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Abstract—We aim to improve the performance of the Quotient
Filter at high load factors. Our Graveyard Filter is a variation
of the Quotient Filter which incorporates Graveyard Hashing,
a technique that uses tombstones to counteract the effects of
primary clustering. We summarize our implementation of the
graveyard filter and detail approaches to redistributing tomb-
stones. Evaluating these variations under conditions similar to
the original quotient filter paper, we found the performance of
the graveyard filter to be competitive for insertion and query
operations, with certain redistribution schemes showing stronger
performance at high load factors. We discuss potential further
improvements, such as using the current load factor to determine
the employed redistribution approach.

Index Terms—data structures, quotient filters, graveyard hash-
ing

I. INTRODUCTION

Approximate Membership Query data structures (AMQs)
are key components of many network protocols and database
systems. Given a set of inserted elements, they verify whether
a queried element is present or absent (with high probability).
Quotient filters are one common implementation, improving
on the older bloom filter design by better exploiting data
locality [1]. However, its reliance on linear probing leaves
it vulnerable to primary clustering, causing its performance
to degrade at high load factors. We introduce the graveyard
filter, a variation of the quotient filter which incorporates
the anti-clustering technique of graveyard hashing [2]. We
compared several implementations of the graveyard filter to
the quotient filter; in any given test, at least one version of
the graveyard filter was competitive with the quotient filter at
lower load factors, and at least one outperformed the quotient
filter at high load factors. These findings suggest that some
load-adaptive combination of our graveyard filter variants may
consistently outperform the original quotient filter.

II. RELATED WORK

Quotient filters [1] resemble hash tables that resolve colli-
sions with linear probing. They are parameterized by a value ¢;
inserted elements are indexed into the table by the first ¢ bits
of their hashed value (their “bucket”), and the values stored in
the table are the remaining r bits (such that the hash function
returns values of size ¢+ ). Entries in the table use additional
bits to track metadata, associating values with the buckets they
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were meant to be inserted into. This allows queries to properly
reconstruct the hashed values present in the table.

Graveyard hashing is based on the practice of implementing
deletions in hash tables by replacing the deleted element with
a tombstone marker. These are treated as empty spaces by
insertions, reducing the need to shift around multiple elements.
[2] observed that tombstones have the additional benefit of
breaking apart the clusters formed by linear probing. They dis-
tribute tombstones evenly across the table at a frequency and
density determined by the current load factor. By amortizing
the costs of future insertions and preventing the formation of
long clusters, this process reduces the expected time taken by
insertions from quadratic to linear with respect to the load
factor.

III. GRAVEYARD FILTER
A. Tombstones and AMQ Operations

Graveyard filters aim to utilize tombstones in a manner
that does not disrupt the properties that quotient filters rely
on for correctness. A new metadata bit in each table entry
indicates whether or not the position contains a tombstone. For
tombstones, the space that normally contains an inserted value
instead stores the concatenated indices of its predecessor and
successor. These refer to the runs to which the nearest non-
tombstone elements in each direction belong.

Deletions swap elements to the end of their current run
before converting them into tombstones, ensuring that future
insertions won’t interrupt existing runs. Insertions that target
tombstones use the predecessor and successor to ensure that
a proper ordering of runs would be maintained; if not, they
default to behaving similarly to ordinary quotient filters. Both
of these operations update adjacent tombstones in the case of
a new run being created or removed.

B. Redistribution Policies

Tombstones require periodic cleaning to avoid negatively
impacting queries. Graveyard hashing entails inserting new
tombstones at the same time as this cleaning — a redistribution
process which we must carefully time. We considered five
different redistribution policies:

1) No Redistribution: We perform neither any form of
cleanup nor any artificial insertion of tombstones.



2) Amortized Clean: We only clean up tombstones en-
countered during a deletion or query. There is still no
artificial insertion of tombstones.

3) Between-Runs: We clean up tombstones within clusters,
leaving one at the end of each run where possible.
This redistribution is triggered whenever the number
of insertions since the last cleanup exceeds t“blflifize,
where & IS 1o Facror-

4) Clean-up: This is similar to the Between-Runs policy,
with the additional step of artificially inserting a new
tombstone between each run.

5) Graveyard Hashing: We insert tombstones
evenly throughout the table, as in [2]. Because we keep
tombstones at the end of runs, we shift these tombstones

as necessary, which may merge runs or clusters.

table_size

The Between-Runs, Clean-Up, and Graveyard Hashing poli-
cies invoke their redistribution operations after a certain num-
ber of insertions or deletions. This avoids penalizing queries
if there are no insertions to utilize new tombstones.

IV. RESULTS, ANALYSIS, AND CONCLUSION

We implemented the quotient filter and graveyard filter
in C++!, including variations for each of our redistribution
policies. Experiments were performed on a machine with an
Intel Core 15-13500HX processor (2.50 GHz) and 32 GB
of RAM, running Windows 11. During testing, filters were
initialized with a hash function producing 32 bit values and
q = 25, yielding tables approximately 33.5 MB in size.

During experiments, we performed insertions or deletions
until the table’s load factor changed by 5%, followed by
30 seconds of random queries and 30 seconds of successful
queries. Throughput was calculated by measuring the time
taken (for insertions/deletions) or the number of operations
completed (queries). Three execution patterns were evaluated:
one only inserting elements, one only deleting, and one with
a mixture of both (10% insertions followed by 5% deletions).
The results of this third pattern are presented below.
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ICode can be found here: https:/github.com/dsert1/6.506-project

The most prominent observation is that at least one variant
of the graveyard filter starts to outperform the quotient filter at
load factors of 75% or higher. At lower load factors we see that
the graveyard filter performs worse than the quotient filter for
deletions, but for all other operations it remains competitive.

While the Graveyard Hashing policy most consistently
outperformed the quotient filter at high load factors, it ex-
hibited much less consistent behavior at lower load factors for
insertions and deletions compared to other policies. This is
likely because the movement of tombstones and merging of
runs makes it more sensitive to the contents of the table and
input stream than other policies.

As mentioned in [1], the quotient filter’s performance starts
to suffer at higher load factors, falling below the bloom filter
at 80% fullness. The results here suggest that employing some
graveyard filter policy when reaching this threshold could
improve the overall performance. They also corroborate the
claims made in [2] about tombstones breaking up clusters and
improving the performance of insertions.

There is ample opportunity for future work, especially in
terms of performance engineering. We list some possibilities
below:

1) Parameter tuning: The graveyard filter has a few
parameters governing its performance, such as the fre-
quency with which we clean up and redistribute tomb-
stones. It is likely that an optimal frequency can be found
for a given table size.

2) Auxiliary structures: [1] suggests using auxiliary struc-
tures to store the starting index of buckets, eliminating
the need to walk down long clusters to find where they
start. It would be an interesting exercise to compare the
impact this has on the performances of the quotient filter
and the graveyard filter. In particular, we expect that the
reduced policy maintenance overhead will further expose
graveyard filter’s insertion speed gains.

3) Policy analysis: Further theoretical and empirical anal-
ysis of each redistribution policy and their behaviours
under different workloads could reveal areas of improve-
ment for each algorithm.
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