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Abstract—Transfer learning enables the sharing of common
knowledge among models for a variety of downstream tasks, but
traditional methods suffer in limited training data settings and
produce narrow models incapable of effectively generalizing un-
der distribution shifts. Foundation models have recently demon-
strated impressive zero-shot inference capabilities and robustness
under distribution shifts. However, zero-shot evaluation for these
models has been predominantly confined to benchmarks with
simple distribution shifts, limiting our understanding of their
effectiveness under the more realistic shifts found in practice.
Moreover, common fine-tuning methods for these models have
yet to be evaluated against vision models in few-shot scenarios
where training data is limited. To address these gaps, we present
a new recipe for few-shot fine-tuning of the popular vision-
language foundation model CLIP and evaluate its performance on
challenging benchmark datasets with realistic distribution shifts
from the WILDS collection. Our experimentation demonstrates
that, while zero-shot CLIP fails to match performance of trained
vision models on more complex benchmarks, few-shot CLIP
fine-tuning outperforms its vision-only counterparts in terms
of in-distribution and out-of-distribution accuracy at all levels
of training data availability. This provides a strong incentive
for adoption of foundation models within few-shot learning
applications operating with real-world data.

Index Terms—foundation model, vision-language model, CLIP,
fine-tuning, distribution shift, out-of-distribution robustness

I. INTRODUCTION

In transfer learning, the knowledge acquired by a model
trained to solve one task is leveraged to solve other different
yet related tasks. Traditionally, the approach to transfer learn-
ing has involved the fine-tuning of a uni-modal, shared feature
extractor using a large, annotated, task-specific dataset [1].
While this method is simple to implement and works well if
the training dataset is similar to the target dataset, the resulting
models have limited flexibility. Additionally, these models per-
form poorly without access to a large amount of quality target
labels, so successfully training models via transfer learning
proves difficult in disciplines that often operate within limited
data environments. In these situations, successful deployment
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of new systems can involve considerable amounts of time and
resources spent on data collection.

However, over the last several years, artificial intelligence
research has increasingly shifted toward the creation of larger,
more flexible models capable of reuse in a variety of ap-
plications. In particular, a new class of models known as
foundation models, a term first-popularized by the Stanford
Institute for Human-Centered AI, has begun to transform the
way AI systems are built and developed [2]–[4]. Founda-
tion models are defined as large neural networks that are
trained on broad, unlabelled datasets through self-supervision
at scale. Importantly, the unlabelled datasets used to train these
models constitute samples of many different data types (i.e.
RGB, thermal, text, audio, etc.) originating from a variety
of perceptual data sources. Through self-supervised training
over such diverse source data, foundation models become
powerful, robust, general-purpose engines capable of multi-
modal information processing and adaptation to a wide variety
of downstream tasks with far less source data [5].

Domain generalization refers to learning models that are
capable of maintaining high levels of performance on unseen
target domains, or data distributions. In most applications
involving real-world data, there exist real-world distribution
shifts associated with the target environments in which the
models are deployed. This shift can lead to a significant
disparity between the distribution of data used to fine-tune
a model and the distribution in which that model is actually
tested [6]. As a result, traditional transfer learning solutions
also underperform when applied to domain generalization
problems. Research has mostly attempted to address this issue
through experimentation involving different pre-training and
data augmentation techniques, producing some improvement
with methods like empirical risk minimization [7]–[11]. Yet,
vision-language foundation models have been shown to pos-
sess significant robustness to distribution shifts. Given this
robustness and their reduced fine-tuning needs, can these
models overcome the limitations of transfer learning faced
by vision-only models in regard to limited data scenarios and
generalization under challenging distribution shifts?



In [12], Radford et al. explored generalization and zero-shot
transfer using the vision-language foundation model, CLIP
(Contrastive Language-Image Pre-training) [12]. By leverag-
ing natural language supervision during visual representation
learning, CLIP achieves impressive zero-shot performance
across a variety of benchmarks, demonstrating significant
generalization capabilities. Notably, the paper highlights that
the accuracy of zero-shot CLIP matches that of a pre-trained
ResNet50 on ImageNet. These models were also evaluated
on additional benchmarks representing ImageNet distribution
shifts, and CLIP produced consistent zero-shot accuracy across
all distribution shifts while ResNet50 could not. However,
the ImageNet distributions tested represent relatively simple
examples when compared to distributions encountered in real-
world applications, like those provided by the WILDS collec-
tion [13]. When deploying zero-shot CLIP on more complex
benchmarks with realistic distribution shifts, we found that
the model significantly under-performed compared to trained
state-of-the-art (SoTA) vision-only models.

Many studies have been conducted to explore and improve
fine-tuning strategies for large, pre-trained models like CLIP.
While existing fine-tuning strategies can substantially improve
performance on target distributions, they also significantly
reduce the model’s robustness to distribution shifts [14].
Wortsman et al. explored methods to maintain CLIP’s robust-
ness during fine-tuning [15], finding that the ensembling of
weights from zero-shot and fine-tuned CLIP models improved
both accuracy under distribution shifts and accuracy on target
distributions. Wortsman et al. further explored weight ensem-
bling strategies in [16], improving robustness and inference
accuracy by averaging the weights of CLIP models fine-tuned
using different hyper-parameters. Xin Zhang et al. tried an
entirely different approach for adapting CLIP to unseen target
distributions [17], proposing a novel approach called Domain
Prompt Learning which automatically generated tailored text
prompts for CLIP by estimating domain-specific features from
the target distribution. Yet these studies, like [12], only present
results on distribution shifts derived from ImageNet, and they
don’t evaluate model performances in terms of gains over
typical vision-only models. Yang Shu et al. [18] evaluate
a fine-tuning strategy employing margin-based cross-entropy
loss and beta moving average to improve generalization for
CLIP, but add only DomainBed [19] as a benchmark alongside
ImageNet. Furthermore, none of these studies evaluated their
fine-tuning strategies in limited data environments.

In the field of remote sensing, deep learning models often
operate within limited data environments. Smaller amounts of
training data are available for these models due to a lack of raw
data, increased difficulty of dataset annotation, and limitations
of sensor characteristics. As a result, many studies on remote
sensing image interpretation have explored few-shot learning
methods in an effort to leverage the benefits of deep learning
[20]. While these studies have explored data augmentation and
prior-knowledge based transfer learning approaches, none have
evaluated foundation models as potential few-shot learning
solutions.

In this paper, we explore the use of vision-language founda-
tion models as a modern solution to the limited training data
and domain generalization issues inherent to previous transfer
learning approaches. We provide the following contributions:

1) We reveal that the zero-shot classification performance
of CLIP does not match that of a fine-tuned SoTA
vision-only model under challenging realistic distribu-
tion shifts.

2) We demonstrate the superior performance of few-shot
CLIP over a few-shot vision-only model in limited data
environments containing realistic distribution shifts. We
verify these results extend at various levels of training
data availability by evaluating both in-distribution (ID)
and out-of-distribution (OOD) robustness.

3) We present a fine-tuning strategy for CLIP that combines
cross-entropy training and stochastic weight averaging to
further improve out-of-distribution robustness.

II. METHODOLOGY

Our experiments compare results for both vision-only and
vision-language models. Vision-language models are models
where the visual output (i.e. image classification, object detec-
tion, segmentation) is conditioned on an additional text input.
We adopt CLIP [12] as our model of choice to experiment
with vision-language models.

A. Vision-Language Models

CLIP models are pre-trained with the task of matching text
captions to images. The key advantages of CLIP as a research
platform lie in its modularity, zero-shot capability, and simple
formulation. Its encoders can be swapped out depending on
desired accuracy versus model size trade-off, and the resulting
performance scales predictably. Thus, CLIP is commonly used
in systems as a foundation model: once pre-trained, CLIP can
serve as the backbone of models fine-tuned for other common
vision tasks. A key result of CLIP conditioning prediction
on encoded text instead of predefined labels is the ability to
transfer well to other tasks without fine-tuning (called zero-
shot transfer). In [12], the authors show that zero-shot CLIP
outperforms a trained ResNet50-based [21] logistic regression
classifier on 16 lower-complexity datasets.

CLIP is implemented as two encoders, one for images and
one for text. In (1), I : Images −→ U is the image encoder, T :
Text −→ V is the text encoder. The encoder outputs are each
projected to the embedding space W by PI : U −→ W and
PT : V −→W respectively, and classification is determined by
the cosine similarity (Scos(a, b) := a · b/(∥a∥2∥b∥2)) between
each pair of text and image embeddings as shown in the below
equation.

argmax
y∈Text

Scos(PI(I(x)),PT (T (y)) (1)

As a training objective, CLIP uses an InfoNCE loss function
with temperature scaling (τ ), popularized by van den Oord et
al. [22] and adapted for image-text learning by Zhang et al.
[17]. For a batch size |B|, and a given image sample and



embedding ik, we compute the cross-entropy of the sample
with the aligned text tk and other unaligned text samples tj ̸=k

in the batch. The loss for a given text sample is computed in
a similar yet symmetric manner. Losses of all image and text
samples in the batch are averaged for back-propagation.

Limage = − E
k∈|B|

[
log

exp(Scos(ik, tk)/τ)∑
tj∈T exp(Scos(ik, tj)/τ)

]
(2)

Ltext = − E
k∈|B|

[
log

exp(Scos(ik, tk)/τ)∑
ij∈I exp(Scos(ij , tk)/τ)

]
(3)

B. Vision-Only Models

For vision-only implementations of models, we extract the
image encoder from CLIP. A randomly initialized trainable lin-
ear layer is added to the image encoder, with output dimension
equal to the number of classes for the task we are fine-tuning
for. Classification is performed using the softmax function, and
training uses the standard cross-entropy objective. Following
convention from [12], we differentiate between vision-only
models depending on whether the image encoder’s weights
are frozen or not. If the encoder’s weights are frozen and only
the classification layer is left trainable, we call those ‘linear
probes’. Else, we label the models as ‘fine-tuned’.

C. Weight Space Averaging

Recent work has demonstrated that averaging the weights
of multiple models can approximate the generalization capa-
bilities of deep ensembles [16], [23]–[25], as well as provide
additional robustness to distribution shift [15]. To investigate
this idea, we implement SWA from [25]. Our implementation
runs for the final nSWA = 10 epochs of training. At the end
of each SWA epoch (ncur = 0, 1, . . . , nSWA), the weights of
the current model are aggregated with the moving average of
model weights from past SWA epochs (4), which adds minimal
overhead to the total training time.

wSWA ←−
wSWA · ncur + wcurrent

ncur + 1
(4)

During each epoch, the learning rate for each weight update
per mini-batch follows a cosine annealing schedule (5), where
ηmin and ηmax are the lower and upper bound learning rates and
Ti and Tmax are the current step and number of mini-batches
in the epoch.

ηi+1 = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Ti

Tmax
· π

))
(5)

D. Distributed Training

We also evaluate the effects of scaling the training of
vision-language models. To successfully implement scaling for
training CLIP, we make use of data parallelism [26] to split
the training dataset across nodes. Communication collectives
via NCCL [27] are used to synchronize gradients for models
on different nodes. We also modify the training recipe of CLIP
models by including the linear learning rate scaling rule and
warmup periods suggested by Goyal et al. in [28]. For our

distributed training environment, we run on the TX-GAIA
system at the MIT Lincoln Laboratory Supercomputing Center
[29]. The system allows the use of 2 Intel Xeon Gold 6248
CPUs (40 total cores) and 2 NVIDIA Volta V100 GPUs (32
GB RAM each) per node. We launch jobs using a SLURM
workload manager [30], starting from 1 V100 and scaling up
to 32 V100 GPUs.

III. EXPERIMENTAL RESULTS

This section presents the key findings from our experi-
mental results. We begin by providing a brief overview of
the datasets used, as well as relevant details regarding our
experimental setup and hyper-parameter testing. Then, we
show zero-shot CLIP’s failure to match the in-distribution (ID)
and out-of-distribution (OOD) performance of a pre-trained
Vision Transformer (ViT) in domain generalization tasks with
challenging distribution shifts. Next, we demonstrate that CLIP
outperforms the ViT at all levels of training data availability
above zero-shot in these same domain generalization tasks, but
particularly within few-shot scenarios. We show these results
extend across both ID and OOD testing, verifying CLIP’s
improved robustness to challenging distribution shifts over
vision-only models in limited data environments. Finally, we
conclude with an evaluation of the performance improvements
provided by SWA and the training time speed-ups gained from
scaling training to multiple GPUs.

A. Datasets

To evaluate model robustness and performance on realistic
distribution shifts, our chosen datasets came from Stanford
University’s WILDS collection, a set of domain generalization
benchmarks representing challenging distribution shifts faced
in the wild. [13] From WILDS, we selected the WILDS-
FMoW (Functional Map of the World) [31] and the WILDS-
iWildCam datasets [32], each containing geographic distri-
bution shifts in satellite and wildlife imagery, respectively.
Training and test distributions from the WILDS collection
comprise disjoint sets of domains, allowing for adequate
evaluation of model generalization to OOD test data.

B. Experimental Setup and Hyper-Parameters

For our experiments, we used a ViT-B/32 and a CLIP
model using ViT-B/32 as its image backbone. To compare
their performances at varying levels of data availability, the
models were each trained on randomly sampled fractions of
the training splits provided by FMoW and iWildCam. The
exact fractions of available training data evaluated in these
experiments can be seen in Table I. Models were then
evaluated on the entirety of the ID and OOD test splits from
each of the respective datasets.

In each of these varied data experiments, ViT-B/32 and
CLIP models were separately fine-tuned twice: once as linear
probes and once end-to-end (E2E). By testing different fine-
tuning strategies for each model, we evaluate the optimal
strategy for each. This approach resulted in four model per-
mutations for comparison: ViT-B/32 linear probe, ViT-B/32



Fig. 1. Top-1 accuracies obtained on the FMoW in-distribution (ID Test) and out-of-distribution (OOD Test) test splits at different training data availabilities.

TABLE I
FMOW TOP-1 ACCURACIES

Training Data Used
0% 3% 5% 10% 30% 50% 70% 90% 100%

In-Distribution
ViT-B/32 Linear Probe 1.6 25.1±0.3 27.4±0.1 31.8±0.1 34.0±0.2 35.4±0.4 35.9±0.1 36.6±0.1 36.7±0.1
CLIP ViT-B/32 Linear Probe 1.6 31.6±0.2 35.7±0.2 38.1±0.1 41.0±0.1 42.4±0.1 43.0±0.2 43.4±0.1 43.2±0.1
ViT-B/32 Fine-tuned (E2E) 1.6 28.0±2.5 36.5±0.7 41.8±0.3 49.0±0.5 51.7±0.2 53.3±0.1 54.3±0.1 55.0±0.5
CLIP ViT-B/32 Fine-tuned (E2E) 16.3 40.4±0.5 43.8±0.8 48.2±0.6 54.4±0.4 57.8±0.3 60.3±0.4 60.7±0.4 60.9±0.1
CLIP ViT-B/32 Fine-tuned (E2E) w/ SWA 16.3 39.5±1.2 44.9±0.5 50.7±0.4 58.8±0.5 61.5±0.1 63.1±0.3 63.9±0.4 64.4±0.1

Out-of-Distribution
ViT-B/32 Linear Probe 1.6 22.7±0.3 23.9±0.1 27.0±0.1 29.4±0.1 30.5±0.1 31.1±0.1 31.6±0.1 31.8±0.1
CLIP ViT-B/32 Linear Probe 1.6 30.8±0.6 33.0±0.5 35.4±0.2 38.7±0.0 39.3±0.1 39.9±0.2 40.3±0.1 40.4±0.1
ViT-B/32 Fine-tuned (E2E) 1.6 24.3±2.2 32.8±0.6 37.6±0.2 43.4±0.4 46.1±0.1 48.0±0.2 48.9±0.5 49.2±0.4
CLIP ViT-B/32 Fine-tuned (E2E) 17.8 37.9±0.6 40.8±0.7 45.2±0.6 49.9±0.4 53.1±0.2 54.4±0.4 55.4±0.3 55.6±0.4
CLIP ViT-B/32 Fine-tuned (E2E) w/ SWA 17.8 36.6±0.8 42.2±0.9 47.5±0.1 53.2±0.4 56.0±0.2 56.7±0.1 57.6±0.5 58.0±0.1

fine-tuned, CLIP-ViT-B/32 linear probe, and CLIP-ViT-B/32
fine-tuned.

To account for the stochasticity inherent to the fine-tuning
process, every model’s top-1 accuracy (FMoW) or macro
F1 score (iWildCam) was reported as the average of three
separate, 20 epoch training runs. As part of model fine-tuning
on each dataset, we included an exhaustive search over four
learning rates of varying magnitudes: {1e-2, 1e-3, 1e-4, 1e-5}.
All model permutations were fine-tuned using each of these
learning rates in separate trials, and the best learning rate for
each model selected based on the highest OOD performance
for the given model configuration. The ID and OOD metrics

reported in all figures and tables represent the averages yielded
using each model permutation’s best learning rate.

The magnitude of weight decay used during training on
different datasets was chosen in a manner similar to the
learning rate, examining {1e-1, 1e-2, 1e-3, 1e-4} as possible
values. For both FMoW and iWildCam, a weight decay of 1e-
4 was deemed appropriate. Batch size was held constant at a
size of 128 across all experiments.

C. CLIP in Limited Data Scenarios

While zero-shot CLIP is capable of achieving comparable
performance to vision-only linear probes on simpler distribu-
tions [12], our results highlight that the zero-shot performance



Fig. 2. Macro F1 scores obtained on the iWildCam in-distribution (ID Test) and out-of-distribution (OOD Test) test splits at different training data availabilities.

TABLE II
IWILDCAM MACRO F1 SCORES

Training Data Used
0% 3% 5% 10% 30% 50% 70% 90% 100%

In-Distribution
ViT-B/32 Linear Probe 0.5 22.8±0.7 23.6±0.6 26.8±1.5 27.6±0.2 32.8±0.7 33.4±0.8 34.3±0.6 35.1±0.6
CLIP ViT-B/32 Linear Probe 0.5 19.7±0.1 24.7±1.1 25.8±1.0 32.5±0.8 34.3±1.4 35.4±0.7 35.2±0.2 35.6±1.2
ViT-B/32 Fine-tuned (E2E) 0.5 16.0±0.6 21.8±1.7 25.5±0.1 35.1±1.4 37.8±1.7 35.6±0.8 37.2±0.4 38.5±0.6
CLIP ViT-B/32 Fine-tuned (E2E) 4.1 25.0±2.0 27.9±1.6 35.5±1.1 35.5±3.6 38.7±3.7 37.5±1.2 40.4±0.5 42.6±2.1
CLIP ViT-B/32 Fine-tuned (E2E) w/ SWA 4.1 27.6±0.9 30.9±1.1 35.2±0.9 41.5±0.9 41.3±1.4 43.1±0.9 41.6±0.2 43.8±0.5

Out-of-Distribution
ViT-B/32 Linear Probe 0.5 13.9±0.2 14.2±0.3 16.6±0.6 17.6±0.3 18.8±0.3 19.9±0.3 20.1±0.7 19.7±0.2
CLIP ViT-B/32 Linear Probe 0.5 15.9±0.4 17.8±0.6 18.2±0.4 21.8±0.7 23.5±0.7 23.1±0.4 24.4±0.3 23.5±0.9
ViT-B/32 Fine-tuned (E2E) 0.5 9.7±0.3 12.5±1.6 13.5±1.0 18.9±0.6 19.7±0.7 19.9±0.3 20.7±0.6 19.9±0.7
CLIP ViT-B/32 Fine-tuned (E2E) 6.6 18.2±0.3 21.6±1.1 22.1±1.0 24.6±0.5 25.4±1.3 26.1±0.9 26.7±1.0 25.4±1.4
CLIP ViT-B/32 Fine-tuned (E2E) w/ SWA 6.6 18.4±0.8 19.4±0.7 21.6±0.6 24.4±0.4 26.8±0.7 28.5±0.7 27.3±0.8 27.8±0.8

of CLIP does not match that of a fine-tuned vision-only
linear probe when applied to benchmarks from WILDS with
challenging and realistic distribution shifts. As seen in Table
I, zero-shot inference from CLIP scores a top-1 ID accuracy
of 16.3% and OOD accuracy of 17.8% on FMoW, whereas the
ViT-B/32 obtains an ID accuracy of 36.7% and OOD accuracy
of 31.8% when trained as a linear probe using the full dataset.
This trend holds for iWildCam as well, and can be seen in
Table II. However, the zero-shot accuracies from CLIP still lie
far above the accuracies expected from random guessing (1.6%
and 0.5%, respectively), indicating that pre-trained vision-
language models have some semantic understanding that can

be leveraged.

The top-1 accuracies on FMoW for the linear probe and
E2E fine-tuned ViT-B/32 and CLIP model permutations across
multiple levels of training data availability above zero-shot
can be seen in Fig. 1 and Table I. We can see that, at all
levels of data availability, each of the CLIP model variations
significantly outperforms its vision-only ViT-B/32 counterpart
in terms of top-1 accuracy. This trend holds across testing on
both ID and OOD samples. In particular, some of the biggest
differences in performance between CLIP and ViT-B/32 can
be seen in the few-shot scenarios, where data was limited. For
example, the average difference between the top-1 accuracies



for the E2E fine-tuned models was 6.1% ID and 6.7% OOD
at training data availabilities above 5%, but was 9.9% ID and
10.8% OOD at training data availabilities at and below 5%.
For all models, accuracy expectedly improves given increased
amounts of available training data. The results for the same
model permutations evaluated on iWildCam can be found in
Figure 2 and Table II. Similar to the findings for FMoW, the
CLIP model variants outperform the the ViT-B/32 at nearly all
levels of training data availability when evaluated on both ID
and OOD test samples, with the largest differences occurring
when training data is most limited. Macro F1 scores tend
to improve as models are given increased access to training
data but some fluctuation occurs, likely related to the higher
amount of rare class labels found in iWildCam compared to
FMoW. In addition, the results from both datasets demonstrate
that E2E fine-tuning of either model architecture yields higher
accuracies for both ID and OOD testing than those obtained
through linear probing alone. By incorporating SWA into the
fine-tuning process, we further improved outcomes on both
datasets at nearly all levels of data availability.

In terms of model robustness, the CLIP model variants were
more robust than their ViT-B/32 counterparts. For FMoW, the
average drop in top-1 accuracy between the ID and OOD
test results was 4.4% for ViT-B/32 and 2.6% for CLIP when
linearly probed, and 4.9% for ViT-B/32 and 4.3% for CLIP
when fine-tuned E2E. For iWildCam, we observe the same
trends regarding robustness under distribution shifts: F1 scores
drop by 11.6% for ViT-B/32 and 9.4% for CLIP when linearly
probed, and 14.0% for ViT-B/32 and 11.6% for CLIP when
fine-tuned E2E. As expected from [14], the differences in
robustness between the ViT and CLIP were most pronounced
in few-shot environments, yet robustness for CLIP diminished
when fine-tuned with larger amounts of training data. While
SWA improved performance metrics for our best CLIP models,
robustness across distribution shifts remained approximately
the same.

D. Distributed Training

We investigate the effects of scaling training with SWA to
multiple GPUs for Vision-Language models. Our experiments
run for 30 epochs on the FMoW dataset. Training includes a
5 epoch linear warmup period, and the learning rate is scaled
η1 ←− k · η0 by the number of GPUs used for training k.
Note that scaling the number of GPUs is equivalent to scaling
the effective batch size of training, since each GPU receives
128 samples per batch. We report the Top-1 ID and OOD
accuracy, as well as the scale efficiency, which we define as
the ratio between the time per epoch on one GPU T1 scaled
to k GPUs T1/k and the actual time per epoch training on k
GPUs Tk. As expected in III-D, the scale efficiency decreases
as k increases due to inter-process communication overheads,
necessary synchronization during training, and serial execution
during evaluation. We also see in III-D that OOD accuracy
does not begin to significantly degrade until 32 GPUs are
used. This matches with the results of [28], where using a
linear warmup, they observe no degradation in performance

TABLE III
DISTRIBUTED TRAINING SCALABILITY ON FMOW

Top-1 Accuracy
GPUs ID OOD % Scale Efficiency

1 61.0 ±0.5 55.1 ±0.9 100.0 (367.21s)
2 60.4 ±0.3 55.6 ±0.4 85.97 (213.53s)
4 58.9 ±0.4 54.2 ±0.6 81.75 (112.30s)
8 58.8 ±0.6 53.5 ±0.1 76.53 (59.98s)

16 59.6 ±0.7 54.2 ±0.5 78.98 (29.06s)
32 55.7 ±1.6 50.7 ±1.2 61.46 (18.67s)

Fig. 3. Training loss curves for models trained on varying numbers of GPUs.

training on ImageNet until reaching batch sizes greater than
8192. Our results are further validated by 3, which shows that
all training runs except for 32 GPUs converge to the same loss
after 30 epochs, even though there is variation in the loss at
the beginning of training. Overall, including the linear warmup
helps make the training procedure robust to scaling.

IV. CONCLUSION

This paper addresses the limitations of traditional transfer
learning methods and the need for robust models capable
of generalizing under distribution shifts. A new recipe for
few-shot fine-tuning of the vision-language foundation model
CLIP is proposed and its performance is evaluated on chal-
lenging benchmark datasets with realistic distribution shifts.
The experimentation demonstrates that while CLIP’s zero-shot
inference capabilities do not match the performance of trained
vision models on complex benchmarks, few-shot CLIP fine-
tuning surpasses its vision-only counterparts in terms of in-
distribution and out-of-distribution accuracy across different
levels of training data availability. Adapting to limited training
data, foundation models like CLIP offer enhanced performance
and robustness in the face of distribution shifts, paving the way
for more effective and practical machine learning applications.
In future work, we will focus on improving domain general-
ization and novel class generalization performance of vision-
language models in few-shot regimes by leveraging robust
optimization and parameter-efficient methods.
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