
TenSQL: An SQL Database Built on GraphBLAS
Jon Roose

Autonomous Cyber Systems
Sandia National Laboratories
Albuquerque, New Mexico

jproose@sandia.gov

Miheer Vaidya
School of Computing

University of Utah
Salt Lake City, Utah
m.vaidya@utah.edu

Ponnuswamy Sadayappan
School of Computing

University of Utah
Salt Lake City, Utah
saday@cs.utah.edu

Sivasankaran Rajamanickam
Center for Computing Research

Sandia National Laboratories
Albuquerque, New Mexico

srajama@sandia.gov

Abstract—Relational Database Management Systems
(RDBMS) have been the most prominent form of database in
the world for several decades. While relational databases are
often applied within high-frequency/low-volume transactional
applications such as website backends, the poor performance of
relational databases on low-frequency/high-volume queries often
precludes their application to big data analysis fields like graph
analytics. This work explores the construction of an RDBMS
solution that uses the GraphBLAS API to execute Structured
Query Language (SQL) in an effort to improve performance
on high-volume queries. Tables are redefined to be collections
of sparse scalars, vectors, matrices, and more generally sparse
tensors. The explicit values (nonzeros) in these sparse tensors
define the rows and NULL values within the tables. A prototype
database called TenSQL was constructed and evaluated against
several SQL implementations including PostgreSQL. Preliminary
results comparing the performance on queries common in graph
analysis applications offer performance improvements as high
as 1,400x over PostgreSQL for moderately sized datasets when
returning results in a columnar format.

Index Terms—RDBMS, SQL, GraphBLAS, Graph Analytics,
Sparse Linear Algebra, Databases, Query Optimization

I. INTRODUCTION

Research and development (R&D) of data science systems,
especially those involving graph analytics often leverage non-
distributed systems. On the other hand, the data they analyze
is often retrieved from distributed data storage solutions and
cached locally to improve performance. In implementing these
local caches, modern relational database management systems
(RDBMS) such as PostgreSQL and SQLite are often eschewed
in favor of less feature-rich but more performant storage
options such as flat-files containing raw data dumps and
Hierarchical Data Format version 5 (HDF5).

As data science tools transition towards production, mod-
erately sized teams sometimes cobble together custom data
storage solutions from several databases in order to accelerate
particular portions of their data processing pipelines. For
example, some teams leverage in-memory Redis databases to
alleviate performance bottlenecks within RDBMS solutions.
However, this practice makes it challenging to ensure atomicity
and consistency among incoherent data stores.

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia LLC,
a wholly owned subsidiary of Honeywell International Inc. for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

In an effort to improve the data consistency issues plaguing
federated R&D environments that rely heavily upon cached
data, we propose re-purposing the abstract sparse linear al-
gebra concepts for graph algorithms pioneered by the Graph-
BLAS community [7], [10] to implement a new generation
of RDBMS solutions optimized for the high-throughput/low-
frequency workloads common to data science R&D. This work
describes a proof-of-concept database called TenSQL that was
constructed and benchmarked against several competitors to
estimate potential performance improvements over existing
industry standard RDBMS solutions. TenSQL was built upon
the pygraphblas [14] module which internally leverages the
SuiteSparse [5] reference implementation of the GraphBLAS
C API [11]. While GraphBLAS has been used to express
algorithms like pagerank, tringle counting, k-truss, and triangle
centrality [4], [15], we demonstrate its utility in construction
of RDBMS query engines as well.

The contributions of this paper are:
• Describing how to represent columnar RDBMS tables as

collections of sparse tensors.
• Describing a method to execute a subset of SQL using

the GraphBLAS API.
• Demonstrating that executing SQL queries using Graph-

BLAS operators can outperform industry standard
databases by several orders of magnitude.

II. RELATED WORK

First described in 2013, GraphBLAS describes a standard-
ized set of linear algebra building blocks (kernels) that are
useful for constructing graph analysis algorithms [10]. These
kernels are exposed in libraries as highly optimized sparse
linear algebra functions generalized to encompass alternative
abstract algebra semirings. The flexibility to define semirings
offered by GraphBLAS broadens its applicability to a much
wider set of fields than traditional linear algebra packages.
The first GraphBLAS C API specification was released in
2017 [11]. Since then, much effort has gone into building
scalable and efficient GraphBLAS implementations for CPUs
and GPUs [20].

Early in the development of GraphBLAS its progenitors
discussed methods to use high performance implementations
to build scalable user-friendly query engines for databases
containing enormous datasets. For example, the Graphulo [6]
project offers a set of sparse linear algebra operators for

the Apache Accumulo database. Additionally, Amossen [2],
Kernert [8], and Qin [16] suggested borrowing optimizations
from linear algebra to accelerate specific RDBMS queries.
In contrast, TenSQL implements a new RDBMS solution
from the ground up built upon sparse linear algebra and
GraphBLAS.

Traditional RDBMS implementations such as PostgreSQL
rely upon a relational model traditionally defined in terms of
relation instances (tables) that are sets of tuples (rows) [17].
In contrast, TenSQL reasons about tables as a collection of
columns, each represented by a sparse tensor. This attribute
makes TenSQL a columnar relational database, similar to
Amazon Redshift [1]. Whereas Redshift was built on top of
PostgreSQL, TenSQL is built from scratch using Python and
C libraries implementing the GraphBLAS API.

TileDB [12], [13] has a philosophically similar focus of
storing datasets as tensors, although they prefer the term
“array”. TenSQL seeks to move beyond storage and retrieval of
tensors by enabling native querying and processing of tensors
using compute graphs built on linear algebra operators.

III. MAPPING SQL TABLES TO SPARSE TENSORS

In this paper, we use the following notation: A tensor A of
order DA ∈ Z≥0 is described via three components: a shape
vector SA ∈ NDA , an index set XA ⊂ (Z≥0)

DA , and a value
function fA : XA → τ . Traditional notation would describe
such a tensor as A ∈ τ (SA)1×...×(SA)DA .

In TenSQL, each table t is represented by several tensors
of order Dt that have the same shape St ∈ NDt . TenSQL sets
each of the entries of this shape vector to 260 by default, which
is the largest size of tensor dimensions in SuiteSparse. Addi-
tionally, because the GraphBLAS API only handles scalars,
vectors, and matrices, TenSQL requires Dt ∈ {0, 1, 2}.

Each row in every table is uniquely identified by a
vector of integer primary key values of the form x ∈(
0.. (St)1 − 1, ..., 0.. (St)Dt

− 1
)

called the index of the row
it identifies. Every entry in these index vectors corresponds
to a column annotated with PRIMARY KEY. Therefore, Dt is
equal to the number of primary key columns in t.

The collection of all row indices within a table is used to
build a table’s stencil χt with shape St and value function
fχt

(x) := true. The index of each nonzero element in χt

uniquely identifies exactly one row in the table. If a table has
no primary keys then it may contain at most one row identified
by ∅.

For each column c within a table t that is not annotated with
PRIMARY KEY, we instantiate one tensor Vc of shape St. The
TenSQL prototype permits columns that are not primary keys
to be integers, floats, or strings of various types. The type of
column c determines the type of values stored in each explicit
element (i.e. nonzero) of Vc. The set of indices corresponding
to nonzero elements within Vc is required to be a subset
of its table’s stencil: indices (Vc) ⊆ indices (χt). An
index in the stencil x ∈ indices (χt) that is absent from
the column’s tensor x /∈ indices (Vc) indicates a value of
NULL in column c of the row identified by x. Therefore, if c

is marked with NOT NULL, then we impose the requirement
that indices (Vc) = indices (χt).

The TenSQL prototype implements string datatypes using
the User Defined Type (UDT) feature of the GraphBLAS
specification. Strings are allocated in Python, and references
to their corresponding Python objects are stored as integer
pointers within the table. When a string is added to a table the
reference counter for the string is increased by one. An internal
hash table mapping each Python objects’ pointer to a 64-bit
integer is used to track the number of times the same Python
object is referenced within a table. Implementing strings this
way enables TenSQL to provide unicode string functionality
that is consistent with Python functionality.

The TenSQL prototype implements durability via functions
that can save and load entire databases to and from HDF5 [18]
files using the h5py Python module.

As a concrete example, the following table named Dog has
four columns and four rows of data.

CREATE TABLE Dog (
DogID INTEGER NOT NULL,
Name TEXT,
Age INTEGER ,
Weight REAL,
PRIMARY KEY (DogID)

) ;

The data of the table Dog is provided in Figure 1. The
age of two of the dogs (Bud and Rolf) is unknown, and so
their age is represented as NULL in the database. The Dog
table has one primary key column (DogID) and three columns
that are not primary keys (Name, Age, Weight). Because
Dog has 1 primary key column it is represented by sparse
tensors of order 1 (vectors). As there are only four rows in
the table, each vector may hold at most four explicit entries
(i.e. nonzeros), although the actual vector sizes could be much
larger to accommodate future insertions. The indices of the
explicit entries of the special ”stencil” tensor correspond to the
values of the primary key column DogID. The remaining three
columns (which are not primary keys) are each represented by
a dedicated sparse vector. The empty box character indicates a
sparse element whose value is not explicitly defined, which are
often treated as implicit zeros by the linear algebra community.
The vectors for the table Dog are provided in Figure 2.

Fig. 1: Rows of the Dog Table

Fig. 2: Tensors of the Dog Table

IV. QUERY EXECUTION

The overall data query language (DQL, a subset of SQL)
execution process has the structure depicted in Figure 3.

Fig. 3: TenSQL Data Query Language (DQL) Execution Flow

To aide understanding of how queries are executed, the
following query which executes a sparse matrix multiply will
be used.

SELECT A. r i d x , B . c idx ,
SUM(A. va lue * B . va lue) AS value

FROM Ma t r ix AS A
JOIN Ma t r ix AS B ON A. c i d x = B . r i d x

GROUP BY A. r i d x , B . c i d x ;

A. Query Intermediate Representation

TenSQL does not implement a query parser. Instead, the
user’s Python script builds an abstract syntax tree (AST) in the
format of an internal query intermediate representation (QIR).
The QIR AST gets translated into internal Linar Algebra
Intermediate Representation (LAIR) prior to execution. The
QIR AST for the example query is shown in Figure 4.

B. JOIN Plan

TenSQL currently only implements INNER JOIN. It also
requires that join conditions must only rely upon equality
of primary key columns and AND conjunctions thereof. This
restriction simplifies the process of developing join plans into
identifying the connected components of an undirected graph
where nodes are primary key columns and edges are equality
constraints. Each connected component defines a primary

Fig. 4: An Example Query Intermediate Representation

key within the result table. The join plan for the exemplar
query has three connected components. These are: (A.ridx),
(A.cidx, B.ridx), and (B.cidx).

C. WHERE Evaluation

The QIR to LAIR translator uses the precomputed join
plan to broadcast the tables referenced by the WHERE clause
(if provided) onto a shared stencil. LAIR code is generated
to evaluate the boolean expression described by the WHERE
clause, and is then used to mask the shared stencil. Details
of the broadcast operation are described in Section VI. The
example query has no WHERE clause, so this masking is
skipped.

D. Stencil Evaluation

If a GROUP BY clause is not provided, then the masked
version of the shared stencil computed by the WHERE Eval-
uation phase is used as the output stencil. Otherwise, LAIR
code is generated to reduce the shared stencil along axes whose
associated primary key connected components are absent from
the GROUP BY clause.

In the unoptimized LAIR of the example query (see Figure
5), the stencils of A and B are broadcast together by an
InnerBroadcast operator. The GROUP BY clause results in a
Reduction via logical OR over axis 2 of the stencil.

E. SELECT Expression Evaluation

Every SELECT clause must begin with one primary key
column chosen from each of the join plan’s connected compo-
nents, except those omitted by the optional GROUP BY clause.
If no GROUP BY clause is provided, the number of primary
keys prefixing the SELECT statement must be equal to the
number of connected components in the join plan.

For each of the remaining columns in the SELECT state-
ment, LAIR code is generated to execute the requested arith-
metic, boolean, and/or reduction operations using variants of
the input columns that are broadcast to the shared stencil calcu-
lated by the Stencil Evaluation phase. Section VI describes the
broadcast procedure. The LAIR translation is now complete.

In the unoptimized LAIR for the example query (see Figure
5), the broadcasting process introduces InnerBroadastMask
operators that expand the matrices representing A.value and
B.value into tensors of order 3. These sparse tensors are
then multiplied in an elementwise fashion before summing
over the final dimension using a reduction, resulting in sparse

matrices. Without further optimization, this would not be
executable using GraphBLAS because of the intermediate
result tensors of order 3.

Fig. 5: Example LAIR (Unoptimized)

F. LAIR Optimizer

The generated LAIR AST is then optimized using two
dataflow analysis passes and simple pattern matching algo-
rithms. The first dataflow analysis pass, forward index set anal-
ysis, tracks intersections and unions of individual dimensions
of tensor indices. Intersections arise from LAIR operators
such as ElementwiseMultiply and unions arise from operators
such as ElementwiseAdd. The second dataflow analysis pass,
reverse index set analysis, uses the results of the forward index
set analysis to trace back which indices will eventually be
intersected and unioned with other indices. Taken together,
in the event that the forward index set and reverse index set
computed for InnerBroadcastMask, ElementwiseMultiply, and
Mask nodes using certain monoids are equal, then those nodes
are considered redundant and excised from the LAIR AST.
This frequently allows the LAIR AST for SELECT expressions
to be separated from the the LAIR AST generating output
stencils, resulting in significant simplification.

Pattern matching is used for peephole optimizations, but is
more importantly used to recognize applicability of Graph-
BLAS operators MxM and MxV within the LAIR AST.
Special cases where INNER JOIN operations are combined
with GROUP BY clauses and aggregation functions (e.g. SUM
and COUNT) can result in InnerBroadcast operators followed
by Reduction operators. In such cases, depending upon the
number of primary keys in the tables of the columns referenced
by the InnerBroadcast operator(s), this group of nodes can
be replaced with a DotMxM, DotMxV, or DotVxM operator
along with PermuteIndices operators for transpositions where
necessary.

Optimizing the example query results in the LAIR AST
visualized in Figure 6. The InnerBroadcastMask operations
are eliminated because they are redundant with the Elemen-
twiseMultiply that follows. Doing so decouples the stencil
computation AST from the expression evaluation AST. How-
ever, the tensors must be promoted to order 3 according to

the join plan, so the ElementwiseMultiply is simultaneously
replaced with an InnerBroadcast operator. Finally, the pattern
of an InnerBroadcast operator (with an appropriate broadcast
pattern) followed by a Reduction operator is recognized, so
two instances (one in the stencil AST and one in the expression
evaluation AST) are replaced with DotMxM. This makes the
final optimized AST executable, because all order-3 interme-
diate tensors are eliminated. This trick cannot be performed
in every case, so queries resulting in order-3 tensors or higher
must be detected and rejected by the TenSQL prototype.

Fig. 6: Example LAIR (Optimized)

G. LAIR Execution

Once optimized, the LAIR AST is executed via a visitor
class that invokes SuiteSparse kernels to compute result ten-
sors.

H. Table Construction

The tensors generated by the SELECT clause expressions
are then given names inferred from the QIR AST to produce
column objects. These column objects are combined with the
shared stencil to construct an unnamed Table object, which is
returned as the query’s result.

V. LAIR OPERATORS

The allowable nodes in the current LAIR AST are:
DotMxM(l e f t : Node , r i g h t : Node , add : s t r , mul : s t r)
Executes a matrix-matrix multiply. Generated by the LAIR optimizer.

DotMxV (l e f t : Node , r i g h t : Node , add : s t r , mul : s t r)
Executes a matrix-vector multiply. Generated by the LAIR optimizer.

DotVxM (l e f t : Node , r i g h t : Node , add : s t r , mul : s t r)
Executes a vector-matrix multiply. Generated by the LAIR optimizer.

ElementwiseAdd (op : s t r , l e f t : Node , r i g h t : Node)
Given two operand tensors A,B returns tensor:

O :

SA, XA ∪XB , fO(x) :=


fop(fA(x), fB(x)) x ∈ XA ∩XB

fA(x) x ∈ XA

fB(x) x ∈ XB


ElementwiseApply (op : s t r , ope rand : Node)
Given an operand tensor A and an operator op, returns tensor:
O : (SA, XA, fO(x) := fop(fA(x))).

E l e m e n t w i s e M u l t i p l y (op : s t r , l e f t : Node , r i g h t : Node)
Given two operand tensors A,B, returns tensor:
O : (SA, XA ∩XB , fO(x) := fop(fA(x), fB(x))).

I n n e r B r o a d c a s t (op : s t r ,
l e f t : Node , l e f t i d x : Tuple [i n t] ,
r i g h t : Node , r i g h t i d x : Tuple [i n t] ,
o u t i d x : Tuple [i n t])

Broadcast tensors together using op according to the pattern (left idx,
right idx, out idx). See Section VI.

I n n e r B r o a d c a s t M a s k (
l e f t : Node , l e f t i d x : Tuple [i n t] ,
r i g h t : Node , r i g h t i d x : Tuple [i n t] ,
o u t i d x : Tuple [i n t])

Mask one tensor with another according to the pattern (left idx, right idx,
out idx). See Section VI.

Mask (ope rand : Node , mask : Node)
Given an operand tensor A and mask tensor B, returns tensor:
O : (SA, XA ∩XB , fA).

Ou tpu t (ope rand : Node , name : s t r)
Provides a name for the operand tensor that aids visualization of LAIR outputs.

P a t t e r n (ope rand : Node)
Given an operand tensor A with boolean type, returns tensor:
O : (SA, {x : x ∈ XA ∩ fA(x) ̸= false}, fO(x) := true).

P e r m u t e I n d i c e s (ope rand : Node , o u t a x e s : Tuple [i n t])
Permutes the index tuples of the sparse tensor operand according to the pattern
specified in out axes.

Pr imaryKey (ope rand : Node , colnum : i n t , t y p e : Type)
Given an operand tensor A, generates a sparse tensor:
O : (SA, XA, f(x) = type_(xcolnum))

R e d u c t i o n (op : s t r , ope rand : Node ,
r e d u c e a x e s : Tuple [i n t])

Reduces the operand tensor along the specified axes using operation op.

Tensor (ope rand : Tensor ,
s t e n c i l : O p t i o n a l [Node] = None)

Imports a tensor into LAIR. The optional stencil argument asserts that
Xoperand ⊆ Xstencil.

VI. BROADCAST OPERATIONS

TenSQL’s LAIR describes broadcast operations that are
essential for implementing JOIN clauses in SQL. Each
broadcast operation combines a pair of tensors A,B into
an output tensor O according to a broadcast pattern.
Given a vector hO := [1, ..., DO]

T , broadcast patterns
take the form

(
P−1
A WAhO, P

−1
B WBhO, hO

)
where PA ∈

RDA×DA , PB ∈ RDB×DB are permutation matrices, and
WA ∈ RDA×DO ,WB ∈ RDB×DO are rectangular matrices
formed by deleting rows from an identity matrix I ∈ RDO×DO .
Each of these components is uniquely recoverable from the
broadcast pattern.

For both InnerBroadcast and InnerBroadcastMask the shape
and index set of the output tensor O are defined as:

SO = WT
APASA +WT

BPBSB −WT
A∩BPASA (1)

XO :=

{
WT

APASA +WT
BPBSB −WT

A∩BPASA :

xA ∈ XA, xB ∈ XB ,W
T
A∩BxA = WT

B∩AxB

}
(2)

Where WA∩B ∈ RDA×DO is formed from WA, but with
rows not in WB replaced with zeros. Likewise, WB∩A ∈

RDB×DO is formed from WB , but with rows not in WA

replaced with zeros.
In addition to the operand tensors and broadcast pattern,

InnerBroadcast accepts an operator fop : range (fA) ×
range (fB) → range (fO). For implementation reasons
inherited from GraphBLAS, InnerBroadcast requires that
range (fA) = range (fB) = range (fO). The value
function for the InnerBroadcast output tensor is:

fO(x) := fop
(
fA(P

−1
A WAx

)
, fB

(
P−1
B WBx)

)
(3)

InnerBroadcastMask does not accept an operator and does
not require that range (fA) = range (fB). The value
function for the InnerBroadcastMask output tensor is:

fO(x) := fA
(
P−1
A WAx

)
(4)

The broadcast operators were implemented using a case
statement composing appropriate GraphBLAS operators for
every valid broadcast pattern where DA, DB , DO ∈ {0, 1, 2}.
This requires more than 20 specializations to implement.

VII. LIMITATIONS AND DIVERGENCES

Although the TenSQL prototype implements a large subset
of SQL, it omits some significant features. Descriptions of
several of these limitations follow.

1) OUTER JOIN operations are not yet implemented be-
cause primary key columns are not allowed to contain
NULL values. Creating matrices or vectors whose index
sets contain NULL values is not well defined in tradi-
tional linear algebra. We plan to work around this issue
by breaking column tensors into several tensors, each
storing rows whose primary keys contain a particular
combination of NULL values.

2) ORDER BY is not yet implemented because TenSQL’s
index sets are inherently unordered. We plan to add an
optional ROWID sparse tensor to tables’ metadata to
track the ordering of tables’ rows.

3) Join conditions are currently required to be composed
of conjunctions of equality constraints on primary keys.

4) A SQL text parser, Data Description Language (DDL)
queries such as UPDATE and DELETE, subqueries,
transactions, foreign keys, unique constraints and index-
ing other than PRIMARY KEY are not yet implemented.

5) TenSQL natively returns results in a columnar format.
Converting results to be row-wise requires an additional
processing step.

6) All TenSQL operations currently take place in memory,
with no support for out-of-core processing.

VIII. GRAPHBLAS CHALLENGES

TenSQL also inherits some challenges from current Graph-
BLAS API design. Descriptions of some of these limitations
and how TenSQL handles these follow.

1) The GraphBLAS API cannot manipulate sparse tensors
of order greater than two. Therefore TenSQL’s tables,
result sets, and intermediate results are limited to at most
two primary keys so that Dt ∈ {0, 1, 2} for all tensors.

Provided a sufficient level of expertise, this restriction
can often be worked around when crafting SQL schemas
and queries, but it makes some use cases difficult or even
impossible to implement. Sparse tensor extensions to the
GraphBLAS API would resolve this challenge.

2) The GraphBLAS API has no inner broadcast oper-
ator. TenSQL works around this limitation through
composition of other operators such as mxm and ap-
ply bind first. However, doing so requires a series of if
statements with more than 20 branches to account for
various tensor orders and transpositions, which will not
scale to higher order tensors.

3) The GraphBLAS API does not offer string datatypes for
tensor elements. TenSQL works around this limitation
by casting python objects containing strings to integer
pointers and internally counting references to these
objects for garbage collection purposes.

4) The GraphBLAS API does not provide for certain opera-
tions on scalars (e.g. apply, eWiseAdd, and eWiseMult).
To work around this limitation, scalars frequently need
to be handled in dedicated code branches. Compounding
the problem, the GraphBLAS API does not provide a
mechanism to call operators directly, so TenSQL re-
implements these existing operators in Python code.
This leads to potential inconsistences in how things like
rounding, floating-point exceptions, and integer overflow
are handled depending upon the order of the tensor.

IX. BENCHMARKS

Three benchmarks were implemented within TenSQL to
compare its performance on graph-relevant tasks against in-
dustry standard competitors such as PostgreSQL and SQLite.

A. Datasets and Schema

To provide a sense of scaling, all three benchmarks were
executed against three ego-network datasets from the Stanford
Network Analysis Project (SNAP) [9] based on data taken
from several social media websites. The smallest is the Face-
book dataset, which is a graph with 4,096 nodes and 88,234
undirected edges. The medium sized dataset comes from Twit-
ter, with 81,306 nodes and 1,768,149 directed edges. Finally,
the Google+ dataset contains 107,614 nodes and 13,673,453
directed edges. Adjacency matrices were constructed from
these graph data structures to provide a dataset for each
benchmark. Random numbers between 0 and 1 were used to
generate edge weights.

For PostgreSQL, and SQLite the following tables were
created to support benchmarking:

CREATE TABLE Node (
id no de NOT NULL,
gu id VARCHAR(3 6) NOT NULL,
PRIMARY KEY (i d no de)

) ;

CREATE TABLE Edge (
f i r s t INTEGER NOT NULL,
second INTEGER NOT NULL,

va lue FLOAT NOT NULL,
PRIMARY KEY (f i r s t , second)

) ;

The schema for TenSQL is almost identical, except that
it uses BigInt column types for the primary key columns.
Adding indices to the Edge table’s first and second columns
was attempted, but did not improve performance on any of
these benchmarks.

B. Implementation Details

The guiding principle in these benchmarks’ design was to
simulate common graph analytics use cases. In all cases, the
benchmarks were executed on a single node running an AMD
EPYC 7543P 32-Core processor with 512GB of memory.
The node was also equipped with Kioxia CD6 960GB TLC
NVMe SSD’s connected via PCIe 4.0. The SQLAlchemy
middleware package was used to keep implementation as
simple and consistent as possible. PostgreSQL 15.2 was used
in the benchmarks. The configuration was based on PGTune
[19] recommendations. TenSQL used version 5.1.8.0 of the
pygraphblas library, and version 7.3.3 of SuiteSparse.

C. Durable Ingest Benchmark

The ingest benchmark reveals the runtime required to ingest
the Edge and Node tables, using randomized (but precom-
puted) UUID’s for the Node.guid column. This represents
a common first step in real-world use cases when working
with graph datasets. The following parameterized queries were
generated by SQLAlchemy to implement the benchmark:

INSERT INTO Edge (f i r s t , second , va lue)
VALUES (%(f i r s t) s , %(second) s , %(va lue) s) ;

INSERT INTO Node (idnode , gu id)
VALUES (%(i dno de) s , %(gu id) s) ;

Fig. 7: TenSQL Durable Ingest Speedup

For the largest dataset (SNAP Goolge+) TenSQL ingested
the dataset within 6.37 seconds, while PostgreSQL required 3
minutes and 40 seconds. SQLite was faster than PostgreSQL,
requiring 1 minute 39 seconds. Thus, TenSQL was 34.5x
faster than PostgreSQL, and 15.5x faster than SQLite on this
benchmark.

D. Two-Hop Benchmark

The sparse matrix multiply (MxM) kernel is used in sub-
graph extraction technqiues such as breadth-first search (BFS)
[7]. This benchmark is designed to use an MxM to extract the
two-hop neighbors of all nodes. The following query was used
to implement the benchmark:

SELECT A. f i r s t , B . second
FROM Edge AS A

JOIN Edge AS B ON A. second = B . f i r s t
GROUP BY A. f i r s t , B . second ;

Fig. 8: TenSQL Two-Hop Speedup

For the largest dataset (SNAP Google+) TenSQL required
2.14 seconds to execute this query, while PostgreSQL required
51 minutes and 9 seconds. Thus, TenSQL outperformed Post-
greSQL by a factor of 1,436x. TenSQL’s results are returned
in a columnar fashion. Where row-wise results are desired an
additional post-processing step must be applied.

E. Named Edges Benchmark

The named edges benchmark queries the edge list of a
graph with added context from the graph’s nodes. This reflects
a common real-world use case where external identifiers of
nodes (and other per-node information) are stored in a table
that is separate from the edge table. This is often done as
part of the schema normalization process to reduce the size of
databases containing graphs by minimizing data redundancy.

SELECT
x . gu id AS f i r s t , y . gu id AS second

FROM Edge AS ”A”
JOIN Node AS x ON ”A” . f i r s t = x . i dn od e
JOIN Node AS y ON ”A” . second = y . i dn od e ;

For the largest dataset (SNAP Google+), columnar TenSQL
required 39.2 seconds to plan and execute this query, while
PostgreSQL required 32.5 seconds. Therefore, PostgreSQL
was 1.21x faster than TenSQL on this query. However, when
row-wise results are required, TenSQL takes 1 minute 14
seconds to execute the query. In such a case, PostgreSQL’s
runtime advantage over TenSQL widens to 2.29x.

Fig. 9: TenSQL Named Edges Speedup

X. FUTURE WORK

Follow-on efforts are likely to include building and bench-
marking tools that translate additional query languages to
LAIR. Such efforts may lead to a multi-lingual database
capability that can execute relational queries via SQL or
dataframes, graph queries via SPARQL Protocol and RDF
Query Language (SPARQL) or Neo4j’s Cypher Query Lan-
guage (CQL), and linear algebra operations via MATLAB syn-
tax or similar. CQL, in particular, was recently implemented
in the RedisGraph extension to the Redis database using
GraphBLAS operators [3]. Experiments with using GPUs to
accelerate queries translated to LAIR may also follow, given
SuiteSparse’s support for GPUs.

XI. CONCLUSION

This paper describes the design, construction, and prototyp-
ing of Structured Query Language (SQL) operations on top
of GraphBLAS API compliant sparse linear algebra libraries.
Although many features of SQL are not implemented by
the current prototype, it offers a framework for compiling
practically useful portions of SQL into sparse linear algebra
building blocks. When implemented using the SuiteSparse ref-
erence implementation of GraphBLAS and returning columnar
results, the prototype executes certain queries as much as
1,400x faster than PostgreSQL on relatively modest graph
datasets. Further work in this direction may make it feasible
to rapidly implement practically useful subsets of SQL on
additional hardware and software systems using GraphBLAS.

XII. ACKNOWLEDGEMENTS

We would like to express gratitude to those who pro-
vided constructive feedback on project direction, notation, and
editing. Those who provided feedback include: Jon Berry,
Michael Eydenberg, Casey Haynes, Atanas Rountev, and Ke-
shav Sreekumar.

REFERENCES

[1] Amazon.com, Inc. What is a columnar database?, 2023.
[2] Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects and

sparse matrix multiplications. In Proceedings of the 12th International
Conference on Database Theory, pages 121–126, 2009.

[3] Pieter Cailliau, Tim Davis, Vijay Gadepally, Jeremy Kepner, Roi Lip-
man, Jeffrey Lovitz, and Keren Ouaknine. RedisGraph GraphBLAS
Enabled Graph Database. In 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 285–
286, 2019.

[4] Timothy A Davis. Graph algorithms via SuiteSparse: GraphBLAS:
triangle counting and k-truss. In 2018 IEEE High Performance extreme
Computing Conference (HPEC), page 3. IEEE, 2018.

[5] Timothy A. Davis. Algorithm 1000: SuiteSparse:GraphBLAS: Graph
Algorithms in the Language of Sparse Linear Algebra. ACM Trans.
Math. Softw., 45(4), dec 2019.

[6] Vijay Gadepally, Jake Bolewski, Dan Hook, Dylan Hutchison, Ben
Miller, and Jeremy Kepner. Graphulo: Linear algebra graph kernels for
nosql databases. In 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, pages 822–830. IEEE, 2015.

[7] Jeremy Kepner and John Gilbert. Graph algorithms in the language of
linear algebra. SIAM, 2011.

[8] David Kernert, Frank Köhler, and Wolfgang Lehner. SLACID-sparse
linear algebra in a column-oriented in-memory database system. In
Proceedings of the 26th International Conference on Scientific and
Statistical Database Management, pages 1–12, 2014.

[9] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection, June 2014.

[10] Tim Mattson, David Bader, Jon Berry, Aydin Buluc, Jack Dongarra,
Christos Faloutsos, John Feo, John Gilbert, Joseph Gonzalez, Bruce
Hendrickson, Jeremy Kepner, Charles Leiserson, Andrew Lumsdaine,
David Padua, Stephen Poole, Steve Reinhardt, Mike Stonebraker, Steve
Wallach, and Andrew Yoo. Standards for graph algorithm primitives. In
2013 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–2, 2013.

[11] Timothy G Mattson, Carl Yang, Scott McMillan, Aydin Buluç, and
José E Moreira. GraphBLAS C API: Ideas for future versions of the
specification. In 2017 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2017.

[12] Stavros Papadopoulos. A deep dive into the TileDB data format &
storage engine, 2023.

[13] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy
Mattson. The TileDB array data storage manager. Proceedings of the
VLDB Endowment, 10(4):349–360, 2016.

[14] Michel Pelletier. pygraphblas: GraphBLAS for python, 2019-2021.
[15] Michel Pelletier, Will Kimmerer, Timothy A Davis, and Timothy G

Mattson. The GraphBLAS in Julia and Python: the PageRank and Tri-
angle Centralities. In 2021 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7. IEEE, 2021.

[16] Chengjie Qin and Florin Rusu. Dot-product join: Scalable in-database
linear algebra for big model analytics. In Proceedings of the 29th Inter-
national Conference on Scientific and Statistical Database Management,
pages 1–12, 2017.

[17] R. Ramakrishnan and J. Gehrke. Database Management Systems.
Computer science series. McGraw-Hill, second edition, 2000.

[18] The HDF Group. Hierarchical data format version 5, 1997-2023.
[19] Oleksii Vasyliev. PGTune, 2022.
[20] Carl Yang, Aydın Buluç, and John D Owens. GraphBLAST: A high-

performance linear algebra-based graph framework on the GPU. ACM
Transactions on Mathematical Software (TOMS), 48(1):1–51, 2022.

