
Accelerating Multi-Agent DDPG on CPU-FPGA
Heterogeneous Platform

Samuel Wiggins1, Yuan Meng1, Rajgopal Kannan2, Viktor Prasanna1
1Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California

2DEVCOM Army Research Lab
Contact: {wigginss, ymeng643, prasanna}@usc.edu, rajgopal.kannan.civ@army.mil

Abstract—Multi-Agent Reinforcement Learning (MARL) is
a key technology in artificial intelligence applications such as
robotics, surveillance, energy systems, etc. Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) is a state-of-the-art
MARL algorithm that has been widely adopted and considered
a popular baseline for novel MARL algorithms. However, ex-
isting implementations of MADDPG on CPU and CPU-GPU
platforms do not exploit fine-grained parallelism between cooper-
ative agents and handle inter-agent communication sequentially,
leading to sub-optimal throughput performance in MADDPG
training. In this work, we develop the first high-throughput
MADDPG accelerator on a CPU-FPGA heterogeneous platform.
Specifically, we develop dedicated hardware modules that enable
parallel training of each agent’s internal Deep Neural Networks
(DNNs) and support low-latency inter-agent communication using
an on-chip agent interconnection network. Our experimental
results show that the speed performance of agent neural network
training improves by a factor of 3.6× - 24.3× and 1.5× - 29.5×
compared with state-of-the-art CPU and CPU-GPU implementa-
tions. Our design achieves up to a 1.99× and 1.93× improvement
in overall system throughput compared with CPU and CPU-GPU
implementations, respectively.

Index Terms—Multi-Agent Reinforcement Learning, FPGA
Acceleration, MADDPG

I. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) is an area
of Machine Learning that has seen popularity in various do-
mains, including energy systems, self-driving cars, competitive
games, network routing, etc [1]. The goal of MARL is to
develop adaptive agents that can effectively coordinate or
compete with other agents to achieve collective or individual
goals. MARL extends traditional reinforcement learning by
introducing the challenge of learning in a dynamic environ-
ment that is also affected by other agents. Therefore, MARL
algorithms rely on effective inter-agent communication to
improve the agents’ learning performance [2].

Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [3] is a state-of-the-art Centralized-Training
Decentralized-Execution (CTDE) MARL algorithm. Training
occurs in an actor-critic manner, where each agent has
a value network that facilitates the training of its policy
network. MADDPG requires inter-agent communication,

This work is supported by the U.S. National Science Foundation (NSF)
under grant OAC-2209563 and the Army Research Lab (ARL) under grant
W911NF2220159.

Distribution Statement A: Approved for public release. Distribution is
unlimited.

i.e., the sharing of action activities and state-transition
information among agents during the neural network training
phase. MADDPG has been widely adopted in literature
and is often used as a baseline to compare against novel
MARL algorithms. Specifically, MADDPG has been applied
to several applications, including task partitioning and
resource allocation in mobile edge computing [4] robotics
[5], optimizing energy for hybrid electric vehicles [6], etc.

Existing implementations of MADDPG are highly sequen-
tial, with all agents mapped to a single CPU thread sharing an
instance of the training environment. Some implementations
use the massive parallel compute cores of GPUs to accelerate
the training of agent Deep Neural Networks (DNNs) [3],
[7], [8]. The efficiency of developing high-speed MADDPG
systems is dependent upon several factors, including the
platform’s ability to resolve dependency requirements within
MARL execution loops, and the suitability of the system mem-
ory hierarchy for parameter aggregation and communication.
However, existing CPU-only and CPU-GPU platforms cannot
balance the above factors, leading to various time overheads
that impede the MADDPG system from achieving optimal
throughput.

FPGAs are emerging as a popular platform of choice for
accelerating computation- and memory-intensive deep learning
applications. [9]–[11]. We propose accelerating the training
process of MADDPG by leveraging the rich power compute
and memory resources of FPGAs. We justify the use of a CPU-
FPGA heterogeneous platform for MADDPG acceleration
based on the following considerations: (1) Policy learning:
FPGAs have large distributed on-chip SRAM, which can pro-
vide low-latency parameter accesses and aggregations during
policy weight learning and updates; FPGAs also have rich
logic resources that can enable fine-grained, fast inter-agent
communication between agents; (2) Environment simulation:
CPUs are general-purpose, so they can be used for executing
application-dependent software simulations and allow plug-
and-play in the MARL data collection process of different
applications.

In this work, our main contributions are:

• We break down and identify key computational kernels
of MADDPG and map them onto a CPU-FPGA platform.

• We offload compute-intensive training of agent DNNs
using parallel pipelines on FPGA.



• We enable efficient all-to-all inter-agent communication
between agents during the training stage using an on-chip
ring network.

• We implement our design on a CPU-FPGA platform and
demonstrate up to a 1.99× and 1.93× higher throughput
compared to CPU-only and CPU-GPU implementations,
respectively.

II. BACKGROUND

A. Multi-Agent Deep Deterministic Policy Gradient

We consider an N−agent partially observable Markov
Game composed of a set of agents, a state space, an action
space for each agent i, a reward function ,and transition prob-
ability from each state-action pair to another state. For agent
i, we denote its policy as a probability distribution over its
action space: πi (at | st) is the probability of taking action at
upon state st at a certain time step t. Each agent i aims to find
an optimal policy that maximizes its own expected cumulative
reward until terminal time step T : Ri =

∑T
t=0 γ

irti . To achieve
this aim, Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) follows the actor-critic paradigm and utilizes two
Deep Neural Network (DNN) models for each agent - one for
approximating the action-value (i.e., value network) and one
for approximating the policy (i.e., policy network) [3].

Each agent has its own policy network denoted µθi(s).
An agent’s value network is denoted Qπ

i (s, a1, ..., aN ). The
value networks are centralized as they take all the agents’
action information as its input. Both DNNs use the Stochastic
Gradient Descent (SGD) algorithm for optimization [12]. They
are trained collaboratively. The gradient for optimizing the
policy network is:

∇θiJ(µi) = Es,a∼D [∇θiµi(ai|oi)∗
∇ai

Qµ
i (s, a1, ..., aN )|ai=µi(oi)

] (1)

The centralized value network is updated as:

L(θi) = Ex,a,r,x′
[
(Qµ

i (s, a1, ..., aN )− y)2
]
,

y = ri + γQµ′

i (s′, a′1, ...a
′
N )|a′

j=µ′
j(oj)

,
(2)

where µ′ = {µθ′
1
, ..., µθ′

N
} is the set of target policies used

for training stability [13], [14]. τ is a constant scaling factor
when updating target networks.

The complete MADDPG algorithm is shown in Algorithm
1. Figure 1 shows the breakdown of Training-in-Simulation
for MADDPG using two distinct phases. Sample Generation
(Algorithm 1 line 6-8) involves agents taking an action derived
from their policy network in the environment, where transi-
tion information is stored in a shared replay buffer. Model
Update (Algorithm 1 line 9-13) involves optimizing objective
functions across each agent’s internal DNN networks. Each
MADDPG agent includes a total of four DNN networks:
(1) policy, (2) critic, (3) target policy, and (4) target critic
networks. Multi-Layer Perceptrons (MLPs) are commonly
used to represent these networks.

Algorithm 1 MADDPG Algorithm
1: Input: Initial NN parameters θi
2: Output: Learnt policies µθi

3: Initialize Environment simulator ← ENV
4: for episode = 1,2,...M do
5: for t = 1 to max-episode-length do
6: for each agent i, select action ai ← µθi (state s)
7: reward r, next state s′ ←ENV({a1,...,aN})
8: Store transition {s, a, r, s′} in replay buffer D
9: for Agent = 1,2,...N do

10: Sample a random mini-batch of samples from D
11: Update value network by minimizing loss function

L(θi) from equation 2
12: Update policy network using the sampled policy

gradient ∇θiJ from equation 1
13: end for
14: Update target network parameters for each agent i:

θ′i ← τθi + (1− τ)θ′i
15: end for
16: end for=0

Fig. 1. Centralized Critics and Decentralized Actors approach of MADDPG.

B. Challenges in MADDPG Acceleration

Each training iteration of MADDPG involves several prim-
itives with high variations in their arithmetic intensities and
memory requirements (i.e. forward/backward propagations of
SGD, replay operations, inter-agent communication, etc). In
existing CPU implementations, these variations result in non-
uniform data access latencies through multi-level cache hi-
erarchy [15]. Mapping agents to separate CPU threads can
potentially incur additional latency penalties when performing
all-to-all inter-agent communication compared to a single-
threaded approach. Dedicated data layout and custom memory
system can be developed using FPGA to hide these data access
overheads efficiently.

Some MADDPG systems utilize the high-bandwidth global
memory and data-parallel compute cores of GPUs to accelerate
the training of agent DNNs, where high-throughput batched in-
dependent forward and backward propagations can be mapped.
However, the centralized training of each agent’s critic and



policy networks is dependent upon an all-to-all exchange of
action activations between agents [3]. This communication
causes data dependencies unsuitable for the independent data-
parallel architecture of GPUs [16], especially if inter-agent
communication time dominates the time compared to forward
and backward propagations.

Figure 2 summarizes the execution time breakdown for
Sample Generation and Model Update in one iteration of
MADDPG on two typical simulation baselines (Predator-
Prey, Cooperative-Communication) [3] on CPU and CPU-GPU
coupled platforms, with Sample Generation times normalized
to 1. We observe in all cases that the Model Update phase is the
bottleneck in current MADDPG systems with either platform
in both of the simulation environments.

Fig. 2. Execution time breakdown

C. Related Work

There is a plethora of work in acceleration and paral-
lelization of single-agent Reinforcement Learning (RL). [17]
deploy multiple actors and workers to facilitate parallel sample
generation and DNN training on CPU and GPU platforms. In
[18], a CPU-FPGA implementation of single-agent DDPG is
proposed in a robotic arm control scenario. However, MARL
has unique challenges and additional computations that cannot
be directly addressed by these single-agent RL works.

Most MARL work in literature focuses on optimizing
reward rather than speed performance. There is limited
work focused on MARL Training-in-Simulation acceleration.
In [19], a multi-agent variation of Q-learning, Q-Learning
Real-Time-Swarm (Q-RTS), is used in control low-powered
microcontroller-based agents using a centralized FPGA con-
troller. In [20], a CPU-FPGA implementation of IC3Net [21]
exists with an additional pruning system for increased accel-
eration. To our knowledge, our work is the first CPU-FPGA
implementation targeted at MADDPG Training-in-Simulation
acceleration.

III. ACCELERATOR IMPLEMENTATION

A. Overview

We map our agents to collect data points from the envi-
ronment on the CPU and pipeline learner modules on the
FPGA to perform neural network training. Figure 3 shows
the overall system architecture. Similar to the CPU-only and
CPU-GPU baselines, all agents are mapped to a single CPU
thread and perform the Sample Generation phase sequentially.
Transition information (i.e., state, action, etc.) is collected by
agents iteratively and stored in a shared replay buffer contained
in CPU global memory. The communication between the Host
CPU and device FPGA is achieved through the PCIe interface.

Batches of transition information are sampled from the replay
buffer and streamed to the FPGA, where gradients and neural
network weights are computed. Each agent learner contains
a value and policy network training pipeline responsible for
updating neural network weights and biases. The updated
policy network weights are then sent back to the CPU, where
Sample Generation resumes with the new weights.

Fig. 3. System Overview

MADDPG agents need to communicate action activations
(i.e., output of the policy network) between each other during
training of value and policy networks. Using FPGA, we can
enable low-latency inter-agent communication through the use
of a custom interconnect. Our primary design principle is to
balance between latency and area consumption. A naı̈ve inter-
connect approach is to use a crossbar which has O(N2) area
complexity. Although each pair of agents have a wire for direct
communication, this interconnect would be hard to scale with
a large number of agents given the limited on-chip resources of
an FPGA device. To mitigate the large area complexity of the
interconnect between agent training pipelines, our design uses
a ring interconnect with an area complexity of O(N). This
comes with the trade-off that O(N)-cycle latency is needed
for all the agents (training pipelines) to receive messages
from all the other agents (training pipelines). However, this
does not put significant overhead in training because the time
spent communicating action activations through wires can be
hidden by the computations (i.e., layer propagations) within
each DNN model.

B. Learner Module

On the FPGA, each agent is mapped to a learner module
with corresponding value and policy training pipeline. Each
pipeline contains different connections between neural net-
works, as shown in Figure 4 using a 2-layer MLP example. The
value training pipeline for an L−layer value network consists
of n = 5 × L stages: Forward Propagation (FP) through L
layers of the target value, target value and value networks
(plus an additional stage for Loss computation), Backward
Propagation (BP) through L−1 layers of the value network and



(a) Value training pipeline

(b) Policy training pipeline

Fig. 4. Multiple pipeline dataflow of both pipelines in the learner module
for L=2-Layer MLP networks. Pi, Q, Pi’, Q’ denotes the policy, value, target
policy, and target values networks, respectively. Li denotes the ith layer.

Weight Update (WU) for each of the L value layers. The policy
training pipeline contains m = 5×L−1 stages: FP through L
layers of the policy and value networks, BP through L layers of
the value network and L−1 layers of the policy network, and
WU for L number of value layers. Each stage corresponds to
a unique Compute Unit (CU) containing a systolic array of F
parallel Multiply-Accumulate elements. Each propagation step
for a CU may take several passes through the systolic array, as
the size of the input data is usually larger than the size of the
systolic arrays. We use F (unroll factor) to control the degree
of concurrent processing of different output neurons in a data-
parallel manner. In practice, a higher unroll factor corresponds
to higher throughput during the FP, BP, and WU stages since
there would be fewer passes through larger systolic arrays.
However, given the limited FPGA resources, fine-tuning the
unroll factors F for each stage of the training pipelines is
needed to optimize performance.

IV. DESIGN SPACE EXPLORATION

In this section, we discuss our method for placing the
learner modules of N agents on the target FPGA device and
the resource allocation to the compute units in each learner
training pipeline. Specifically, the objective is to determine the
optimal unroll factors F for each training pipeline stage (i.e.,
CU), in order to maximize the training pipeline throughput
given the capacity of an arbitrary FPGA device.

A. Training Pipeline Performance Tuning

Assume a large batch of samples is streaming through each
training pipeline (batch size B ≫ total number of stages ns
in the Agent and Critic training pipelines); each pipeline stage
processes the DNN layer propagation of 1 sample at a time.
The training pipeline throughput can be modeled as

TP =
1

maxj∈[1,ns]

(
T j

FP or BP or WU
) (3)

where TFP or BP or WU stands for the pipeline stage with the
longest latency, which can be either a FP, BP, or WU Compute
Unit (CU). Given a fixed amount of compute resources, load
unbalance between pipeline stages can lead to sub-optimal
throughput due to faster-processing CUs idling and waiting for
slower-processing CUs to complete. Therefore, maximizing
TP is equivalent to minimizing the longest pipeline stage,
i.e., tuning the unroll factors in all the CUs such that their
latencies are balanced.

Based on the data parallel processing of a CU explained
in Section III-B, the latency (i.e., number of compute cycles)
spent by each CU processing 1 sample can be modeled using
the layer’s input dimension ID, output dimension OD, and
its data-parallel unroll factor F :

TFP or BP or WU =
ID ×OD

F
(4)

Note that the compute resources (number of DSPs) and
memory resources (number of SRAM banks) consumed by
the corresponding CU in the above equation are: CDSP =
5 × F (each float multiplier-adder consumes 5 DSPs using
Vitis HLS); CSRAM = F (the layer weight matrix needs to
be partitioned into different banks for supporting concurrent
accesses by parallel multiplier-adders).

The goal is to let

T i
FP or BP or WU = T j

FP or BP or WU,∀i, j ∈ [1, ns]. (5)

We associate a base unroll factor f with the CU responsible
for FP of the 1st layer. The optimal unroll factors of all the
CUs can be calculated using f based on Equations 4 and 5
(e.g., FFP, layer 2 = f × ID2×OD2

ID1×OD1 , etc.).

B. Learner Resource Allocation

A modern multi-die FPGA is composed of several Super-
Logic Regions (SLR) [22], each having a different amount
of on-chip resources, and the communication wires between
different SLRs are limited. To avoid long-latency cross-SLR
communication between CUs in the same training pipeline, we
place all the CUs serving the same agent in the same SLR.
Assume there are N agents and S SLRs; we assign agents to
SLRs such that the number of agents assigned to an SLR is
proportional to the available compute resources (i.e., number
of DSPs) in that SLR: N1 : DSPSLR1 = N2 : DSPSLR2 =
...NS : DSPSLRS,N1 +N2 + ...+NS = N .

Then, we can determine the base unroll factor f for each
agent’s training pipeline by finding the maximum value of f
such that∑

i∈[1...ns]

∑
j∈Agent[1...Nx]

CAgent j, stage i
DSP < DSP Bound of SLR x

∑
i∈[1...ns]

∑
j∈Agent[1...Nx]

CAgent j, stage i
SRAM < SRAM Bound of SLR x

(6)

As a result, all the unroll factors F for each CU in each agent’s
training pipeline can be derived from their base unroll factor
f using Equations 4 and 5.



V. EXPERIMENTS AND EVALUATION

A. Metrics

The primary metric for measuring MADDPG Training-in-
Simulation speed is throughput in terms of iterations executed
per second (IPS):

IPS =
1

Titeration
=

1

TSG + TMU
, (7)

where TSG and TMU are the execution times of the Sample
Generation and Model Update phases, respectively. Note that
the FPGA kernel focus on the Model Update phase, where
1/TMU for each agent is equivalent to the TP that we optimize
in Section IV-A.

B. Simulation Environments and Platform Overview

We use two benchmarks (Cooperative-Communication and
Predator-Prey) with a varying number of agents from Multi-
Agent Particle Environment [3] to evaluate the performance of
our accelerated system. Cooperative-Communication involves
two MADDPG agents where a “speaker” agent must guide a
“listener” agent to a desired landmark destination. Predator-
Prey involves three slower “Predator” MADDPG agents work-
ing together to capture a single faster “Prey” DDPG agent.

We compare our CPU-FPGA heterogeneous design against
two different setups: CPU-only homogeneous platform and
CPU-GPU heterogeneous platform. For the CPU-only and
CPU-GPU implementation, all agents are mapped to a single
CPU thread, where the training of internal neural networks
happens sequentially agent-by-agent on the CPU or GPU,
respectively. The CPU-only baseline can distribute training
among multiple training threads. The CPU-GPU baseline
offloads training to an NVIDIA RTX A5000 GPU. The CPU-
only and CPU-GPU baselines use Python v3.11.3 and PyTorch
v2.0.1, where the CPU-GPU version additionally uses CUDA
v11.8.0. FPGA kernels are developed using Xilinx Vitis HLS
v2022.2. OpenCL is used to implement transfers from the host
CPU to the FPGA via PCIe. Table I provides a detailed list
of the device specifications used to conduct our experiments.

TABLE I
PLATFORM SPECIFICATIONS

Platform CPU
AMD EPYC 7763

GPU
NVIDIA RTX A5000

FPGA
Xilinx Alevo U200

Frequency 2.45 GHz 2.0 GHz 300 MHz
Memory Bandwidth 205 GB/s 768 GB/s 77 GB/s
On-Chip Memory 256 MB L3 Cache 6 MB L2 Cache 35 MB
Peak Performance 3.58 TFLOPS 27.8 TFLOPS 18.6 TOPS

C. Resource Utilization

We perform the design space exploration described in
section IV to generate the design parameters used in each
experiment. We summarize the post-synthesized hardware
resource utilization obtained from both experiments in Table
II. We observe increased utilization for Predator-Prey than
Cooperative-Communication due to the higher number of
agents.vWe implement Cooperative Communication with a

Fig. 5. Device map for (left) Cooperative-Communication, (right) Predator-
Prey on Xilinx Alevo U200 FPGA.

more aggressive unroll factor F across its CUs since more
resources are available for the training pipeline of each agent.

TABLE II
ACCELERATOR RESOURCE UTILIZATION

Experiment BRAM FlipFlop LUT DSP

Cooperative-
Communication

1060 (49%) 1182K (50%) 774K (65%) 3320 (49%)

Predator-Prey 1519 (73%) 1438K (61%) 829K (70%) 2447 (36%)

Figure 5 displays the device map for both experiments,
showing the three SLR regions contained within the U200
FPGA. We let Cooperative-Communication occupy a total
of two SLRs (one for each agent’s learner module), while
Predator-Prey occupies all three (two learner modules in
SLR1, one each for SLR0 and SLR2). The resource constraints
for design space exploration are set accordingly.

D. Performance: IPS

Current MADDPG CPU-only implementations allow the
learner to deploy several training threads to perform the Model
Update phase across multiple CPU threads. Figure 6 shows
the learners’ training time with a varied number of training
threads for the Predator-Prey simulation. We can see that the
execution time increases when adding training threads. This
is because cross-thread communication and aggregation of
results between CPU threads can take significant time due
to the non-uniform access latency from the multi-level cache
hierarchy. Given this trend, we will utilize a single training
thread for our experiments with the CPU-only baseline.

Fig. 6. Learners training time of CPU-only platform when varying the number
of training threads.

Figure 7 shows a comparison between all three platforms
- CPU-only, CPU-GPU, CPU-FPGA with respect to learner



Fig. 7. Comparisons of learner training time and overall system performance measured in IPS between our design - CPU-FPGA and baselines - CPU-only,
CPU-GPU varying the batch size.

training time and overall system throughput in the two sim-
ulation environments. We observe similar trends between
both Cooperative-Communication and Predator-Prey as evi-
dent from Figures 7(a) vs. 7(b) and Figures 7(c) vs. 7(d).
Cooperative-Communication has shorter learner training time
and higher throughput values measured in IPS compared
to Predator-Prey. This is attributed to the more complex
environment of Predator-Prey with its additional agents, where
agent inference and environment interaction time takes (4×)
longer. We observe that our CPU-FPGA system’s neural net-
work training speedup and overall system throughput improve-
ments are higher in the Predator-Prey simulation compared to
Cooperative-Communication because of the following reasons:
(1) an increased amount of agent-level parallelism using added
learner modules to account for the additional two agents, (2)
exploiting fine-grained inter-agent communication between an
increased amount of agents.

In Figures 7(a) and 7(b), the learner training time is shown
between the two environment scenarios with varying batch
sizes. We first observe that it takes a certain batch size (in
our case, size 512 or more) for the CPU-GPU platform to
outperform the CPU-only platform. The added kernel and
synchronization overheads coupled with the small neural net-
work MLPs severely limit the high bandwidth data parallel
architecture of modern GPUs. GPU threads can independently
process samples from a batch in parallel during SGD, resulting
in high-weight reusing as the batch size increases. Off-chip
data access for weights is expensive, and its effects can be
mitigated with high data reuse. However, with a relatively low
arithmetic intensity of MADDPG, utilizing GPUs for small
batches is dominated by the abovementioned overheads. Our
implementation mitigates these problems, storing weights and

biases in on-chip memory. This results in our CPU-FPGA
system achieving a neural network training speedup of 3.6×
- 24.3× and 1.5× - 29.5× compared with the CPU-only and
CPU-GPU implementations.

In Figures 7(c) and 7(d), the overall system throughput
measured in IPS is shown with varying batch sizes. The
CPU-GPU platform is only able to surpass the CPU-only
system’s throughput with a batch size of 1024 and 512 for
Cooperative-Communication and Predator-Prey, respectively.
Again, synchronization and off-chip memory access overheads
for small batch sizes are not hidden efficiently on GPUs.
Our design achieves up to a 1.99× and 1.93× improvement
compared to CPU and CPU-GPU implementations. While
accelerating the value and policy training achieves significant
speedup in system throughput, we are limited by the Sample
Generation phase and the replay sampling time during the
Model Update phase.

VI. CONCLUSION

We accelerated MADDPG on a CPU-FPGA heterogeneous
platform by training agents on FPGA using parallel learner
modules. We compared our system with baselines using im-
plementations on CPU and CPU-GPU platforms and observe
significant speedup in learners’ training time. Future work
includes looking into accelerating MARL algorithms onto het-
erogeneous platforms with more complicated communication
strategies or a fully decentralized training scheme. Our current
accelerator only looks into parallelizing the neural network
training portion of MADDPG. Future works can look at
acceleration during the Sample Generation phase (parallelize
agent simulation interactions, mapping agents to separate CPU
threads, etc.) or more complex replay management.



REFERENCES

[1] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 2,
pp. 156–172, 2008.

[2] C. Zhu, M. Dastani, and S. Wang, “A survey of multi-agent reinforce-
ment learning with communication,” arXiv preprint arXiv:2203.08975,
2022.

[3] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[4] K. Lu, R.-D. Li, M.-C. Li, and G.-R. Xu, “Maddpg-based joint optimiza-
tion of task partitioning and computation resource allocation in mobile
edge computing,” Neural Computing and Applications, pp. 1–18, 2023.

[5] R. Wu, J. Zhong, B. Wallace, X. Gao, H. Huang, and J. Si, “Human-
robotic prosthesis as collaborating agents for symmetrical walking,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 27 306–
27 320, 2022.

[6] J. Peng, W. Chen, Y. Fan, H. He, Z. Wei, and C. Ma, “Ecological driving
framework of hybrid electric vehicle based on heterogeneous multi agent
deep reinforcement learning,” IEEE Transactions on Transportation
Electrification, 2023.

[7] T. Lan, S. Srinivasa, H. Wang, and S. Zheng, “Warpdrive: fast end-to-
end deep multi-agent reinforcement learning on a gpu,” The Journal of
Machine Learning Research, vol. 23, no. 1, pp. 14 225–14 230, 2022.

[8] C. Zhang, Y. Meng, and V. Prasanna, “A framework for mapping drl
algorithms with prioritized replay buffer onto heterogeneous platforms,”
IEEE Transactions on Parallel and Distributed Systems, 2023.

[9] Y. Meng, Y. Yang, S. Kuppannagari, R. Kannan, and V. Prasanna, “How
to efficiently train your ai agent? characterizing and evaluating deep
reinforcement learning on heterogeneous platforms,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2020, pp.
1–7.

[10] H. Zhou, B. Zhang, R. Kannan, V. Prasanna, and C. Busart, “Model-
architecture co-design for high performance temporal gnn inference on
fpga,” in 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2022, pp. 1108–1117.

[11] Y. Meng, S. Kuppannagari, and V. Prasanna, “Accelerating proximal
policy optimization on cpu-fpga heterogeneous platforms,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 19–27.

[12] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[15] I. Bevin Brett. (2016) Cpu memory performance. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-
performance-in-a-nutshell.html

[16] Intel. (2022) Compare benefits of cpus, gpus, and fpgas
for different oneapi compute workloads. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-
cpus-gpus-and-fpgas-for-oneapi.htmlgs.32zunb

[17] C. Zhang, S. R. Kuppannagari, and V. K. Prasanna, “Parallel actors
and learners: A framework for generating scalable rl implementations,”
in 2021 IEEE 28th International Conference on High Performance
Computing, Data, and Analytics (HiPC). IEEE, 2021, pp. 1–10.

[18] C. Guo, W. Luk, S. Q. S. Loh, A. Warren, and J. Levine, “Customisable
control policy learning for robotics,” in 2019 IEEE 30th International
Conference on Application-specific Systems, Architectures and Proces-
sors (ASAP), vol. 2160. IEEE, 2019, pp. 91–98.

[19] G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Matta,
A. Nannarelli, M. Re, and S. Spanò, “Fpga implementation of q-
rts for real-time swarm intelligence systems,” in 2020 54th Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2020, pp.
116–120.

[20] J. Yang, J. Kim, and J.-Y. Kim, “Learninggroup: A real-time sparse train-
ing on fpga via learnable weight grouping for multi-agent reinforcement

learning,” in 2022 International Conference on Field-Programmable
Technology (ICFPT). IEEE, 2022, pp. 1–9.

[21] A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to communicate
at scale in multiagent cooperative and competitive tasks,” arXiv preprint
arXiv:1812.09755, 2018.

[22] L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang,
and J. Cong, “Autobridge: Coupling coarse-grained floorplanning and
pipelining for high-frequency hls design on multi-die fpgas,” in The
2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2021, pp. 81–92.


