
MAVR: Multi-functional Point Cloud Annotations Using Virtual Reality

Xiao Zhang, Zhanhong Huang, and Xinming Huang

Abstract— Learning-based point cloud perception methods
rely on labeled data for training data-driven models, necessi-
tating the development of precise and efficient tools for point
cloud annotations. In this paper, we propose MAVR, a multi-
functional annotation framework based on virtual reality (VR)
technology, capable of accurately labeling point cloud data for
diverse applications, including part segmentation and object
detection. We begin by evaluating the user interface (UI)
efficiency through interactive efficiency analysis. Subsequently,
a comprehensive three-step process is introduced, which consists
of pre-processing, point selection, and post-tagging. For 3D
object part segmentation and scene perception, we propose two
distinct tagging pipelines. Our experimental results on various
datasets validate the effectiveness of MAVR in accurately
annotating point clouds from different data sources within an
immersive workspace.

I. INTRODUCTION

Point cloud is a unique data structure that provides a

sparse representation of objects and their surroundings in 3D

space. The accurate depth information in a point cloud can

be integrated with intensity, norm, RGB, etc., providing new

opportunities and challenges for research in 3D computer

vision beyond the traditional image-based mechanism. Point

clouds are generated from different sources. For instance, the

stereo camera or laser fused camera can generate a dense

point cloud with color. The LiDAR sensor can provide a

sparse cloud with accurate depth at the centimeter level [1].

Besides the direct representation of objects, point cloud can

also be used as a skeletal structure to support stereo models

or as a mesh attached to rendering materials to bring vivid

3D visual effects.

In robotic and autonomous driving systems, point cloud

serves as an important data source from sensors. Many

recent works have been published to target high-level point

cloud perception, such as semantic segmentation, panoptic

segmentation, moving object segmentation, object detection,

and object tracking. For object-oritented tasks, people use

bounding boxes with tags to label objects in 3D space

or in 2D bird-eye-view(BEV). In KITTI object detection

task [2], perception system is required to identify cars,

pedestrians, and cyclists in the scene. Point-oriented tasks

require annotations of each point. For instance, semantic

segmentation results in SemmanticKITTI [1] have point-by-

point tags for 28 different classes. This raises a key question

- how to correctly, accurately, and efficiently annotate labels

in point cloud?

*This work was supported by the US NSF Grant 2006738 and
by The MathWorks. The authors are with the Department of Elec-
trical & Computer Engineering and Department of Computer Sci-
ence, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
{xzhang25,zhuang5,xhuang}@wpi.edu

The first role of point cloud annotation is to label the

ground truth. The performance of a perception task always

needs the ”true” labels to assess the model prediction accu-

racy. The metrics for systematic evaluation vary from task

to task, but the need of labeled data is indispensable. On the

other hand, machine learning based approaches have gained

popularity in recent years, which calls for new labeling

methods that can produce a large mount of labeled point

cloud data efficiently and accurately.

Point cloud annotation can be divided into two categories:

object segmentation, which separates objects from the scene,

and in this problem, objects do not collide in 3D space.

As the most challenging case, to track multiple objects in

consecutive frames, multiple frame multiple object (MFMO)

always suffers from complex environments and data noise.

Single frame multiple object (SFMO) can be treated as the

initial frame of MFMO, and multiple frame single object

(MFSO) is the simple case of MFMO. The second category is

part segmentation, single frame single object (SFSO) requires

finer work to separate the components in an object where

the most complicated problem is that some components are

physically connected in space.

Traditional 2D image labeling is a time-consuming but

intuitive work. The human label agents can instinctively

recognize the objects in the image and label them using a

keyboard. However, annotating the 3D point cloud is more

challenging regarding object recognition, user interaction

(UI) design, and sequence data adapting.

Object Recognition: Point cloud data is not as dense and

information-rich as images. However, the sparsity also makes

it hard to annotate. Generally, the point cloud view is not

intuitive for human agents. Therefore, the recognition of ob-

jects in multi-object scenes is more complicated. In addition,

the point loss problems caused by scanning occlusion will

make labeling even more difficult.

User Interaction: Most UI designs are based on 2D

displays with keyboard and mouse input. In 2D images,

selecting objects by bounding the box requires only two

actions: initializing the position and scaling the box. For

3D annotations, selecting objects with 6 degrees of freedom

(DoF) is an uphill task and theoretically requires at most nine

actions for each target: to place the bounding box along the

X, Y, and Z axis and to adjust the rotation in pitch, yaw, and

roll, as well as to adapt the scaling in all three directions.

Data sequence: For real-time perception, data is continu-

ously collected in sequences rather than random frames. The

correlation in adjacent frames must be considered during the

labeling as a consecutive time series. For instance, object

tracking requires the identification of each object with a



unique ID, which increases the effort and complexity of

annotation.

To address these challenges. We proposed an immersive

point cloud annotation tool based on a virtual reality (VR)

headset, which can be applied to multiple tasks. The contri-

butions of our work are listed as follows:

• Immersive VR point cloud annotation design: A

point cloud annotation framework is proposed and im-

plemented on a PC with an Oculus Quest 2 headset.

The immersive virtual vision and mobile tracking head-

set provide users with a more intuitive and focused

workflow. Data cleaning, view augmentation, and point

stream play features are designed to help identify ob-

jects in complex environent.

• Multi-functional labeling pipeline: MAVR can handle

annotations for both single-frame single-object (SFSO)

and multi-frame multiple-data (MFMO) scenarios. The

annotation output offers both bounding box and point-

wise semantic labels.

• Validation on practical datasets: Two experiments

are performed to demonstrate the capability of MAVR,

including part segmentation and object detection anno-

tation. The experiment result indicates our proposed im-

mersive annotation system has better object recognition

ability and can accurately place the bounding box in

different scenarios.

II. RELATED WORK

2D interface In early attempts, [3] designed a touchscreen

device-based tagging tool. The fixed-size pre-select cube was

set to reduce the number of candidates, making the tool only

available for part selection with limited accuracy. For real-

time data annotation, researchers developed semi-automatic

tools to assist agents in tagging the LiDAR point cloud.

LATTE [4], a sensor fusion-based on-click annotation and

tracking system, avoids sophisticated 2D manipulation with

the assistance of clustering and tracking algorithm, but the

image R-CNN based pre-labeled process makes it hard to

adopt the other datasets. A follow-up work [5] reinforced

the denoising and tracking methods to elevate the accuracy.

The semi-automatic strategies reduced workload, but the an-

notation performance is subjected to the clustering’s adaptive

capacity to different resolutions and object distances [6].

3D interface A 3D free-hand gesture-driven design [7]

was built for part segmentation. The designer implemented a

3D mouse with a leap motion camera. Viewpoint-changing,

selection of data points, and label creation were achieved

through finger gesture collaboration. However, the multi-step

selection only supported the segmentation by plane, which

limited the utilization of tasks with simple object structure

and loose accuracy constraints.

VR interface [8] proposed a point manipulation tool to

select, tag, and move the target points by VR head-mounted

device (HMD). The design has the advantage for the SFSO

task because its hand-brush selector constrains the efficiency

of point selection. [9] had a more efficient labeling method

target on selecting the objects in complex LiDAR scenes.

Size-scalable bounding boxes can cover the points of the

things by referring to the image from the camera that shares

the view field as LiDAR. However, since users adjusted the

size manually, the output bounding boxes are not ideal for

model training. In this case, the SFMO problem has been

addressed with VR-based solutions, but the MFMO scenario

is still challenging.

III. INTERACTIVE EFFICIENCY ANALYSIS

Virtual reality design has been studied to potentially have

a better user experience by providing better visualization

and intuitiveness in games and CAD designs. An immer-

sive vision can help users concentrate on tasks, leveraging

efficiency and performance. [10] indicated that users could

achieve better results in VR than in a 2D monitor for the

flaw detection task. [11] conducted a 3D structure design

experiment that includes traditional UI and VR users. The

investigation shows that VR users accomplish a design with a

more realistic physical structure in a shorter time. Why does

VR provide better interactive efficiency? In this section, we

propose Ei to measure the efficiency of manipulation action

in annotation design.

The dimension of manipulation DoM describes the num-

ber of manipulation dimensions that are required in the task

or could be mapped in the interaction system:

DoM =
{
T,R, S

}∈ N (1)

where, T,R, S represent the manipulation dimension in

translation, rotation, and scale, respectively.

Given the two DoM , the target object DoMt is related

to the DoF of the annotated target according to the task

assumption. DoMh demonstrates the capability of manip-

ulation handle, which is impacted by UI design and input

device. We can calculate the maximum action number to

select an object, which can be defined as:

maxAct =

dim∑
DoMt (2)

The maximum possible number of actions equals the sum

of the target object DoM. Under this condition, box adjust-

ment in every dimension is executed by a single operation.

The minimum action number is subject to the DoMh. In

the most aggressive design, the designer lets the user control

all available handle input dimensions simultaneously without

dimension mapping concerns. In this case, the least number

of operations equals to:

minAct = �
∑dim

DoMt∑dim
DoMh

� (3)

The interactive efficiency of an interaction design as:

Ei =
Act

∑dim
DoMt

=

∑step
Act

maxAct
(4)

Ei represents the average action needed to determine a

single target object dimension. A higher Ei value means



Fig. 1. MAVR Workflow

more actions are needed to determine a single dimension for

the target object, and the corresponding UI and workflow step

design are less efficient. Ideally, the design of the annotation

workflow should approach a lower efficiency value while

keeping an intuitive manipulation action to achieve the best

interactive performance.

TABLE I

INTERACTIVE EFFICIENCY EXAMPLE

Handle { DoMh } \Task {DoMt} Image
{2, 0, 2}

Image-R
{2, 1, 2}

3D-Cube
{3, 0, 0}

Cloud-BEV
{3, 1, 3}

3DCloud
{3, 3, 3}

Mouse {2t} 0.5 (2s) 0.6 (3s) 0.67 (2s) 0.71 (3s) 0.67 (3s)
Leap Motion Camera {3t, 3r} 0.25 (s) 0.4 (2s) 0.33 (s) 0.28 (2s) 0.22 (2s)

VR Controller {3t, 3r, 2k} 0.25 (s) 0.2 (s) 0.33 (s) 0.14 (s) 0.22 (2s)

The subscript t indicates the current dimension input is completed by
handle translation, r means it is completed by handle rotation, and k
means it is triggered by a joystick handle to adjust the input.

Table I displays efficiency for various annotation tasks

and UI setups. A single DoM handle can’t map to multiple

target dimensions simultaneously due to action complexity.

The first two columns show that for tasks like 2D image

detection, advanced UI devices don’t always boost efficiency

because of redundent DoMs. Devices like Leap Motion and

VR controllers require at least one step for image labeling.

Efficiency doesn’t merely hinge on target DoM quantity.

While placing a 3D cube seems simpler than image object

selection based on x, y, and scale, the mouse excels in image

labeling. In image tasks, mouse movements align closely

with bounding box perspectives. In 3D tasks, setting the z

position after x and y requires an additional step.

From an Ei standpoint, UI handles with more freedom

often have superior efficiency. However, pricier devices with

added DoMs aren’t always crucial. For tasks like non-

rotating image detection and 3D cube positioning, a mouse

and keyboard suffice. For point cloud tagging, VR shines,

particularly in BEV 3D LiDAR detection.

IV. THE ANNOTATION PROCESS

The pipeline of MAVR shows as Figure 1. The annotation

procedure has three main steps. Pre-processing cleans the

noise and ground from the raw dataset. In point selection, a

sequence of point frames is loaded in Unity. For every frame,

the VR annotation user utilizes the pre-set annotation box to

select the points of the identified object and then writes the

related transform attributes of boxes and raw point cloud to

the TRS file. Finally, the post-tagging creates different types

of labels by remapping the annotation box to the raw point

cloud space.

A. Pre-processing

Pre-processing, including ground removal and denoise, is

to increase the clarity of objects to the annotation users.

Ground removal is often a necessary step. The idea for object

detection or segmentation is to separate the objects from

each other. While the ground is naturally connected to all

the objects, it is always an obstacle for further processing.

In this work, we implement the RANSAC plane fitting to

remove the ground points if applicable.

Denoise is a practical method of data cleaning. The noise

can prevent the annotation agent from figuring out the objects

as well as selecting them. In the point cloud, the noise can

be defined as an outlier with fewer neighbors. This paper

utilizes the k-nearest neighbors (kNN) search-based denoise

methods. The distance and neighbor number threshold de-

pend on the point cloud data source and resolution.

In addition, the Unity point cloud data package only

supports the PLY so far, so we need to reformat the point

cloud data to PLY if it is not.

B. Point selection and interaction design

Data import and preset: Firstly, we use the PCX package

to load the PLY point cloud files to the Unity scene. Then, the

user can scale the point cloud to a fittable size for their work.

From our experience, scaling down helps label the object

points in the environment, and scaling up works better in

part segmentation. The scale rate depends on the workspace

size in the real world and the user preference. We can also

preset the class and size of the annotation box (1-by-1-by-1

cube located at the origin) based on the assumption of the

known target label classes.



Fig. 2. MAVR User Interface

Left shows the workspace scene from Unity on Desktop. The highlighted part indicates the VR user. Top Right displays

the VR user view. The handle emits white light means an annotation box is selected. Bottom Right Console on desktop

can print the frame number, record, and other debug messages.

Viewpoint manipulation design significantly impacts the

experience and performance of 3D point cloud UI. In tradi-

tional 2D design, users need to switch to viewpoint mode and

adjust to the desired pose with several actions by the control

handle. In this design, we follow the classic VR plan. The

viewpoint movement is mapped to rotation and translation

tracked by VR headset. It will benefit the system with a more

intuitive interaction experience for human users. People can

view the point cloud as the object is right in front. They can

walk around and observe the point clusters from any angle

they want in the immersive virtual environment.

View augmentation During the development, we found

that the VR user can observe and find the objects very

efficiently. However, locating the objects exactly is not as

easy as we expected, even in the immersive platform. After

people place the annotation box on the object’s point cluster

roughly, they need to walk around to fine-tune the position,

aligning the border of the annotation box to the edge of

the point cluster. To overcome the problem, we designed

the projection camera sets to help people adjust the accurate

position. The camera sets display the top and side view of the

bounding box and is attached to the side of the main camera

vision. As shown in Figure 2 top right, when confirming the

point cluster is inside the annotation box in all views, the

object points selection is finished.

Controller mapping Figure 3 presents the Oculus Quest

2 controller we utilize. The controller has original DoM

{3t, 3r} with four buttons/triggers and one joystick. A good

design never puts up all available resources as the first goal

but tries to think as a user to make work more straight-

forward. In our design, we map the scaling and placing

functions to the two controllers separately to clarify the

division of work. For the placing controller (right), the user

can drag and select the boxes by holding the front trigger

(Figure 2 shows that when a box is selected, the controller

will flash white). The side trigger holds the box delete

function. Transforming and rotating the controller directly

maps to the annotation box when selected. The joystick is

set to slide the box on the BEV plane for a more stable and

tiny adjustment. The scale controller (left) takes charge of

box scaling in three space directions. The frame changing

can also be completed by left triggers. Finally, when work

on the current frame is completed, the user presses Button B

or Button A to record the RTS information of both the point

cloud and boxes for post-tagging.

Fig. 3. VR Controller Mapping

Frame change and TRS file When the frame changes,

the boxes of the previous frame will remain to reduce the

placement work. Meanwhile, the TRS file for the frame

is recorded. The file collects the class, unique object ID,

translation, rotation, and scale related to the global X, Y,

and Z reference. Each game object in the workspace has TRS

values that determine its global position, pose, and size.

C. Post-tagging

From previous work completed by Unity, we know the

point cluster of the object is within the annotation box. In

the post-tagging step, we make the actual annotation by RTS

file. More information can be referred to in Alg. 1.



Algorithm 1 post-tagging
Input : Original Point cloud. P

The TF and scale information. TRSP (1, 11)
The TF and scale information of n boxes. TRSA(n, 11)
Merging the annotation boxes belonging to the same class.

merge Boolean
Output: Labeled point cloud. P

Bounding box vertices. bBox

aBox ← unitBox()
bBox ← {1, n}
MP = matGen(TRS,[3 : 11])
Pt = pctransform(P,MP )

for i = 1 : n do
MaBox = matGen(TRSA(i, [3 : 11]))
aBoxT = pctransform(abox,MaBox)
idx = checkBox(PT , aBoxT )
bBox(i) = boxGen(P, idx)
class = TRSA(i, 1)
ID = TRSA(i, 2)
if merge then

label = class
else

label = ID
end
labelUpdate(P, idx, label)

end
return P, bBox

First, the annotation box is initialized as a unit box

(a unit cube centered at the origin). The rotation matrix

M is obtained from TRS{1class, 1ID, 3trans, 3rot, 3scale}
computed by matGen(). Then the point cloud and the box

are remapped back to the annotation space by pctransform.

After extracting the point indexes from the annotation box by

checkBox, we can use boxGen to generate bounding boxes

according to the requirements and label the point clouds

according to the merging strategy.
The different tagging strategies of object partitioning and

segmentation are realized by label merge and priority update.

Segmentation tasks have no box collision and class merge,

the object can be labeled by the unique box ID directly. But

object partitioning often needs a merge. As the chair has four

supports, four boxes of supports need to be labeled as the

same class. (Semantic object segmentation can be considered

the same case) Since boxes have difficulty handling 3D

shapes with curves, overlapping may occur at the connecting

surface to avoid label missing. When repeat labeling occurs,

strategically, the boxes with a smaller shape have priority.

V. EXPERIMENT

A. Setup
Experimental design. To evaluate the capability of the

MAVR annotation tool from multiple perspectives, two ex-

periments based on different data sources were conducted

to verify the part labeling accuracy in SFSO [12] and the

MFMO multi-target and the tracking labeling capability

without image reference [13].
Device Setup Oculus Quest 2 VR set and PC with Nvidia

2080Ti GPU + Intel 12700k CPU.

B. Objects Segmentation in LiDAR (MFMO)
In [13], the researchers built an indoor LiDAR dataset for

person detection. They collected and annotated the dataset

manually and used it to train machine learning models. This

collection is one of the few published individual datasets with

object-level labels. Based on their LiDAR data only, we re-

perform the people tagging to validate the MFMO annotation

ability.

TABLE II

AVERAGE ANNOTATION STATISTICAL RESULT FOR ONE FRAME

People Group* Total
L-CAS 1.7 1.2 4.3
Ours 7.5 - 7.5

*Group is estimated to contain 2.2 people in the 500 frames experiment

Table. II presents the statistical result. The headcount

shows that MAVR can annotate around 3.2 more people on

average per frame than the ground truth given by L-CAS.

Meanwhile, it does not mix multiple people into the group.

As shown in Figure 4 left, the performance of L-CAS’s

annotation is limited by the candidates provided by the

clustering. Object missing and under-segment issues fre-

quently occur, seriously affecting the annotation and the

following detection model. The figure from the right shows

the annotation result provided by MARV. Our labels avoid

the objects merging and missing problems. The object ID

can be easily tracked as the tool keeps the annotation boxes

from the pre-frame to help user labeling.

Fig. 4. MFMO Annotation Result

Left figure shows the ”ground truth” provided by the L-CAS
dataset, the right figure shows our annotation result

In the experiment, we found that people at the edges are

hard to detect because the sparsity of LiDAR points increases

as the distance increases. L-CAS implemented a clustering-

assisted approach, letting people manually select candidates

from a pool of clusters. However, because it is difficult for the

clustering algorithm to adapt to various sparsity and object

distances, the accuracy of the candidate pool can not be

guaranteed. MAVR framework can solve this problem better:

it is difficult for the human eye to distinguish the objects

with several points at the edges of a frame, but by inheriting

the boxes from the preceding frames, the tracking method

significantly reduces the object missing issue.

C. Part Segmentation of 3D Shape (SFSO)

The data with partial segmentation labels are published

as a subset of ShapeNet [12]. The point cloud of 3D

shapes like guitars, lamps, and chairs is tagged with two

to six components. In this experiment, we labeled several

typical objects point by point and compared the annotation



result with ground truth to verify the label accuracy of our

framework.

Fig. 5. SFSO point selection

Figures above show the box placements to segment the

parts of chair, guitar and lamp.

Figure. 5 shows the result of box placements during point

selection. The different colored bounding boxes represent

different partial categories on one type of object. The color

priority is set to green being the highest, blue the second,

and orange the third. When points are repeatedly labeled,

higher-priority boxes are set. It is aimed at selecting more

precise structures for the best labeling result.

TABLE III

IOU OF PART SEGMENTATION FOR FIVE CLASSIC CLASSES

Chair Knife Pistol Guitar Lamp
Ours 94.4 97.7 94.3 95.4 95.2

The experiment is completed by the same annotation agent and each
category contains 50 samples.

As shown in the Table. III, the overall performance passes

90 in the selected categories, which shows the ability of

proposed tools can achieve a high annotation accuracy in

such a fine-grained partial segmentation task.

D. Discussion

From the above sections, we prove the MAVR’s annotation

accuracy and capability to resolve the lack of reference

data. During the part segmentation, we suppose the design

can provide a higher level of accuracy, but two obstacles

prevent us from achieving it. One is that the ground truth

of ShapeNet has noise: some outlier points exist on the

component surface. Then, our annotation box only supports

cubes. Though we can scale the size, the curve shapes

are still tough to handle in some cases. In future work,

supporting more annotation boxes (such as spheres) can be

one solution. Through the MFMO case, we found that the

first frame annotation will be the most time-consuming. After

the initialization, tracking the objects one by one can be the

most efficient pattern for human agents.

VI. CONCLUSION AND FUTURE WORK

This paper proposes MAVR, a novel multi-functional

point cloud annotation virtual reality framework. The pre-

processing helps the user clean up the point cloud outliers for

better observation. Through the Steam VR + Unity workflow,

users can intuitively place the annotation boxes on the objects

or parts within several steps. Single object annotation can

even be finished in one click in the sequential frames after

initialization. The post-tagging provides both bounding boxes

and point-wise labels for various annotation jobs. Finally,

according to the experiments, the three stages pipeline can

handle the point cloud annotation tasks that vary from SFSO

to MFMO accurately and has the capability to take the

challenging raw data without extra reference.

This work aims to prove the potential and strength of

a VR-based annotation framework in dealing with various

point cloud tasks accurately and efficiently in 3D interac-

tions. We understand that manual work is still hard to handle

a significant amount of data required to feed into training the

deep learning model. In this case, the tracking techniques

implemented in [4] [5] are helpful in reducing labor work.

Our future work will focus on the automation for labeling

objects in adjacent frames, and manual work is only needed

in the fine-tuning phase to increase accuracy. In that case,

the structure will benefit from both an immersive manual and

auto-tracking mechanism.

REFERENCES

[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, J. Gall, and
C. Stachniss, “Towards 3d lidar-based semantic scene understanding of
3d point cloud sequences: The semantickitti dataset,” The International
Journal of Robotics Research, p. 02783649211006735, 2021.

[2] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[3] M. Veit and A. Capobianco, “Go’then’tag: A 3-d point cloud anno-
tation technique,” in 2014 IEEE Symposium on 3D User Interfaces
(3DUI). IEEE, 2014, pp. 193–194.

[4] B. Wang, V. Wu, B. Wu, and K. Keutzer, “Latte: accelerating lidar
point cloud annotation via sensor fusion, one-click annotation, and
tracking,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC). IEEE, 2019, pp. 265–272.

[5] H. A. Arief, M. Arief, G. Zhang, Z. Liu, M. Bhat, U. G. Indahl,
H. Tveite, and D. Zhao, “Sane: smart annotation and evaluation tools
for point cloud data,” IEEE Access, vol. 8, pp. 131 848–131 858, 2020.

[6] Y. Zhao, X. Zhang, and X. Huang, “A technical survey and evalua-
tion of traditional point cloud clustering methods for lidar panoptic
segmentation,” arXiv preprint arXiv:2108.09522, 2021.

[7] F. Bacim, M. Nabiyouni, and D. A. Bowman, “Slice-n-swipe: A free-
hand gesture user interface for 3d point cloud annotation,” in 2014
IEEE Symposium on 3D User Interfaces (3DUI), 2014, pp. 185–186.

[8] D. Garrido, R. Rodrigues, A. Augusto Sousa, J. Jacob, and
D. Castro Silva, “Point cloud interaction and manipulation in
virtual reality,” in 2021 5th International Conference on Artificial
Intelligence and Virtual Reality (AIVR), ser. AIVR 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 15–20.
[Online]. Available: https://doi.org/10.1145/3480433.3480437

[9] F. Wirth, J. Quehl, J. Ota, and C. Stiller, “Pointatme: efficient 3d point
cloud labeling in virtual reality,” in 2019 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2019, pp. 1693–1698.

[10] J. Wolfartsberger, “Analyzing the potential of virtual reality for en-
gineering design review,” Automation in Construction, vol. 104, pp.
27–37, 2019.

[11] S. M. Feeman, L. B. Wright, and J. L. Salmon, “Exploration
and evaluation of cad modeling in virtual reality,” Computer-Aided
Design and Applications, vol. 15, no. 6, pp. 892–904, 2018. [Online].
Available: https://doi.org/10.1080/16864360.2018.1462570

[12] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al.,
“Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[13] Z. Yan, T. Duckett, and N. Bellotto, “Online learning for 3d lidar-based
human detection: experimental analysis of point cloud clustering and
classification methods,” Auton. Robots, vol. 44, pp. 147–164, 2020.


