption that φ1 is computed exactly;
however, this is rarely the case in practice. Typically, it is
computed to a specified tolerance and contains errors from
floating point arithmetic. As demonstrated in experiments later
in this section, performing the linear algebra associated with
φ-functions on low precision hardware can severely limit the
accuracy of an exponential integrator.

Using (3), we can equivalently express the exponential
Rosenbrock–Euler scheme (2) as

un+1 = un + hnf(un) + hn(φ1(hnJn)− I)f(un)

= un + hnf(un) + h2nφ2(hnJn)Jnf(un).
(4)

In (4), the φ-function is scaled by h2n as opposed to hn in
(2). Consequently, in a computer implementation, we may
expect improved resilience to φ-function errors as hn → 0.
However, this asymptotic analysis breaks down when Jn is
disproportionally large and hn is not sufficiently small. In this
stiff regime, the term h2nφ2(hnJn)Jnf(un) is susceptible to
overflows as well as cancellation errors with hnf(un).

Therefore, we propose the following reformulated exponen-
tial Rosenbrock–Euler scheme which uses a parameter, γn, to
vary between the forms of (2) and (4),

ũn+1 = ũn + hnγnf(ũn) + fl(hnψ(hnJ̃n, γn)f(ũn)). (5)

The function fl(x) represents the evaluation of x to a tolerance
ϵ and is assumed to satisfy the error model fl(x) = (I + δ)x
with ∥δ∥2 ≤ ϵ. We use ũn and J̃n = f ′(ũn) to denote
numerical solutions computed with this error and to distinguish
from un in (2) and (4) which assumes exact φ-functions.
Finally, we introduce

ψ(z, γ) = φ1(z)− γ (6a)
= (1− γ)φ1(z) + γφ2(z)z. (6b)

While the form (6a) is useful for analysis, (6b) is preferable
for implementation as it is less susceptible to subtractive
cancellation.

A. Error Analysis

In order to inform the selection of the yet unspecified
parameter γn in (5), we first study the effect of γn on the
numerical error. The local truncation error committed after
one step is

e1 = ũ1 − u(t1).

This satisfies
∥e1∥2 = ∥ũ1 − u(t1)∥2

≤ ∥u1 − u(t1)∥2 + ∥ũ1 − u1∥2
≤ Ch30 +

∥∥∥δh0ψ(h0J̃0, γ0)f(ũ0)∥∥∥
2

≤ Ch30 + h0ϵ
∥∥∥φ1(h0J̃0)f(ũ0)− γ0f(ũ0)

∥∥∥
2
,

(7)

where we have used the triangle inequality and the second
order convergence property of the exponential Rosenbrock–
Euler method.

This suggests solving the optimization problem

γn = argmin
γ

∥∥∥φ1(hnJ̃n)f(ũn)− γf(ũn)
∥∥∥2
2

=
f(ũn)

Tφ1(hnJ̃n)f(ũn)

∥f(ũn)∥22

(8)

to select γn at each step to minimize the effect of the low
precision arithmetic. As φ1 is already required to compute ψ
in (5), the additional cost of computing γn is negligible for
many algorithms used to compute linear combinations of φ-
functions. Alternatively, one can use the bound

γn ≤ µ2(φ1(hnJ̃n)) ≤ φ1(hnµ2(J̃n)) (9)

to choose γn. If µ2(J̃n), the logarithmic 2-norm [39] of
the Jacobian, can be readily estimated, (9) only requires
inexpensive scalar arithmetic.

In the stiff regime where J̃n → −∞, the reformulated
method (5) approaches the form of (2) because γn → 0.
Conversely, in the asymptotic regime where hn → 0, (5)
approaches the form of (4). A Taylor expansion of (8) re-
veals γn = 1 − O(hn). Thus, the local truncation error is
∥e1∥2 = O

(
h30 + ϵh20

)
as opposed to O

(
h30 + ϵh0

)
for a

standard implementation where γn = 0.

B. Convergence Experiment

In order to verify the improved accuracy of (5), we
compare its convergence to a standard implementation of
the exponential Rosenbrock–Euler method on an advec-
tion–diffusion–reaction PDE from [9, Section 5.1],

∂u

∂t
= ε

(
∂2u

∂x2
+
∂2u

∂y2

)
− α

(
∂u

∂x
+
∂u

∂y

)
+ ρu

(
u− 1

2

)
(1− u),

u(0, x, y) = 0.3 + 256(x(1− x)y(1− y))2.

(10)

The timespan is [0, 0.3] and the spatial domain, x, y ∈ [0, 1],
is discretized by second order finite differences with ∆x =
∆y = 0.05. The remaining parameters are ε = 0.05, α = −1,
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and ρ = 1. Error in the numerical solution is measured as
∥un − uref∥2, where uref is a reference solution computed with
an absolute and relative tolerance of 10−13.
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Fig. 1. The reformulated exponential Rosenbrock–Euler method (5) maintains
second order convergence despite using single precision for φ-functions, while
the standard form stagnates at the accuracy of the φ-function.

Our first experiment uses single precision for the terms in
the fl function of (5) including the Jacobian evaluation and
φ-functions computed with the KIOPS [16] algorithm. The
remaining operations, including evaluating f , are performed
in double precision. Figure 1 shows that the accuracy of
the standard exponential Rosenbrock–Euler implementation is
limited by the accuracy of the φ-functions as it cannot achieve
an error below 10−7. The reformulated version (5), however, is
able to achieve errors six orders of magnitude smaller without
suffering order reduction.
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Fig. 2. With half precision φ-functions, the reformulated exponential
Rosenbrock–Euler method (5) achieves a minimum error approximately ten
times smaller than that of the standard form.

When using half precision instead of single precision for
the Jacobian evaluation and φ-functions (Figure 2), the im-
provement in accuracy with the reformulated method (5) is
more modest: an order of magnitude. After a momentary
degradation in accuracy between 200 and 6000 time steps,
the ϵh20 term of the local error becomes dominant and we see
further asymptotic improvements. In this test, we compute φ-
functions using the algorithm from [3] as it was more robust
to half precision than KIOPS.

III. COMPUTING φ-FUNCTION PRODUCTS WITH A MIXED
PRECISION KRYLOV METHOD

Historically, exponential methods were bound by the cost
and difficulty of computing matrix exponentials in the φ-
functions. However, over the last several decades a rich liter-
ature has developed around the use of Krylov approximations
for the action of φ-functions on a vector [4], [16], [34],
[37]. These Krylov-based approaches have made exponential
integrators more practical to use and are based on the approx-
imation,

exp(τA)v ≈ βVm exp(τHm)e1,

m≪ n, β = ∥v∥2, e1 = (1, 0, . . . , 0)T ,
(11)

where Vm ∈ Rn×m is the orthonormal basis of the Krylov
subspace Km(A, v) and Hm ∈ Rm×m is the Hessenberg
matrix generated by the Arnoldi process. In early approaches
for computing (11), such as the methods in Expokit [37], the
computational cost is dominated by the full orthogonlization
method (FOM) [42]. State-of-the-art implementations, such as
KIOPS [16], utilize an incomplete orthogonalization process
(IOP). Using IOP is not only faster, but it shifts the majority of
the computing effort to matrix-vector products [42] which map
well to low precision computing units on modern hardware

A. Introducing low precision into IOP Arnoldi

It is therefore natural to consider introducing low precision
computations into IOP Arnoldi via the matrix-vector products
since they map well to many low precision hardware units.
A naive approach is simply to perform all of the matrix-
vector products in low precision. We demonstrate the problems
with this approach by modifying the IOP Arnoldi procedure
(Algorithm 1) in KIOPS so that the matrix-vector products are
computed in low precision and the result is stored in double-
precision (we use the chop method from [21] to simulate
this) in two different experiments with IEEE single, NVIDIA
TensorFloat-32 (TF32), IEEE half, and bfloat16 floating-point
formats. The test setups we use are essentially the same as the
ones utilized by Al-Mohy and Higham [4, Experiment 5 and
7] which are based on experiments conducted by Niesen and
Wright [34, Experiment 1] and Sidje [37, Section 6.2].

Experiment 1: Compute u = exp(tA)b0 using KIOPS
with Algorithm 1 for three matrices. The first two matrices
are from the Harwell-Boeing collection [14] and are available
in the SuiteSparse Sparse Matrix Collection [12]. With the
orani678 sparse matrix (order n = 2529 with nnz = 90158
nonzero elements) we use t = 10, b0 = [1, . . . , 1]T , and set the
KIOPS tolerance to tol =

√
ϵd where ϵd is machine precision

for the double precision format. For the bcspwr10 sparse
matrix (order n = 5300 with nnz = 21842) we use t = 10,
b0 = [1, 0, . . . , 0, 1]T , and tol = 10−5. The third test uses a
Poisson matrix of order n = 9801, t = 1, and tol = 10−12.
The matrix and the b vector are generated with the MATLAB
code

A = 2500 * gallery(’poisson’, 99);
g = (-0.98 : 0.02 : 0.98)’;

3



[R1, R2] = meshgrid(g, g);
r1 = R1(:); r2 = R2(:);
b = (1 - r1.ˆ2) .* (1 - r2.ˆ2) .* exp(r1);

Experiment 2: Compute u = φ0(tA)b0 + tφ1(tA)b1 +
· · · + t4φ4(tA)b4 via the modified KIOPS method with the
orani678, bcspwr10, and Poisson matrices and bi =
[1, . . . , 1]T using the same values for t and tol as in Experi-
ment 1.

Algorithm 1 Naive low precision IOP Arnoldi with the low
precision computation (line 4) boxed.

1: Input: A ∈ RN×N , B ∈ RN×p, V ∈ R(N+p)×(mmax+1),
j, m

2: while j < m do
3: j = j + 1
4: V (1 : N, j + 1) =

A · V (1 : N, j) +B · V (N + 1 : N + p, j)

5: V (N + 1 : N + p− 1, j + 1) = V (N + 2 : N + p, j)
6: V (N + p, j + 1) = 0
7: for i = max(1, j − 1) to j do
8: H(i, j) = V (:, i)T · V (:, j + 1)
9: V (:, j + 1) = V (:, j + 1)−H(i, j) · V (:, i)

10: end for
11: s = ∥V (:, j + 1)∥2
12: if s ≈ 0 then
13: happy breakdown = true
14: break
15: end if
16: H(i+ 1, j) = s
17: V (:, j + 1) = 1

sV (:, j + 1)
18: end while
19: return V , H , j

Letting up be the solution generated using KIOPS with
Algorithm 1 and precision p, we define the error as err(up) =
∥up−uref∥∞/∥uref∥∞. The reference solution uref is generated
with the standard KIOPS method in double precision with a
tolerance of tol = ϵd. Unless otherwise stated, results use the
default KIOPS parameters. When using the naively modified
IOP Arnoldi in KIOPS, we see that the error is far greater
than the desired tolerance (Table I).

In an attempt to recover the lost accuracy from low precision
matrix-vector products, we now reconsider replacing the exact
(in finite arithmetic) matrix-vector products with the inexact
matrix-vector product

Ãv = (A+ E)v, (12)

where E is some perturbation matrix. Substituting (12) into
(11) and allowing the E to change with the Arndoli iterate
yields the inexact Arnoldi approximation

(A+ Em)Vm = VmHm + hm+1,mvm+1e
T
m,

Em =

m∑
j=1

Ejvjv
T
j .

(13)

The theoretical underpinnings for this approach are developed
in [38]. Furthermore, [7] provides bounds on the growth of
∥Ej∥2 as the iterations progress in various Krylov subspace
methods including FOM Arnoldi. Dinh and Sidje extended
the work to computing the matrix-exponential in [13]. How-
ever, the combination of IOP, inexact products, and matrix-
exponential computations has, as far as we are aware, not been
previously examined in the literature.

We numerically investigate the effectiveness of this intu-
itive approach by progressively introducing lower-precision
matrix-vector products (i.e., allowing ∥Ej∥2 to grow) into
the IOP Arnoldi algorithm within KIOPS as the Arnoldi
iteration proceeds. We define two new parameters mchop1 and
mchop2 that determine the Arnoldi iterates at which we switch
from full double-precision matrix-vector products to single-
precision and then from single to either TF32, half, or bfloat16
(Algorithm 2).

We repeat Experiments 1 and 2 while first varying mchop1
until the target error is below max(err(ud), tol). This metric
is employed because err(ud) > tol in Experiment 2 with the
bcspwr10 matrix, so there is no hope of doing better than
err(ud) in this case. Then, with mchop1 fixed to the value we
just found, we vary mchop2 until the tolerance is met. Utilizing
this procedure with mixed precision IOP Arnoldi enables
KIOPS to achieve a much lower error while leveraging a
precision lower than double for 40% or more of the Arnoldi
iterates (Table II). Furthermore, we are able to leverage lower
than single-precision for 25% – 60% of iterates.

IV. INTEGRATED NUMERICAL EXPERIMENTS

To evaluate the performance of the two approaches for lever-
aging low precision computation in exponential integrators we
test three methods: standard exponential Rosenbrock–Euler,
the reformulated exponential Rosenbrock–Euler scheme (5),
and the stiffly-accurate fourth-order exprk4s6 [29]. All three
methods are tested with standard KIOPS and KIOPS with
the mixed precision IOP Arnoldi (Algorithm 2) for evaluating
φ-function vector products. As before we use chop for
simulating low-precision computations. With mixed precision
IOP Arnoldi we use mchop1 and mchop2 to set the iteration for
switching to single or half precision matrix-vector products,
respectively. The process used to choose these values is similar
to the process used in the experiments in Section III. We find a
value for mchop1 that produces the desired error, fix its value,
then we find mchop2 that similarly allows the desired error
to be met. For the exprk4s6 method, this means we have to
choose the values for each of the four calls per time step that it
makes to KIOPS. The six possible combinations of schemes
are used to solve the advection-diffusion-reaction problem (10)
with the same parameters but a finer spatial discretization,
∆x = ∆y = 0.0025, leading to a stiffer problem.

A. Overall accuracy

Figure 3 shows the error ∥un − uref∥∞/∥uref∥∞ versus the
number of time steps to demonstrate the convergence of the
different schemes. The reference solution is generated with
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double single TF32 half bfloat16
matrix tol error error error error error

Experiment 1
orani678 1.49e−8 6.88e−12 2.41e−5 1.32e−1 1.71e+0 3.91e+1
bcspwr10 1.00e−5 4.84e−10 3.10e−2 4.03e+2 7.67e+3 3.39e+3
Poisson 1.00e−12 8.38e−14 1.15e−9 1.76e−5 1.14e−5 7.70e−3

Experiment 2
orani678 1.49e−8 1.69e−13 2.91e−5 7.63e−1 1.09e+0 2.87e+0
bcspwr10 1.00e−5 1.73e−5 2.37e−6 2.06e−2 2.06e−2 1.27e−1
Poisson 1.00e−12 2.06e−14 1.26e−9 4.60e−3 6.40e−3 1.85e−1

TABLE I
RESULTS FROM EXPERIMENTS WITH THE NAIVE LOW PRECISION IOP ARNOLDI (ALGORITHM 1) IN KIOPS SHOW THAT THE METHOD IS UNRELIABLE.

IN ALL CASES, THE RELATIVE ERROR IS LARGE WHEN USING LOW PRECISION WITH RESPECT TO BOTH THE TOLERANCE AND THE RELATIVE ERROR
ACHIEVED WITH DOUBLE PRECISION.

single, TF32 single, half single, bfloat16
matrix target error mchop1,2 m error mchop1,2 m error mchop1,2 m error

Experiment 1
orani678 1.49e−8 30, 39 51 4.01e−9 30, 39 51 4.01e−9 30, 40 51 5.41e−9
bcspwr10 1.00e−5 36, 54 86 6.82e−6 36, 54 86 6.82e−6 36, 54 87 6.64e−6
Poisson 1.00e−12 15, 70 128 6.49e−13 15, 70 128 6.68e−13 15, 90 128 9.64e−13

Experiment 2
orani678 1.49e−8 28, 37 51 2.85e−9 28, 37 51 2.85e−9 28, 39 51 2.61e−9
bcspwr10 1.73e−5 51, 63 106 1.73e−5 51, 63 106 1.73e−5 51, 66 106 1.73e−5
Poisson 1.00e−12 28, 58 128 8.89e−13 28, 58 128 9.26e−13 28, 60 128 3.40e−13

TABLE II
PROGRESSIVELY INTRODUCING LOWER-PRECISION MATRIX-VECTOR PRODUCTS INTO THE IOP ARNOLDI PROCEDURE (ALGORITHM 2) WITHIN KIOPS

ENABLES THE TARGET ERROR, max(err(ud), tol), TO BE MET. mCHOP1 AND mCHOP2 ARE THE KRYLOV ITERATIONS FOR SWITCHING FROM
SINGLE-PRECISION TO TF32, HALF, OR BFLOAT16. m IS THE NUMBER OF VECTORS IN K(A, v) FOR THE LAST ITERATION OF KIOPS AND IS

GENERALLY A GOOD ESTIMATE FOR THE BASIS SIZE REQUIRED (128 IS THE DEFAULT MAXIMUM).
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Fig. 3. The reformulated exponential Rosenbrock–Euler (RERE) method (5) achieves a much lower error than the standard exponential Rosenbrock–Euler
(ERE) when using KIOPS with only half precision matrix-vector products via Algorithm 1. Using mixed precision matrix-vector products in KIOPS via
Algorithm 2 significantly improves the error for all methods. exprk4s6 is unable to converge at all with Algorithm 1 and only half precision matrix-vector
products while using Algorithm 2 enables it to run and obtain a reasonably accurate solution.

the exprk4s6 method with 105 time steps. Once again we see
that the reformulated exponential Rosenbrock–Euler method
(5) consistently achieves lower error and maintains second
order convergence longer than the standard Rosenbrock–Euler
method. The use of KIOPS with mixed precision IOP Arnoldi
greatly improves the accuracy for both methods, with the error
nearly identical to what is achieved when using KIOPS with
double precision. In the case of the higher-order exprk4s6,
mixed precision IOP Arnoldi enables using low precision as
running with only half precision does not converge.

B. Idealized computational efficiency

Figure 4 provides an estimate of the computational effi-
ciency and shows the error versus the number of “effective”

matrix-vector products, mveffective, where

mveffective = mvdouble +
mvsingle

a
+
mvhalf

b
. (14)

We use matrix-vector products as a proxy for the wall-clock
time since they are typically the critical path through the
integration [27]. Since the sparse matrix-vector multiply is
typically a memory bound computation, we set a to be the ratio
of double and single memory bandwidth and b to be the ratio of
double and half memory bandwidth. For typical hardware, like
the NVIDIA A100, this simply yields a = 2 and b = 4. This
estimate may be conservative if using lower-precision moves
the sparse matrix-vector multiply into a compute-bound regime
(possible on some hardware, like the Cerebras Wafer Scale
Engine [25]). The notable result is that the mixed precision
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Algorithm 2 Mixed precision IOP Arnoldi with the first low
precision computations (line 7) in the dashed box and lowest
precision the in solid box (line 5).

1: Input: A ∈ RN×N , B ∈ RN×p, V ∈ R(N+p)×(mmax+1),
j, m

2: while j < m do
3: j = j + 1
4: if j + 1 > mchop2 then
5: V (1 : N, j + 1) =

A · V (1 : N, j) +B · V (N + 1 : N + p, j)

6: else if j + 1 > mchop1 then
7: V (1 : N, j + 1) =

A · V (1 : N, j) +B · V (N + 1 : N + p, j)

8: else
9: V (1 : N, j + 1) =

A · V (1 : N, j) +B · V (N + 1 : N + p, j)
10: end if
11: V (N + 1 : N + p− 1, j + 1) = V (N + 2 : N + p, j)
12: V (N + p, j + 1) = 0
13: for i = max(1, j − 1) to j do
14: H(i, j) = V (:, i)T · V (:, j + 1)
15: V (:, j + 1) = V (:, j + 1)−H(i, j) · V (:, i)
16: end for
17: s = ∥V (:, j + 1)∥2
18: if s ≈ 0 then
19: happy breakdown = true
20: break
21: end if
22: H(i+ 1, j) = s
23: V (:, j + 1) = 1

sV (:, j + 1)
24: end while
25: return V , H , j

IOP Arnoldi makes all of the schemes more efficient in most
regimes. The few exceptions are in the case of exprk4s6 when
the error is around 10−10. In this case, the extra Krylov
iterations induced by the lower precision introduce too much
overhead for the use of low precision to provide a benefit.

V. CONCLUSIONS

Modern computer hardware offers significantly increased
low precision floating point performance in comparison to
double precision. We have developed two approaches to lever-
aging low precision in exponential time integration methods.

With a minor modification to the exponential Rosenbrock–
Euler method, our reformulated version (5) of the method
attains improved resilience to inexact φ-functions. This en-
ables utilizing cheaper, low precision arithmetic or looser
tolerances in the most expensive part of the integrator. The
reformulated exponential Rosenbrock–Euler method (5) is par-
ticularly effective at maintaining convergence when combining
single precision φ-functions with double precision for the
remaining computations. Half precision φ-functions present
many challenges with avoiding underflow and overflow, par-

ticularly for stiff problems. Nevertheless, improved accuracy
is still achievable with our reformulated scheme (5). While
we focused on the exponential Rosenbrock–Euler method, the
reformulation idea could be generalized to other exponential
methods and will be the subject of future investigations.

Our mixed precision IOP Arnoldi algorithm incorporated
into KIOPS, or similar Krylov approximation methods, can
readily be utilized within higher order methods as demon-
strated in experiments with the advection-diffusion-reaction
PDE. This algorithm enables exponential methods to compute
the φ-function products while leveraging low precision for
the matrix-vector products and still recovering the required
approximation accuracy. The process of manually choosing
mchop1,2 for fixed matrices as in Section III is much more
difficult in the context of ODE or spatially discretized PDE
systems like the the advection-diffusion-reaction problem. This
is primarily due to the dynamical nature of the problem
changing the optimal values. As such, to make the mixed
precision IOP Arnoldi more practical, an adaptive approach
to selecting the precision for the matrix-vector products is
needed. This is another topic we will explore in the future.
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