Towards the FAIR Asset Tracking across Models,
Datasets, and Performance Evaluation Scenarios®

Piotr Luszczek
EECS Dept., University of Tennessee
Knoxville, TN, USA

Abstract—In order to ensure the reproducibility and give full
account of the results obtained from scientific simulations assisted
by ML/AI models, a new set of methodological innovations have
to take place, that account for provenance, deployment, usage,
updates, and archiving of variety of digital assets. We present
a design and implementation of a methodology, that not only
addresses these very aspects of modern computational science but
is also a major step towards practically achieving this lofty goal
for a variety of established models and their datasets, that are
of particular importance to the progress of science simulations
utilizing ML/AI models. We also show experimental results of
applying our approach to a specific evaluation scenario and show
how it maintains the performance efficiency, delivers accurate
training results, and captures sufficiently rich context of the
runtime behavior to inform both the particular domain science
and machine learning communities.

I. INTRODUCTION

The often cited manifesto of findable, accessible, interopera-
ble, and reusable (FAIR) data management and stewardship [1]
lays out a lofty vision to across many other scientific disci-
plines. In order to make this aspirational goal a reality in the
specific context of computational simulations’ enriched with
ML/AI models, an entire infrastructure has to be reimagined,
built, and maintained in order to uphold these principled ten-
ants. Only when the support and assistance are provided from
the middleware and frameworks, we can hope for meaningful
contributions enriching this nascent incarnation of the modern
computational science. This is even more important during the
transition of the recent years that morphed the computational
components based purely on ab initio parametric models to
also include parameter-free data models that rely on large vol-
umes of data, that are being fed during distributed training into
the ever more complex implementations of contemporary ML
and Al methods. The major thrust towards this augmentation
takes form of surrogate models and their underlying Deep
Neural Networks (DDN), Large Language Models (LLM),!
Deep Reinforcement Learning (DRL), and even large scale
foundation models. Section IV has more detail exposition on
these advances that feature surrogate models for science.

To that end, our Surrogate Al Benchmarking Applications’
Testing Harness (SABATH) project [3] aims to assume the
role of intermediary between the science community in need
of data set management for deployment of models and the
ML/AI community designing them and overseeing the process

*This work was supported by the U.S. Department of Energy, Office of
Science, ASCR under Award Number DE-SC0021419.
IThey are also called Neural Language Models (NLM) [2].

Tokey Tahmid
EECS Dept., University of Tennessee
Knoxville, TN, USA

SABATH (gefault Python 3)

Environments Frameworks Models System S/W Hardware Communication
Python 3 TensorFlow CloudMask CUDA CPU Infiniband
C/C;:,U;z:vrllran PyTorch CosmoFlow Fégg[‘ GPU NVLink
Containers Keras MiniWeatherML N’\é'gl_ IPU GigE
Package Repos, Hubs Datasets Storage Disk Datasets
Anaconda, Docker Hub, PyPI CosmoUniverse HDF5, Git LFS
Docker Hub SuperCell PNFS, Lustre, Ceph HDD, SSD, NVMe

Fig. 1. Overall design of SABATH and how it interacts with external ecosys-
tem of environments, frameworks, models, data sets, software repositories,
and accelerator-based hardware.

of their training and inference. To achieve these goal of
seamless provenance, management, and archiving of updates,
SABATH interacts with the rich external ecosystem of environ-
ments, frameworks, models, data sets, software repositories,
and accelerator-based hardware. Figure 1 shows a concise
overview of the major components as well as example col-
lections and technological artifacts comprising the design of
and interacting with the implementation of our project. The
figure is meant to briefly give the reader a good initial view of
the complexity of managing such large collections of disparate
digital assets while the details are in the sections below.

II. RELATED WORK

Our proposed implementation brings together the set of
disparate digital assets in a somewhat related way to how the
commonly used software package managers operate. The sim-
ilarity extends to how they handle the dependence structure,
download process, and deployment configurations. However,
for the three-way matching of domain science with ML/AI
models and with the compatible data sets, the traditional
software package management is insufficient. Primarily due
to the single directory prefix, that houses a unique sets of
sources, executables binaries, data blobs (e.g., firmware), and
other auxiliary files (locale descriptions, documentation, etc.).
The uniqueness property precludes custom implementations
that may be necessary to satisfy functional, performance, or
accuracy requirements. Those often show up as installation
conflicts. We address this lack of implementation and/or de-
ployment variants by managing multi-prefix installations with
many ways of customizing the resulting environments.

On the other hand, the rpath-assisted installs based on
Merkle trees [4], [S], that track the identity of the installed
packages (often custom-built directly from source code) en-
abling much greater flexibility of maintaining a plethora of
variants to satisfy sophisticated requirement structures. How-
ever, for practical usability they need to be augment with

additional tracking methods (such as multi-package collec-
tions), which serve as a necessary augmentations that overlay
additional grouping information, that aid maintenance of co-
herent instances of dependence graphs. This exposes the users,
package maintainers, and developers alike this multi-layered
complexity and multiple concurrent groupings of packages
must coexist in the package meta-data definitions often col-
lected inside a single package definition file. Such compound
definitions lead to conditional syntax structure thus increasing
the conceptual burden required for meaningful comprehension
and effective debugging across the deployment platforms.

III. ORGANIZATION OF DIGITAL ASSETS

In order to bring together all the disparate components
presented in Figure 1, their incoming data whichever form they
are, have to be cataloged and cached locally as is necessary
for effective use in training or inference workflows. Rather
than centralized model of single source provenance, that is
common to most package managers, we use a federated model
for sourcing the assets together into a coherent view with local
copies cached for performance. In broad terms, we recognize
the following main classes of assets needed for tracking (they
sorted by their approximate size with the caveat of the sorting
order not holding uniformly for all the use cases):

o data sets (with or without labels),

o ML/AI models (weights, biases, hyper-parameters, and
structure/connectivity graphs),

« non-executable binaries such as object files,

« executable binaries, and

« source code files.

By far, the first two items: data sets and models; are the
largest in physical size and present the greatest potential for a
number of issues during initial download, storage (either reads,
writes, or updates) during operation, and long term archiving.
For this reason a substantial amount of attention is devoted to
preventing these issues and providing smooth access despite
the unusual stress they present to the system resources.

IV. SURROGATE MODELING IN AI-ASSISTED SCIENCE

The transformational effects of advances in ML/AI im-
posed on the traditional simulation applications cannot be
overstated [6], [7], [8]. There is a range specific modes
of operation of the classic simulation code implementing a
scientific model, called either ab initio or parametric, and
the interaction with a data-driven model derived from either
ML on AI methods. One modality is a model substitution:
either some or the entirety of the scientific simulation is
replaced with a ML/AI counterpart. The assistive modality
pairs up both ab initio parametric model with ML/AI assistant
that manages the data flow, finds patterns, and marks new
domains of interest. In this mode, the regions needing extra
scrutiny receive receive refinement and/or higher resolution
thus running the original simulation for a new data set or initial
conditions. Irregardless of the operational modality, there are
high gains to be made from such new scientific campaigns

ranging remarkable performance speedups and reduction in
time or energy consumption. [9], [10], [11], [12], [13]

V. DATA TRANSFER CONSIDERATIONS

As described in Section III, the physical size of two major
asset groups, model and training data, pose unique challenges
to not just users by the system administrators of either SysOps
or MLops variety. Any asset management platform, our own
SABATH project’s fetcher notwithstanding, must address this
starting with efficient transfer from the source to management
of the large data volumes on site. The latter is covered in
Section VI.

The main method of tackling the prolonged downloads of
assets is to introduce parallelism across transfer layers. To that
end, we utilized bot intra-protocol and inter-protocol methods
that are detailed below. However, from the onset we want to
stress that even with full utilization of the techniques outlined
below, we cannot exceed the combined physical bandwidth
limit of the underlying interconnect.

The disparate assets brought together by SABATH for
surrogate model training, inference, or benchmarking are un-
likely to come from nearby geographical locations and this
has repercussions on the latency profile that our fetcher has
to contend with. The long distance disparity experience the
single packet delays on the order of tens of milliseconds
inside a single country. But the cross-continent long haul links
often break the 100 millisecond barrier. This is in contrast to
sub-millisecond latency available in modern high-bandwidth
networks such as Inifiniband XDR and 100 GB Ethernet and
its variants such as Cray/HPE Slingshot, which all must use
high-frequency signaling to fulfill the bandwidth requirements.
Thus, achieving high level of cross-packet parallelism inside
a single TCP stream on these long long delay data paths is
critical to maximize the cumulative bandwidth allocated to the
SABATH fetcher based on network partitioning policies and
Qualit of Service (QoS) guarantees.

The protocol-level solution is to manipulate the kernel
socket parameters to artificially increase TCP window size
for high-latency routes beyond its default value that is mostly
geared towards small scale LAN and WAN setups. However,
this may be a problematic solution in practice. For one, the
low-level interface may not be enabled for user-level codes,
and, for another, a single optimal value may not exist for long
lasting transfers with changing network load along the way.
For such situations, a more adaptive scheme is appropriate and
this is the solution we take by switching to existing network
transfer tools. In particular, either Streaming TCP (STCP)
or Globus end points offer us an efficient and functional
alternative to adaptive shape the protocol response to a chang-
ing network load as well as maximizing the number parallel
streams encapsulating the data packets while assembling them
properly at the receiving site to accommodate varying network
speeds experienced by individual packets. It is worthwhile
to point out the versatility of incorporating Globus that has
many additional features and could accommodate multi-source
fetches transparently.

Finally, we also allow incorporating external commands as
SABATH fetchers whereby we export the protocol details, data
flow management and potential authentication to a specific tool
efficiently targeting external storage repositories. Currently,
we expose Command Line Interface (CLI) to aws-cli for
accessing Amazon Web Services (AWS) S3 buckets but we
also make available schemes for scp, rsync, curl, wget.

VI. STORAGE, ASSET CACHING, AND FILE SYSTEM
MAINTENANCE TASKS

To underscore the importance of comprehensive manage-
ment of storage devices in the context of large data collections,
we first start with a simple use case of managing allocations
and available storage pools and linking those with the in-
coming assets made available through any of the available
SABATH fetchers described in Section V. Of particular im-
portance for long lasting data transfers is anticipating the total
size of the incoming data volume and pro-actively managing
the fetch operation only if sufficient space is available on the
destination device or the file system mount point.

There are however a number of scenarios that have to be
handled outside of direct control of SABATH because they
need more comprehensive treatment across hardware and/or
software layers often beyond purview of a strictly user-level
application. One such service is creating and maintaining
reliable device-compounding overlays that appear as a single
mount point volume. This functionality is much better served
with Linux’ Logical Volume Manager (LVM) because its
API surface spans the traditional UNIX service calls and is
easily outside our own control. Indeed, it makes unreasonable
for us to expect projects external to SABATH to implement
their storage access through our API and therefore we remain
agnostic towards the underlying device volumes’ managers
in either kernel or user space. This addresses the potential
issues with allocation of sufficient space for large models
such as those based on DDNs or LLMs or the data sets
they need for training even when applying modern model
scaling principles [2]. An even more reliable way satisfying
the bandwidth-demanding model training or inference tasks is
to coalesce storage devices while maintaining the API surface
of a modern Linux kernel. The most common example that
we rely on the use of the appropriate level of RAID that
has the potential to make regular HDDs to appear as fast
as SDDs or NVMe devices. Another aspect of disk volume
management is maintaining sufficient bandwidth to and from
the storage media to accommodate both network transfers,
training, and inference data traffic. This is also relegated to
the kernel space and thus lower level layers of the middleware
and operating system software stack. In a similar vain, we do
not yet include support for versioning and backups, which
are now well served by system-level services such as file
system snapshots (available, for example, in ReiserFS and
ZFS) and its semantically weaker relative: journal-based file
system transactions. Finally, the versioning service of large
digital collection of assets is now relegated to the tools akin
to Git LES that remain very efficient at handling this type of

tasks. However, there is still an important task left to SABATH,
a user-level tool, that has much better view of the assets than
a low-level service ever would. This is the case for avoiding
both downloading and storage of multiple copies of the same
item. Some storage systems offer deduplication functionality
but it is mostly maintained are relatively low-level such as file
system blocks. While partially effective, it does not address the
problem of wasted bandwidth, which occurs before the entire
asset is stored locally on the device to be identified as an
extraneous replica. But SABATH already identifies potential
duplication by hashing the data sources without the user assis-
tance of identifying the potential for unnecessary download.
Even beyond, source-based identification, we also use content-
based hashing so the repeated data can be recognized even
if its available from multiple different sources. Additionally,
multi-source assets gives us the potential for parallel fetching
already described in detail in Section V.

VII. COMPUTE AND COMMUNICATION EFFICIENCY

The modern computing hardware that we consider the main
target to use for our training and inference tasks spans CPUs,
GPUs, and FPGAs as well as specialized hardware designed
in recent years for a mix of HPC and ML/AI workloads such
as GraphCore’s dataflow processing IPUs or Cerebras’ Wafer
Scale Engine chips. There is clearly a need to address the
complexities associated with programming such a wide range
of platforms that differ substantially in the underlying architec-
ture, suitable programming model, and vendor-supplied soft-
ware stack for implementing and deploying scientific codes.
To that end, high-level frameworks abstract away a lot of the
underlying difficulties in matching the mathematical models
with the software stack that targets these various hardware
pieces as we show in Figure 1.

Along the same lines, the efficient utilization of the com-
munication interconnect hardware requires use the vendor-
specific API for the particular network, be it NVIDIA’s Mel-
lanox Infiniband or node-level NVLink with an exception of
generic GigE infrastructure but not its HPC variants such as
Cray/HPE Slingshot. This is overcome in a similar manner
as is the case for the variety of compute hardware: it starts
by generalizing the interface to be widely applicable even
at low-level of moving rudimentary data across the compute
cluster while retaining the efficiency by keeping the generic
functionality close to the capabilities of the Network Interface
Card (NIC) instances and the switches that connect them. An
example of such API definitions are Message Passing Interface
(MPI), NVIDIA Collective Communication Library (NCCL),
and OpenShmem. Still, while these interface definitions are
both expressive and efficient, their abstraction is too low to
succinctly express the common patterns in distributed training
and inference scenarios, that need higher-level means of per-
forming the basic collective reductions commonly occurring
in gradient applications on the models’ weight parameters.
An example of such a highly abstract and yet expressive
framework is Horovod [14]. These abstraction layers are
illustrated in Figure 1.

In summary, we support SABATH the entire software stack
that allows efficient hardware utilization, be it the compute
units or the interconnect. This comes at the cost of wide
ranging and complex dependence structure for the required
libraries, tools, and system extensions. A comprehensive way
of handling this is detailed in Section VII and here we
only note the ease of deployment that is the aim of our
implementation.

VIII. USE CASE STUDIES

In Sections III, V, VI, and VII, we presented in general
terms both the motivation and overarching design decisions
of our platform for FAIR asset management. In what follows,
we present how these generic guidelines apply to a specific
context of a surrogate model training in a strictly science-
driven scenario.

A. CosmoFlow Surrogate Model

CosmoFlow [15] is pre-trained surrogate model specialized
for analysis of large, 3D cosmological datasets. By design,
the model structure lends itself well to scalable execution
on High Performance Computing (HPC) and supercomputing
clusters while using the TensorFlow framework for express-
ing and updating its DDN structure and weights. Unlike its
proto-designs, in its current form, the model’s structure was
redesigned, which enabled the new design to accept suitably
larger problem sizes. In fact, the most recent input sets
measure up to 128 voxels. The output directly estimates three
relevant cosmological parameters.

The initial performance tuning of the model was performed
on CPUs only but it relied on vendor-optimized DDN kernels
available in the relevant component of Intel’s Math Kernel
Library (MKL). More specifically, the underlying model is
comprised of 3D Convolutional Neural Networks (CNN).
Additionally, the scaling is enabled through the use of MPI
and additional efficiency was afforded by tight integration with
the Cray Programming Environment and its Machine Learning
plugin, which enable very efficient utilization of the Cray
hardware platform.

The ultimate test of CosmoFlow came in as the parallel
efficiency was delivered during large scale tests on Cori
supercomputer at the NERSC supercomputing facility. In
particular, the global performance level of 3.5 Pflop/s in single
precision arithmetic was demonstrated in the capability mode
of execution while confirming to the data parallel training
paradigm. The physical hardware comprised 8192 Cori Intel®
Xeon Phi™ processors (KNL). It is also worth noting, that
even at these unprecedented (at the time) node counts, the
model’s convergence achieved, and, equally important, its
ability to make accurate predictions was also ascertained.

In terms of domain science, this enhanced version of the
model enabled detailed analysis of dark matter distributions
in three dimensions.

B. CosmoUniverse Dataset

The CosmoUniverse dataset, weighing in tens of GBs in
size, was used with the CosmoFlow model for training. The

origin of the dataset traces back to state-of-the-art simulations
of cosmological scale phenomena. The most relevant three
parameters describing the dark matter phenomena and macro
scale were varied for best training efficiency.

Nearly 10,000 cosmological simulations were performed
and they involved modeling the n-body interactions focusing
on dark matter. As a preprocessing step, the output data
from these simulations were organized into a 3D histogram,
that showcased a large number of particles’ interactions. The
simulations were performed inside 512 x 512 x 512 cubes, and
were sampled at four distinct red-shift stages.

It is recommended by the authors to utilize their Globus
end point for downloading the entire data set due to its
size and storage. By comparison, use the wget fetcher is
significantly slower due to the combination of reasons detailed
in Section V. The primary data layout inside the dataset is
fully managed by the HDFS5 format and its container structure
fully capable of handling both the size and dimensionality
of the data without any loss of information. In particular,
each universe configuration and simulation result corresponds
directly to an HDFS5 file of size 1 GB. Furthermore, each file
contains a large number of descriptive attributes, that may be
readily interpreted by the domain scientists. The examples
include 'dataset_tag’, 'universe_tag’, 'seed9’, 'namePar’,
‘physPar’, ‘unitPar’, ‘redshifts’, and ‘full’. Each of these has
a unique role in the simulation and functions as feedback for
training the models. Further details are beyond the scope of
this writing.

More specifically, the statistics of the dataset can be char-
acterized by uniform variation around a mean value for each
of the cosmological parameters, with a spread value of 30%.
These particular parameters have their labels stored inside the
dataset as both the normalized unit values contained fully
inside the (—1,1) range and also as their counterparts taken
directly from the physics of the problem. This allows for easy
cross-correlation between the ab initio physics model and data-
driven DDN model. Additionally, they allow for reflecting
these numbers directly to the values injected into the original
simulations. It was observed that this type of normalization
is particularly beneficial for training machine learning models
targeting scientific applications.

Also contained in the dataset are several specific parameters
that vary across each simulated universe instance and they
capture four distinct red-shift snapshots. More specifically,
the cosmological parameter €2,,, fluctuates around 0.30 point
with a deviation value of £30%. On the other hand, the
physical simulation parameter {27 is computed as 1 — €,
which corresponds to the flat Universe hypothesis. Yet another
parameter, og, oscillates around value 0.80, also having with
a 30% variation. The Nype. parameter remains at 0.96 with
a 30% fluctuation. €2, is a fixed parameter at 0.045. The
parameter H, varies around a mean of 70 with a 30%
deviation. The individual box size was calculated using the
formula 512 x H;/70. Finally, the dataset also includes four

red-shift stages, which are 0, 3, 3, and 3.

IX. ENVIRONMENTS FOR BUILDING AND LAUNCHING

The SABATH project uses plain Python 3 for launching sub-
process shells thus not imposing undue requirements on the
default setup of the user. However, the supported assets include
the ML/AI models have their own programming language and
dependencies required for successful launch. The languages
that are currently supported include C/C++ and Fortran. In
turn, the specific dependencies of the ML/AI models are
currently managed using two external package managers:
Anaconda and PyPI. These choices ensure broad applicability
across surrogate scientific models and allows our project
to maintain an important balance between its performance,
versatility, and ease of development, thus carefully catering to
various needs of the majority of ML/AI models.

A. Examples of Handling Environment Dependencies

1) sciml-bench (CloudMask) and CosmoFlow Models: For
the SciML-bench [16] and CosmoFlow models, the envi-
ronment dependencies are provided by both the Anaconda
and PyPIP main repositories. The dependencies satisfied by
Anaconda repo include several packages, including but not
limited to bokeh, cuDNN, mpid4py, NCCL, PyTorch, and
TensorFlow-GPU. Most notably, the nvce-linux-64 package
configures the environment to be “CUDA-aware,” a critical
feature for ML/AI models that use GPU computation and
need to communicate directly between the GPUs using CUDA
pointers. The Horovod and NCCL dependencies ensure ef-
ficient distributed deep learning, while the Gloo library en-
sures highly optimized collective communications in PyTorch.
The requirements satisfied by PyPIP repo supplement the
Anaconda dependencies with additional packages such as
matplotlib, scikit-learn, pandas, and wandb. Among these,
Horovod-specific requirement is to build it directly from the
source code, which ensures the compatibility of horovod with
the other dependencies such as tensorflow, PyTorch, MPI,
Gloo, MxNET.

2) MiniWeatherML: MiniWeatherML model has a distinct
set of dependencies that are managed by Anaconda, including
hdf5, curl, zlib, and netcdf4, with netcdf4 particularly chosen
for compatibility with GNU GCC version 9.5.0. This model
also requires specific modules such as gcc, CUDA, CMake,
and Open MPI. The Open MPI requires specific compilation
flags —with cuda and —with gdrCopy, thus enhancing the
performance of MPI when performing communication directly
involving GPU memory. MiniWeatherML also depends on
several more specific modules, including YAKL (Yet Another
Kernel Launcher), PONNI, yaml-cpp, and PnetCDF. They
provide additional functionality for kernel launching, neural
network inferencing, and parallel I/O operations.

B. Special Handling of Dependencies

There are specialized dependencies are only required by few
ML models managed and supported by SABATH. Due to their
complexity, they are discussed separately in more detail here.
Also, one of the main dependencies across many models is
Horovod which is discussed first.

1) Horovod — a Distributed Deep Learning Training Frame-
work: Horovod package is required by both SciML-bench
(and CloudMask speifically) and CosmoFlow. Horovod is a
distributed deep learning framework for training across large
compute cluster with GPU accelerators. The package supports
multiple machine learning platforms such as TensorFlow,
Keras, PyTorch, and Apache MxNet. The main objective of
Horovod developers was to simplify the process of scaling
a single-GPU training across multiple GPUs in parallel, thus
delivering crucial optimization to the distributed deep learning
process.

Inside SABATH-provisioned environments, Horovod is built
with both Conda and PyPI resolving the dependencies. The
specific installation requirements can be found on their re-
spective websites. Here, we give only a brief overview of
the installation process and the corresponding requirements
for building Horovod with the GPU support through the
combination of downloads from either Anaconda or PyPI
repositories.

a) Installation requirements: Horovod requires: GNU
Linux or macOS, Python 3.6 and above, GNU g++ version
5 or above (or an alternate compiler supporting the C++14
standard), CMake 3.13 or newer, TensorFlow 1.15.0 or above,
PyTorch 1.5.0 and above, or MxNet 1.4.1 and above. Option-
ally MPI can also be used. For best performance on multiple
GPUs, NCCL 2 is recommended. When installing Horovod
with TensorFlow 2.10 or later, a compiler that supports the
C++17 such as GNU g++ version 8 or newer is needed.

b) Building Horovod with Conda and PyPIP:: building
Horovod in a Conda environment with GPU support involves
several steps, including the installation of the NVIDIA’s
CUDA Toolkit manually due to the lack of NVCC in the
Conda cudatoolkit package. The Conda environment.yml file
that is used to specify as many dependencies as possible in
a single command, while the requirements.txt file lists all
dependencies that need to be satisfied by PyPI, including
Horovod itself. Additional packages for enabling GPU and
CPU resource monitoring are enable by Google’s Tensor-
board: these include jupyterlab-nvdashboard and jupyter-
tensorboard, and they can also be added to the require-
ments.ixt file. After defining all these necessary dependen-
cies (they are associated with the SABATH meta-data in
the appropriate JSON files), the Conda environment can be
created using a trivial set of build commands, thus creating
the environment so it can be setup using the conda activate.

When building the Conda environment, the SABATH-
provisioned build script sets the relevant Horovod’s build vari-
ables, and creates the Conda environment, and subsequently
activates the environment in order to initiate the build of
JupyterLab with any additional extensions. To verify the
Conda environment, the horovodrun —check-build command
can be used to ensure the state of Horovod’s build and
its correctness with support for the required deep learning
frameworks and their controllers.

2) Open MPI with support for CUDA and GPU Direct:
This is an important use case for SABATH-managed deploy-

g &
g
)

Loss or error value
2
8
g time (s

o

Training epoch

—— Training time —— Loss. Mean absolute error —— Value loss == Value Mean absolute error

Fig. 2. CosmoFlow results on 8 NVIDIA A100 GPUs.

ments. Namely, the ability to pass CUDA pointers as MPI
buffers combined with direct transfers between GPU memory
spaces using GDRCopy inside UCX. This scenario is partic-
ularly beneficial for the MiniWeatherML model that uniquely
requires a specialized build of CUDA-aware MPI. Further-
more, incorporating GDRCopy inside the build of the UCX
layer may see drastic communication bandwidth improvements
especially in configuration that connect GPUs directly to NICs
rather than shuttling the data through interactions with the
CPUs. Such build configurations are also supported in order
to satisfy the particular model’s requirements meta-data.

To test this deployment scenario, we used Open MPI version
tagged 4.1.6alphal, which is based on the development
branch of the project rather than any of the recently publicly
released versions. The Open MPI was configured and built on
an NVIDIA DGX V100 node. For testing purposes, CUDA
11.8.0 toolkit was used for the build. The GDRCopy deployed
was using source code of the matching NVIDIA’s kernel driver
for CUDA. Instead of libfrabric, the build has been configured
to use UCX as the communication layer by simply supply —
with-ucx flag during the configuration stage. It also included
support for the CMA kernel feature, IPv6, and included only
C and Fortran bindings. The build used GNU GCC 9.5.0.

Furthermore, the development snapshot of Open MPI had
official standard API compatible with version 3.1.0, and the
support for multi-thread mode was enabled (MPI THREAD
MULTIPLE mode). Some features were left off: no support
heterogeneous systems, no MPI 1 compatibility, and no sup-
port for neither fault tolerance nor check-pointing.

Based on our performance tests, such custom builds of
Open MPI, and in particular those that combine CUDA-
aware functionality with GDRCopy inside UCX are critical
for optimal performance on multi-GPU systems with fast on-
node interconnect such as NVLink.

X. RESULTS FROM A SAMPLE EXPERIMENT

The experiments were performed on Rocky Linux release
9.2 (Blue Onyx) with kernel 5.14.0-284.18.1.e19_2. The CPU
was configured in two socket each featuring 64-core AMD
EPYC 7742. The system also featured 8 GPUs from NVIDIA,
model Ampere A100 SXM4 with 80 GB memory and NVLink
system interconnect for the accelerators.

Figure 2 shows results from a run using the CosmoFlow
model and one of its smaller data sets. The essential metrics
from the training experiment are recorded collectively are
charted simultanously with double y-axis to reflected different
scales from loss and error values on the left axis and time-
per-epoch on the right axis.

REFERENCES

[1] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg et al., “The FAIR
guiding principles for scientific data management and stewardship,”
Scientific Data, vol. 3, no. 160018, Mar. 2016. [Online]. Available:
https://doi.org/10.1038/sdata.2016.18

[2] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural
language models,” arXiv, vol. 2001, no. 08361, Jan. 2020.

[3] P. Luszczek and C. Brown, “Surrogate ML/AI model benchmarking
for FAIR principles’ conformance,” in 2022 IEEE High Performance
Extreme Computing Conference (HPEC). 1EEE, 2022, pp. 1-5.

[4] R. C. Merkle, “Method of providing digital signatures,” 1982, US patent
4309569 published Jan 5, 1982, assigned to The Board of Trustees of
the Leland Stanford Junior University.

, “A digital signature based on a conventional encryption function,”
in Advances in Cryptology — CRYPTO ’87. Lecture Notes in Computer
Science, vol. 293, 1988, pp. 369-378.

[6] G. Fox and S. Jha, “Understanding ML driven HPC: Applications
and infrastructure,” in IEEE eScience 2019 Conference, San Diego,
California, 2019, https://escience2019.sdsc.edu/.

, “Learning everywhere: A taxonomy for the integration of machine
learning and simulations,” in IEEE eScience 2019 Conference, San
Diego, California, 2019, https://arxiv.org/abs/1909.13340.

[8] G. Fox, J. A. Glazier, J. Kadupitiya, V. Jadhao, M. Kim, J. Qiu, J. P.
Sluka, E. Somogyi, M. Marathe, A. Adiga, J. Chen, O. Beckstein, and
S. Jha, “Learning everywhere: Pervasive machine learning for effective
high-performance computation,” in /PDPSW Workshops: HPDC Work-
shop at IPDPS, Rio de Janeiro, Brazil, 2019, https://arxiv.org/abs/1902.
10810.

[9] M. F. Kasim, D. Watson-Parris, L. Deaconu, S. Oliver, P. Hatfield, D. H.

Froula, G. Gregori, M. Jarvis, S. Khatiwala, J. Korenaga, J. Topp-

Mugglestone, E. Viezzer, and S. M. Vinko, “Up to two billion times

acceleration of scientific simulations with deep neural architecture

search,” arXiv [stat. ML], 2020, http://arxiv.org/abs/2001.08055.

J. C. S. Kadupitiya, G. C. Fox, and V. Jadhao, “Machine learning

for performance enhancement of molecular dynamics simulations,” in

International Conference on Computational Science ICCS2019, Faro,

Algarve, Portugal, 2019, http://dsc.soic.indiana.edu/publications/ICCS8.

pdf.

A. Moradzadeh and N. R. Aluru, “Molecular dynamics properties with-

out the full trajectory: A denoising autoencoder network for properties

of simple liquids,” J. Phys. Chem. Lett., vol. 10, no. 24, pp. 7568-7576,

Dec. 2019, available: http://dx.doi.org/10.1021/acs.jpclett.9b02820.

Y. Sun, R. F. DeJaco, and J. I. Siepmann, “Deep neural network learning

of complex binary sorption equilibria from molecular simulation data,”

Chem. Sci., vol. 10, no. 16, pp. 4377-4388, Apr. 2019, http://dx.doi.org/

10.1039/c8sc05340e.

F. Hise, I. F. Galvan, A. Aspuru-Guzik, R. Lindh, and M. Vacher,

“How machine learning can assist the interpretation of ab initio

molecular dynamics simulations and conceptual understanding of

chemistry,” Chem. Sci., vol. 10, no. 8, pp. 2298-2307, Feb. 2019,

http://dx.doi.org/10.1039/c8sc04516j.

A. Sergeev and M. D. Balso, “Horovod: Fast and easy distributed deep

learning in TensorFlow,” arXiv, vol. 1802.05799, 2018.

A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,

L. Shao, S. He, T. Karna, D. Moise, S. J. Pennycook, K. Maschoff,

J. Sewall, N. Kumar, S. Ho, M. Ringenburg, Prabhat, and V. Lee,

“CosmoFlow: using deep learning to learn the universe at scale,” arXiv,

vol. 1808, no. 04728, Aug. 2018, revised 9 Nov 2018.

J. Thiyagalingam, G. von Laszewski, J. Yin, M. Emani, J. Papay,

G. Barrett, P. Luszczek, A. Tsaris, C. Kirkpatrick, F. Wang, T. Gibbs,

V. Vishwanath, M. Shankar, G. Fox, and T. Hey, “Al benchmarking

for science: Efforts from the MLCommons science working group,” in

Proceedings ISC 2022 Workshops, Lecture Notes in Computer Science,

vol. 13387, 2022.

[5]

[7]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

