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Abstract—Stochastic block partitioning (SBP) is an important
community detection algorithm that can achieve good accuracy,
even on graphs with irregular structure. But SBP is difficult
to parallelize because updates to its internal state are interde-
pendent. This inherently serial nature limits its scalabilty and
applicability to large, real-world graph data. In this work we
address this challenge by introducing a Decontentioned approach
to reduce the write contention on its internal state data. We
apply a lock-free compressed data structure to handle writes,
and split the parallel nodal movement procedure into a read
phase for generating proposals, and a write phase for updating
shared state. Finally, we find an optimal batch size to balance
parallelism in worker threads and the overhead and convergence
rate of the algorithm. Compared to our previous approach that
buffers and combines updates to shared state, Decontentioned
scales to the maximum number of CPU cores, where it yields a
speedup of up to 5.38x on a 100k node input graph, and allows
parallel processing of larger-sized graphs due to its more efficient
memory usage.

Keywords-community detection, GraphChallenge, stochastic
block partitioning

I. INTRODUCTION

Many relationships between real-world entities can be mod-
elled as graph data, and hidden relationships between those
entities can be identified by graph processing. Community
detection is one such application that plays a vital role in
finding complex or hidden structural relationships. But the
performance and scalability of graph processing applications
remains a challenging issue because many algorithms, includ-
ing community detection are NP-hard.

Stochastic block partition (SBP) [1], is a probabilistic al-
gorithm for community detection, presented as part of IEEE
HPEC GraphChallenge. In our prior work [2]–[4], we devel-
oped several techniques to improve the performance of SBP.
Our prior work, though effective, still struggled to achieve high
performance due to challenges in parallelizing critical parts
of the SBP algorithm. In this paper, we further improve the
computational performance of SBP by improving the internal
data structure and parallelism model.

The contributions of our work are as follows:
• The design and implementation of optimization tech-

niques for parallel SBP in C and Python that include (1)
the use of a novel lock-free shared-memory compressed
data structure for the internal bookkeeping of the algo-
rithm, (2) a method for separating read and write phases

during nodal movements, and (3) the use of an efficient
batch size to balance parallelism in each worker against
the overhead and convergence rate of the algorithm.

• A study that evaluates the performance of the above SBP
optimization techniques against the private copy, buffered
update parallelism model used in our prior work. Our
results show a speedup of 5.38x on a 100k node graph
compared to our previous approach. Our implementation
also achieves better scalabilty with a large number work-
ers, and a much smaller memory footprint.

The rest of this paper is organized as follows. Section II
presents background information pertaining to the stochastic
block partition algorithm. We describe our approach to op-
timizing stochastic block partition in Section III. Section IV
presents a performance evaluation of the optimization tech-
niques. Finally, concluding remarks and future work are pro-
vided in Section V.

II. BACKGROUND

The stochastic block partition (SBP) algorithm is a proba-
bilistic algorithm for performing community detection which
uses a generative statistical model based based on work by
Peixoto [5]–[7] and builds on the work from Karrer and
Newman [8]. The algorithm uses a Markov Chain Monte
Carlo (MCMC) method in the spirit of the Metropolis-Hastings
algorithm [9], [10].

The number of blocks and assignment of each node to a
block is not known ahead of time. The algorithm finds both
by using an entropy measurement function to assess the quality
of partitioning at each number of blocks. It compares the
entropies at different numbers of blocks, ultimately bracketing
the optimal number.

To actually find the optimal partitioning at a given number
of blocks, SBP performs an agglomerative merge where two
existing blocks of vertices are merged together, repeatedly and
greedily, until the target number of blocks is reached. Once the
target number of blocks is reached, the algorithm switches to a
MCMC nodal movement phase. Here each vertex is proposed
to be moved from its current community to another community
with some probability based on the resulting change in entropy.
Our previous work has shown that this nodal movement phase
dominates the runtime of the algorithm and is difficult to
parallelize [2], [3].
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III. METHOD

In this section, we describe our techniques for improving
parallel SBP. Our previous work [4] focused on devising a
compressed data structure for efficient computations during
SBP, dynamically adjusting the amount of parallelism, and
reducing the amount of data to be processed by aggressively
merging blocks. Since that work, we have made significant
enhancements including moving the heavyweight portions of
our algorithm from Python to native C code.

However, the techniques presented in this paper are or-
thogonal to the above mentioned enhancements and focus
on changes to the internal data structure and synchroniza-
tion model to improve shared-memory parallelism during the
MCMC nodal movement phase.

A. Source of Nodal Update Contention

The internal state of the SBP algorithm is centered around
two entities: a partition array, and an interblock edge count
matrix. The partition array simply maps each vertex id to a
community id. The interblock edge count matrix is derived
from the partition array and keeps track of the counts of edges
from every community to every other community. When a
vertex u is moved from one block r to another block s, two
rows and two columns of the interblock edge count matrix are
updated: row r, column r, row s, and column s. The values
of the row and column updates correspond to the community
block ids of u’s neighbors, and the combined edge counts to
those neighbor blocks.

These MCMC nodal movements take around 90 percent of
the baseline runtime of the algorithm for large-sized graphs,
as we reported in our previous work. In our previous imple-
mentation of SBP on large-sized graphs, we also observed that
there was no overall program speedup when using more than 8
threads for nodal movements. To understand why parallelizing
SBP’s nodal movements is difficult, consider the naive parallel
algorithm shown in Algorithm 1.

In order to propose a nodal movement, the current state of
the partition array in the neighborhood of the node index is
read. But these neighboring vertices may be moved by other
workers. Writing to and reading from this shared state without
some form of synchronization can cause corruption that can
crash the algorithm. An simple, but ineffective approach is to
take a single lock around both reading from and writing to the
shared state.

Our prior work solved this issue by buffering nodal move-
ments generated the worker threads, and having a single
thread combine all recent updates into global state updates
periodically refreshed by each worker, as shown in Algorithm
2. But this approach is only partially effective because while
the proposals based on current state can be generated in
parallel, the actual updates to global state are still serialized.

B. Split-phase Nodal Updates

To address this data dependency issue, we have devised an
approach based on carefully examining the data flow in the
SBP algorithm. We observed that updates to shared global state

– primarily in the interblock edge count matrix – are commuta-
tive addition and subtraction operations. Since these operations
are order independent, the instructions needed to update this
state need only to have atomicity, not synchronization, and can
be executed in parallel by every worker thread. Furthermore,
generating proposed updates only requires reading from shared
state, not writing. As a result, preventing hazards in this
situation only requires that no writers be active while proposals
are being generated. Combining these two insights, we devised
an approach that splits the parallel nodal move procedure into
two phases – a read phase to generate proposed movements
and a write phase to carry out the accepted movements. There
is a simple barrier in between the phases to provide synchro-
nization. Our improved approach is shown in Algorithm 3,
which we refer to as decontentioned parallel nodal movement.

Note that our approach does not entirely eliminate the need
for locks. Computing the correct update to shared state while
moving a node requires looking at the current partition array
at that node’s index, as well as the current partition values of
each of a node’s neighbors. These cannot be modified while
reading and still require a lock.

Our split-phase approach has an additional major advantage
over the buffered approach in Algorithm 2. The buffered
approach requires each worker to have its own private copy
of the interblock edge count matrix. This is prohibitively
expensive for large sized graphs, even using a compressed
representation.

Algorithm 1: Naive Parallel Nodal Movement
1: /* Each worker operates on a range of vertices. */
2: parallelNodalMovementNaive (start vert, stop vert) {
3: for ni in range(start vert, stop vert) {
4: lock.acquire()
5: /* propose node movement reads different entries

from the partition array and interblock edge cnt
and returns the new rows and cols it used to
compute the acceptance probability.
*/

6: result = propose movement(G, ni,
partition, interblock edge cnt)

7: r,s,p accept,new rows cols = result
8: if (proposal accepted) {
9: partition[ni] = s

10: interblock edge cnt[r,:] = new rows cols[0]
11: interblock edge cnt[s,:] = new rows cols[1]
12: interblock edge cnt[:,r] = new rows cols[2]
13: interblock edge cnt[:,s] = new rows cols[3]
14: }
15: lock.release()
16: }
17: }
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Algorithm 2: Buffered Parallel Nodal Movement
1: /* Range of start vert to stop vert is batch size. */
2: parallelNodalMovementBuffered (start vert, stop vert)

{
3: /* Check for updates from central worker and copy

changes. */
4: lock.acquire()
5: partition local[:] = partition[:]
6: for i in modified blocks {
7: interblock edge cnt local[i, :] =

interblock edge cnt[i, :]
8: interblock edge cnt local[:, i] =

interblock edge cnt[:, i]
9: }

10: lock.release()
11: for ni in range(start vert, stop vert) {
12: proposal = propose movement(G, ni,

partition local, interblock edge cnt local)
13: r,s,p accept,new rows cols = proposal
14: if (proposal accepted) {
15: Buffer ni,r,s into results.
16: }
17: }
18: Send results to central worker.
19: /* Prepare to be called again with the next batch. */
20: }

C. Lock-free Compressed Data Structure

Using lock-free instructions to update the interblock edge
count matrix is straightforward when this matrix is stored in a
dense 2D-array. But this simple representation is not suitable
for large sized graphs. At the beginning of SBP, each vertex
is assigned to its own community, and thus the initial density
of the interblock edge count matrix is very sparse (e.g., 4.1e-
4 and 2e-4 for the 50k and 100k node graphs used in our
work, respectively). Our previous work focused on devising a
compressed representation of the interblock edge count matrix
to greatly reduce the amount of storage space needed during
processing. Our compressed data structure uses hash tables
– one along each axis – to store the interblock edge counts.
The tables along each axis are needed because the SBP needs
to take slices along both dimensions in order to formulate
the entropy changes that would result from block merges and
nodal movements.

Implementing a lock-free design is desirable to improve
parallelism, but is much harder than with a dense array,
especially when hash tables must be re-sized. We have devised
a hash table design that uses compare-and-swap (CAS) and
double compare-and-swap (DCAS) instructions suitable for
updating and resizing in parallel.

Our hash tables implementation uses a linear probing to
resolve collisions, that is, first jumping to a slot based on
hashing the key, and then scanning until the first unused slot
is found. An insertion attempts to CAS a new entry into the

Algorithm 3: Decontentioned Parallel Nodal Move-
ment

1: /* Range of start vert to stop vert is batch size. */
2: parallelNodalMovementDecontentioned (start vert,

stop vert) {
3: for ni in range(start vert, stop vert) {
4: /* Proposals are generated without taking locks. */
5: result = propose movement(G, ni,

partition, interblock edge cnt)
6: if (proposal accepted) { enqueue(Q, proposal) }
7: }
8: barrier()
9: while(Q) {

10: ni,r,s,new rows cols = dequeue(Q)
11: lock.acquire()
12: read partition[j] for j in neighbors of ni
13: Compute block ids and edge counts from vertex

neighbors into b out, count out, b in, and count in.
14: partition[ni] = s
15: lock.release()
16: /* Update shared state in place with no locks */
17: for i in range(len(b out)) {
18: interblock edge cnt[[r, b out[i]] -= count out[i]
19: interblock edge cnt[[s, b out[i]] += count out[i]
20: }
21: for i in range(len(b in)) {
22: interblock edge cnt[[b in[i], r] -= count in[i]
23: interblock edge cnt[[b in[i], s] += count in[i]
24: }
25: }
26: /* Prepare to be called again with the next batch. */
27: }

first apparently empty slot after hashing the input key. If the
CAS fails (i.e. another worker inserted into that open slot first),
the next available slot is attempted. Once an insert succeeds, a
resizing operation may be needed. Here we make use of a dif-
ferential reference counting scheme similar to [11] to manage
resizing without locks. This scheme uses a pointer to an outer
structure that contains a reference counter and a pointer to an
internal structure. The internal structure contains the pointer
to the hash table itself, and another reference counter. A writer
will DCAS the external structure, incrementing the reference
counter, and incrementing the internal reference counter when
done. Resizes can be done atomically by swapping in both
the new external pointer, and the newly-reset external counter
together. If a worker sees that a resize is needed, it will
allocate a new, bigger, hash table and attempt to swap it in
place. Whichever worker wins the race to swap the external
structure will then adjust the internal counter, and merge all
of the old entries into the new table. We additionally wrote a
shared-memory lock-free memory allocator that uses queues
of memory pools so hash table resizing can be done entirely
without locks.
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D. Nodal Update Batch Size

During nodal movements, there is a tradeoff between the
overhead of synchronizing global state, and the quality of the
proposals generated. The more fresh each worker’s view of
global state is, the better proposals it generates. Higher-quality
proposals mean fewer nodal movements and larger changes in
entropy, ultimately leading to faster convergence and better
partition accuracy. This batch size parameter is critical and
must be measured empirically to tune the algorithm.

In our Decontentioned approach, the group batch size is the
size of the range between the start vertex and stop vertex for
each parallel worker. In other words, the group batch size is the
number of proposals a worker generates before waiting on the
barrier and seeing updated global state. The same batch size
tradeoff also occurs in our Buffered implementation. In that
approach, the group size is the number of proposals evaluated
and sent to the central worker before synchronizing from
global state. Our previous work [2] found that a batch size
of 1 (i.e. the lowest possible granularity) was optimal, but our
implementation details and fixed overheads are different now,
so we choose to re-evaluate this tradeoff. We found optimal
batch sizes for both approaches, and we discuss the details in
the next section.

IV. PERFORMANCE EVALUATION

We evaluate our decontentioned approach, as described in
Section III with the buffered approach from our prior work [4].

A. Experimental Setup

The datasets we used in our experiments are described in Ta-
ble I. These include the baseline datasets from the GraphChal-
lenge, supplemented by larger graphs we synthesized using the
generator in the GraphChallenge repository. We instrumented
our code to measure the overall program runtime, ignoring
time to read from disk. Our tests were conducted on a system
with two 64-core AMD EPYC 7713 CPUs and 1TB of RAM.
For simplicity and because the program runtime is dominated
by nodal movements, multi-threaded tests were conducted by
setting an equal number of agglomerative merge and nodal
movement threads. The serial baseline uses the same native
code and compressed data structures, just without the overhead
of creating and managing threads. Our code is written in a
mixture of Python and C, with the native C code doing the
heavy lifting, including computing entropy and implementing
the Decontentioned compressed data structure described in
Section III. We use Python 3.11.3 and Clang 15.0.7 to build
our C code, and Numpy [12] for array processing.

B. Results

1) Group Batch Size: First we set out to characterize the
sensitivity of both the Buffered approach and our new Decon-
tentioned approach to the group batch size. We measured the
performance of each with a varying number of threads and
group sizes. The results for the baseline Buffered approach
for the N=20k graph are shown in Figure 1. We see that
the optimal number of vertices before synchronizing in the

TABLE I
GRAPH DATASETS

|V | |E| Density Blocks Serial Runtime(s)
5k 101,973 4.1e−3 19 57.67

20k 408,778 1e−3 32 334.5
50k 1,018,039 4.1e−4 44 1181
100k 2,037,415 2e−4 56 2837
200k 4,064,602 1e−4 71 5596

Fig. 1. Performance of parallel Buffered on a N=20k input graph across
numbers of threads and varying batch sizes.

baseline approach can be large, only leveling off at 256 for
the smaller number of threads. We found similar results for
other input graph sizes, and selected 256 as a reasonable value.

The characterization of our Decontentioned approach is
shown in Figure 2 and Figure 3 for 20k and 200k graph sizes,
respectively. Here we see that a smaller number of vertices
is a better batch size compared to Buffered. We found good
overall performance at a batch size of 64 vertices, vs. (256 or
512 for Buffered). Our Decontentioned approach performs best
under smaller batch sizes, because it has an additional barrier
overhead. A worker in Buffered is not blocked waiting for
other workers to complete. If a worker has not completed its
batch, those results will simply be reported and incorporated
later.

2) Decontentioned Performance: Next we look directly at
the performance of our Decontentioned approach against the
baseline Buffered approach, each configured with an appropri-
ate batch size as determined in Figures 1–3. The speedup of
Buffered compared to serial for different numbers of threads

Fig. 2. Performance of parallel Decontentioned on a N=20k input graph
across numbers of threads and varying batch sizes.
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Fig. 3. Performance of parallel Decontentioned on a N=200k input graph
across numbers of threads and varying batch sizes.

Fig. 4. Parallel Buffered speedup over serial across numbers of threads.

is shown in Figure 4. Here we see that the maximum speedup
is achieved at a low number of threads (16) compared to
the number of CPU cores available (128 physical cores), for
every input graph. This corresponds to our previous work
showing that nodal movement parallelism is limited [4]. Note
that Buffered failed to run on the larger 100k and 200k node
graphs with a large number of threads because it exhausted
available system memory (which is 1TB) due to duplicated
state in the worker threads.

The speedup of our new Decontentioned over serial is
shown in Figure 5. Unlike Buffered, the maximum speedup
is achieved at 128 threads, corresponding to the number of
CPU cores available on the system. Furthermore, the speedups
are much higher. Next we directly compare the performance of
Buffered and Decontentioned. The speedup of Decontentioned
over Buffered is shown in Figure 6. Here we see the maxi-
mum speedup over Buffered at 128 threads is 5.38x. At 256
threads, Decontentioned is no longer at its fastest, but has
a speedup of 6.42x compared to Buffered. This indicates a
more graceful performance degradation on an over-scheduled
system. Furthermore, Decontentioned can actually process the
larger 100k and 200k graphs with a large number of threads,
because of its more efficient use of memory.

V. CONCLUSIONS AND FUTURE WORK

We have described a new approach to that improves the
parallelism of Stochastic Block Partition by leveraging a novel
lock-free compressed data structure, splitting the critical nodal
movement operations into separate read and write phases,
and optimizing the granularity of nodal movement updates

Fig. 5. Parallel Decontentioned speedup over serial across numbers of
threads.

Fig. 6. Decontentioned speedup over Buffered across different input graphs
and numbers of threads.

across workers. Our current work forms the basis for further
algorithmic and implementation improvements in the future.
In particular, we would like to combine our new approach to
shared-memory parallelism on one node with message-passing
based parallelism across nodes. We also plan to investigate the
use of fine-grained locking to further enhance the parallelism
of the algorithm. Finally, we plan to apply adaptive techniques
based on vertex connectivity and asynchronous Gibbs sam-
pling [13] to dynamically adjust the nodal update batch size.
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