
G-MAP: A Graph Neural Network-Based
Framework for Memory Access Prediction

Abhiram Rao Gorle∗, Pengmiao Zhang†, Rajgopal Kannan‡, Viktor K. Prasanna†
∗Indian Institute of Technology Madras, Chennai, India

†University of Southern California, Los Angeles, California
‡DEVCOM Army Research Lab, Los Angeles, California

Contact: gabhiram@smail.iitm.ac.in, {pengmiao, prasanna}@usc.edu, rajgopal.kannan.civ@mail.mil

Abstract—Memory access prediction is a crucial problem in
data prefetchers, as it helps us improve memory performance and
reduce latency in computing systems. Existing works model the
problem as a sequence prediction problem. This can be limited
in its ability to capture complex patterns and dependencies in
memory access behavior. In recent years, Graph Neural Networks
(GNNs) have emerged as a promising technique for modeling and
predicting complex relationships in graph-structured data. In this
paper, we introduce G-MAP, a novel Graph Neural Network-
based framework for Memory Access Prediction. First, we pro-
pose Mem2Graph, a novel approach mapping a memory access
sequence to a graph representation, capturing both the spatial
and temporal locality in the sequence. Second, we implement
various GNNs for G-MAP, including Graph Convolutional Net-
work (GCN), Gated Graph Sequence Neural Network (GG-NN),
and Graph Attention Network (GAT). Those models take the
graph generated from Mem2Graph as input and predict future
memory address jumps (deltas). We evaluate the effectiveness
of G-MAP using the SPEC 2006 benchmark. G-MAP using GG-
NN shows the highest performance among all models, achieving
0.7526 F1-Score on the average, which is 10.77% higher than the
Multi-Layer Perceptron baseline.

Index Terms—memory access prediction, graph neural net-
work

I. INTRODUCTION

Memory latency is a major bottleneck in computer system
performance, particularly due to the ’memory wall’ prob-
lem [1], [2]. The memory wall problem arises as a result of the
disparity between the rapid advancement of processor speeds
and the enhancement of memory access speeds. As a result,
the processor spends a significant amount of time waiting for
data to be fetched from the memory, causing a slowdown in
overall system performance.

Prefetching plays a vital role by accurately predicting future
memory accesses, allowing preemptive data fetching to hide
latency and enhance overall system performance [3]–[5]. The
central aspect of prefetching is to be able to accurately
predict future memory accesses as accurate memory access
predictions provide valuable information for prefetching [6]–
[8]. By accurately predicting upcoming memory accesses,
prefetchers can initiate early data fetching and bring data into
the cache or closer levels of the memory hierarchy before
they are explicitly requested. This can hide the memory access
latency and improve overall system performance.

ML-based algorithms have gained traction for the problem
of memory access prediction. Rahman et al. [9] employed lo-

gistic regression and decision trees for the classification of pat-
terns. In the realm of sequence modeling, the Long Short-Term
Memory (LSTM) model has gained significant recognition due
to its exceptional performance, as evidenced by a number of
studies [10]–[13]. Prior investigations have also delved into the
amalgamation of LSTM with existing prefetchers [6], meta-
learning approaches [8], and attention mechanisms [14]. In a
recent development, Zhang et al. [15] proposed TransFetch, an
innovative framework that incorporates fine-grained memory
address input and an attention-based model for the prediction
of multi-label memory access, yielding state-of-the-art results
surpassing other existing methodologies.

Recently, Graph neural networks (GNNs) [16] have become
a crucial tool across multiple fields due to their ability to model
complex relationships in graph structures. They have found
applications in social network analysis [17], recommendation
systems [18], natural language processing [19], sequence pre-
diction [20], image classification [21], and more. In the context
of memory access prediction, GNNs offer promising avenues
by representing memory accesses as graphs and capturing
dependencies between them to improve prediction accuracy.

Nevertheless, implementing GNNs for memory access pre-
diction is a challenging task. First, designing effective graph
representations is a significant challenge when applying GNNs
to memory access prediction. Memory access patterns inher-
ently possess complex dependencies and interactions among
memory locations, making capturing such relationships in
the graph representation essential. Additionally, incorporating
spatial patterns within a page and temporal patterns across
pages further adds to the complexity of designing an accurate
graph representation. Another challenge is to ensure that GNN
architectures effectively capture the dependencies between
vertices in the memory access graph, enabling accurate pre-
dictions. Deciding on the appropriate GNN layers, aggregation
functions, and message-passing mechanisms to capture long-
range dependencies becomes an important task.

In this paper, we introduce G-MAP, a novel Graph Neural
Network (GNN)-based framework for memory access predic-
tion. Our approach begins by Mem2Graph, a novel approach
that maps a memory access sequence to a graph representation.
We map a window of memory access sequence to a directed
graph, with each memory access as a node. To capture the
temporal locality, we introduce edges from a node (repre-

senting memory access) to it’s temporally subsequent memory
accesses. To capture the spatial locality, we also link the nodes
representing memory addresses on the same page as discussed
further in Section IV-C. Our intent is to capture the inherent
dependencies and relationships between memory locations by
constructing the graph.

Subsequently, we implement multiple GNN models that
use the generated memory access graphs as input and predict
future memory access deltas (jumps of memory addresses) as
output. These models include Graph Convolutional Network
(GCN) [22], Gated GNN (GG-NN) [20], and Graph Attention
Network (GAT) [23]. We also implement various aggrega-
tion functions including Sum, Max, and Mean for the G-
MAP framework. Using SPEC CPU 2006 [24], we evaluate
the models and aggregation functions and demonstrate the
effectiveness G-MAP in memory access prediction.

Our main contributions can be summarized as follows:
• We propose G-MAP, a novel memory access prediction

framework based on graph neural networks.
• We propose Mem2Graph, a novel graph representation

of memory access sequences. By mapping each memory
access as a node, connecting consecutive accesses and
accesses on the same page, Mem2Graph captures both
the spatial and temporal locality in memory accesses.

• We implement various GNN models (including GCN,
GG-NN, and GAT) and aggregation functions (Sum, Max,
and Mean) for the G-MAP framework.

• We demonstrate the effectiveness of the proposed frame-
work using the SPEC 2006 benchmark. Results show G-
MAP using GG-NN achieves the highest performance
among all models, achieving F1-score at 0.7526, which
is 10.77% higher than the MLP baseline.

II. BACKGROUND

A. Memory Access Prediction

Memory access prediction is a vital aspect of computer
architecture that aims to enhance the overall performance of
memory systems. By accurately anticipating memory accesses,
systems can fetch the required data from memory, mitigating
the latency associated with memory operations. This technique
finds applications in areas such as data prefetching, where
predictions are utilized to anticipate future data demands and
prefetch the required information into the cache hierarchy.
Prior works have explored different prediction methods, in-
cluding pattern-based predictors [25], stride predictors [26],
and neural network predictors [6], [8], [27], among others.

A general problem definition for memory access prediction
is as follows. Let Xt = {x1, x2, ..., xN} be the sequence of
N history block addresses at time t. Let Yt = {y1, y2, ..., yk}
be a set of k outputs associated with future k block addresses.
A general goal is to approximate P (Yt|Xt), the probability
that the future addresses Yt will be accessed given the history
events Xt. Because memory access prediction is modeled as a
classification problem, the number of classes will be extremely
large when considering each unique block address as a class. A

commonly used technique to reduce the number of classes is to
work on block deltas instead of block addresses directly [27],
[28].

A block delta is defined as the block address difference
between consecutive memory accesses. A Machine Learn-
ing (ML) model can be developed to learn this probability
P (Yt|Xt). The vector of history accesses Xt is defined as
the input feature, and the accessed future addresses Yt are
defined as the output labels. An ML model can be trained
to approximate the true probability using samples of input
features and output labels from a memory trace.

B. Locality of Reference

The spatial locality of memory reference refers to the
property that access to a memory location indicates that a
physically nearby location will be accessed with high proba-
bility in the near future [29]. As shown in the access sequence
1 of Figure 1, the subsequent memory access is one block away
from the current block A. Spatial locality gives the insight that
predicting strategies can perform well, even focusing only on
a small fixed-size section.

The temporal locality of the memory reference means that
the current memory access will likely be accessed again in
the near future [29]. As is shown in the access sequence 2 of
Figure 1, the recurrent accesses to block A, B, and C illustrate
temporal locality, which provides clues for predicting memory
accesses by recording and replaying. Sequence 3 of Figure 1
shows an example of an irregular pattern that hard to be detect
using heuristic rules.

Fig. 1: Spatial and temporal locality in memory accesses.

C. Graph Neural Network

Graph Neural Networks (GNNs) are proposed for repre-
sentation learning on graphs G (V, E). GNNs can learn from
the structural information and vertex features and embed
this information into a low-dimension vector representation,
which can be used for many downstream tasks, such as node
classification, link prediction, graph classification.

TABLE I: Graph Notations

Notation Description Notation Description

G(V, E) input graph vi ith vertex
V set of vertices eij edge from vi to vj
E set of edges L number of layers

N (i) neighbors of vi hl−1
i feature of vi at l

W l weight matrix of layer l σ() activation function

GNNs follow a message-passing paradigm (shown in Algo-
rithm 1), which has two stages as described below.
Aggregate: Using the aggregate() function, each vertex recur-
sively aggregates the feature vectors from the neighbours. The
Aggregate function can be represented as follows:

al
v = Aggregate

(
hl−1
u : u ∈ N (v)

)
(1)

where alv is the aggregated vertex feature of the neighbour-
hood, hl−1

u is the vertex feature in neighbourhood N (.) of
vertex v.
Update: Using the update() function, each feature vector is
updated to generate the updated feature vector. The Update
function can be represented as follows:

zl
v = Update

(
al
v,W

l
)
,hl

v = σ
(
zl
v

)
(2)

where hl
v is the vertex representation at the lth layer and σ(.)

denotes the activation function.

Algorithm 1 GNN Aggregate-Update

Input: Graph G(V, E), vertex features:
{
h0
1,h

0
2, . . . ,h

0
|V|

}
Output: Output vertex features

{
hL
1 ,h

L
2 , . . . ,h

L
|V|

}
1: for l = 1 . . . L do
2: for for each vertex v ∈ V do
3: al

v = Aggregate
(
hl−1
u : u ∈ N (v)

)
4: zl

v = Update
(
al
v,W

l
)

, hl
v = σ

(
zl
v

)
5: end for
6: end for

III. PROBLEM FORMULATION

Let Xt = {x1, x2, . . . , xN} denote a sequence of
N history block addresses at time t, where xt ={
b1t , b

2
t , . . . , b

m
t , . . . , bm+n

t

}
represents the block address with

m-bit page address and n-bit block (cache line) index at time
t. Let Dt = {d1, d2, . . . , dk} be the set of k outputs associated
with the unordered future k block deltas to the current block
address. Our problem can be presented as: a) Map the input
sequence Xt to a graph representation G (V, E); b) Build a
GNN-based predictive model that takes G (V, E) as an input
and predicts the future deltas Dt. The final predicted addresses
D̃t =

{
d̃1, d̃2, . . . , d̃k

}
can be computed by the addition of

current block address and the predicted future deltas.

IV. APPROACH

A. Overall Approach
The first stage involves using the address segmentation

method proposed in TransFetch [30] to obtain the segmented
memory access sequence. This is followed by two main steps.
In the first step, we model this segmented memory access
sequence to a graph. This graph representation is the input
for our next step, the GNN-based predictor. This GNN-based
predictor takes in the graph representation as an input, and
outputs the future delta bitmaps. The overall approach is
shown in Figure 2.

B. Memory Access Sequence Input

Consider a block address at =
{
b1t , b

2
t , . . . , b

m
t , . . . , bm+n

t

}
with an m-bit page address and n-bit block (cache line) index.
This block address can be split into K =

⌈
m+n

s

⌉
, (where ⌈.⌉

denotes the ceiling function) with at least K − 1 segments
having s bits each, and the last segment containing the remain-
ing bits. Each of these s segments can be represented in an
integer within [0− 2s). This range can be tuned appropriately
for direct model input. Each individual memory address can
then can be represented as a vector in dimension K. The key
intuition is that address segmentation avoids token dictionaries,
helps in saving storage space, and can process unknown input
classes [15].

We now look at the block address with a 7-bit page address
and a 3-bit block index from Figure 2. If the block index size
is used as the basis for segmentation, this block address can be
split to K =

⌈
7+3
3

⌉
= 4 segments. Among these 4 segments,

3 have 3 bits each and the remaining segment has 1 bit. In this
way, every segment can be represented with an integer ranging
from 0 to 7 (both included) and each memory address would
now be a vector in dimension 4. The sequence of segmented
memory accesses is the input for the next stage.

C. Mem2Graph: a Graph Representation Mapping

We transform the input memory access sequence into a
directed graph representation G (V, E), where a block address
xi with index i is mapped to a vertex vi ∈ V in the graph.
The attribute for a vertex vi would be the segmented address
vector of the block address xi.

The second stage of Figure 2 illustrates the construction of
the graph representation from a given sequence of memory
accesses. The dashed and plain arrows indicate the temporal
and spatial links, respectively. In order to capture both the
temporal and spatial locality of the memory accesses, we
construct the following links between the vertices:

• A vertex vi is linked to its successive vertex vi+1. This
link captures the temporal locality in the memory access
sequence.

• A vertex vi is linked to vertex vj , if index j is the lowest
integer that is greater than index i for which vi and vj
have the same page address. This link captures the spatial
locality in a memory access sequence.

For instance, in Figure 2, the address with index 1, (A, 5) is
connected to its successive address with index 2, (B, 3), and
the next address within the same page with index 5, (A, 2).
Similarly, the address with index 2(B, 3) is connected to the
addresses with index 3, (C, 1) and index 4, (B, 6). This way,
we construct a directed graph representation of the sequence
of segmented memory accesses, which will be the input for
our Graph Neural Network (GNN).

D. GNN-based prediction

After multiple iterations of the Aggregate-Update paradigm,
each vertex has an updated feature representation capturing
its local and contextual information. Some of the state-of-
the-art GNN models include Graph Convolutional Network

Fig. 2: The G-MAP framework: Memory accesses are mapped to a graph and processed by GNN for future access prediction.

(GCN) [31], Gated Graph Neural Network (GG-NN) [32], and
Graph Attention Networks (GAT) [33].

1) Graph Convolutional Network (GCN): The GCN pa-
per [31] analyzes graphs using its adjacency matrix. The self-
connections are added to the adjacency matrix A to ensure the
nodes are connected to themselves to get an updated adjacency
matrix, Ã. GCNs perform a localized convolutional operation
on each node and the layer-wise propagation rule in can be
expressed as:

h(l+1) = σ
(
Ãh(l)W (l)

)
where W (l) is a learnable parameter matrix and h(l) general-
izes the node features at any arbitrary layer l.

A degree matrix D̃ii is defined as shown:

D̃ii = Σj(Aij) (3)

where Aij is the element of the adjacency matrix representing
the connection between nodes vi and vj .

Using this degree matrix, an augmented adjacency matrix
is formulated using Â = D̃− 1

2 ÃD̃− 1
2 . The layer-wise propa-

gation rule can now be redefined as follows:

h(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2h(l)W (l)

)
(4)

Graph Convolutional Networks (GCNs) leverage localized
convolutional operations and information aggregation to learn
node representations effectively.

2) Gated Graph Sequence Neural Networks (GG-NN):
GG-NNs iteratively update the node representations based
on information from neighboring nodes using GRUs (Gated
Recurrent Units). The propagation rule for a single time step
can be expressed as:

h
(t)
i = GRU

(
xi, h

(t−1)
i

)
(5)

where h
(t)
i is the representation of node vi at time step

t, xi is its input feature vector, and h
(t−1)
i is the previous

representation of vi at time step t− 1.
The GRU consists of two gating mechanisms: an update

gate z and a reset gate r. These gates control the flow of

information by deciding how much of the previous state is
retained and how much of the new state is incorporated. Based
on the reset gate, the GRU computes the new candidate state
(h) as follows:

h
(t)
i = tanh

(
Wxi + U

(
r
(t)
i ⊙ h

(t−1)
i

))
(6)

where W , U are weight matrices, and ⊙ denotes element-
wise multiplication. Finally, the update gate is used to blend
the previous state and the candidate state, yielding the updated
node representation:

h
(t)
i =

(
1− z

(t)
i

)
⊙ h

(t−1)
i + z

(t)
i ⊙ h

(t)
i (7)

By doing this over multiple iterations, GG-NNs capture the
dependencies of the data.

3) Graph Attention Network (GAT): In GATs, attention
coefficients represent the importance of the neighboring nodes’
features in influencing a particular node’s representation. The
first step in the Graph Attention Layer involves applying
a linear transformation using a weighted matrix W to the
feature vectors of the nodes. Next, the attention coefficients
aij between nodes vi and vj are calculated as shown below:

aij = Softmax
(
LeakyReLU

(
Wa

T ·
[
Whl

i ⊕Whl
j

]))
(8)

where Wa ∈ R2d′
and W ⊆ Rd′×d are learned parameters,

d′ is the embedding dimension, and ⊕ is the vector concate-
nation operation. LeakyReLU is a leaky rectified linear unit
activation function. The final step involves aggregating this
information and passing it through an activation layer. The
propagation rule in a single graph attention layer is as shown:

h
(l)
i = σ

(
ΣjaijW

(l)h
(l−1)
j

)
(9)

where hi
(l) is the representation of node vi at the lth layer,

W (l) is the weight matrix at the lth layer, and σ denotes the
activation function.

After the GNN layer, all the feature vectors are aggregated
to a vector which becomes the input to the linear layers for
classification, which predicts the output probabilities of deltas.

(a) Precision

(b) Recall

(c) F1-score

Fig. 3: Multi-label memory access prediction performance of various GNN models under different aggregation approaches.

E. Aggregation Methods

In various learning tasks involving GNNs, an effective
aggregation of node features into a graph-level representation
via aggregation functions is necessary [34]. These are usually
simple functions designed such that the resulting hypothesis
space is permutation invariant. We use and compare the
performance of three aggregation functions: Sum, Max, and
Mean.

Sum =
∑

j∈N (i)

Wj · xj

Max = max
j∈N (i)

{Wj · xj}

Mean =

∑
j∈N (i) Wj · xj

|N (i)|

(10)

where N (i) is the neighborhood of node vi.

F. Delta Bitmap Output

The GNN layers take the memory graph generated
from Mem2Graph process as input. The labels are delta
bitmaps [15], which collects future memory access jumps
(deltas) to the current address and convert the deltas to a
bitmap. The bitmap can represent the appearance for a range of
deltas (e.g. ±128). In training, deltas appearing in a following
window of accesses will set a 1 in the bitmap corresponding
location, otherwise 0. In inference, the GNN models predict
the probability of each bit being 1 in the bitmap.

G. Loss Function

Using Delta Bitmap as labels, the prediction models are
trained for multi-label classification, each inference provides
multiple memory access delta predictions. We use the binary
cross-entropy loss to optimize the model, as shown below:

L = − 1

N

N∑
i=1

yi log (p (yi)) + (1− yi) log (1− p (yi)) (11)

where yi is the label and p (yi) is the probability that we
predict for sample i being True.

V. EXPERIMENTS

A. Experimental Setting

We evaluate our approach using the application traces
generated from benchmarks SPEC CPU 2006 [24]. After
skipping 1M instructions for warmup, we use the first 5M
instructions for training the model and the next 5M instructions
for evaluation. The benchmark statistics are shown in Table II,
including the unique number of block addresses, block address
deltas, and page addresses.

B. GNN Models Implemented

We implement the GNN models using PyTorch Geomet-
ric [35]. We train all the modes using Adam optimizer [36]
for 20 epochs, the batch size is 256. We set the memory access
sequence length as 10, including 9 history memory access ad-
dresses and 1 current memory address. We collect future deltas

TABLE II: SPEC 2006 Benchmark Memory Trace Statistics

Trace # Addr # Delta # Page
bwaves 236.2K 14.3K 3.7K

milc 169.9K 15.7K 19.8k
lbm 80.7K 0.5K 1.3K
astar 17.4K 11.2K 3.9K

sphinx 44.0K 9.7K 2.0K

within a page in a window of 128 future memory accesses.
We predict deltas in a range of ±128. The configuration is
shown in table III.

TABLE III: Configuration of the implemented GNN models

Model Layers Dimensions
GCN 2 GCNConv, 2 Linear (32,32,64,64)*

GG-NN 2 GatedGraphConv, 2 linear (32,32,64,64)
GAT 2 GATConv, 2 Linear (16×2,32×1,64,64)**

*Hidden dimension for (GNN 1, GNN 2, linear 1, linear 2).
**GAT layer is shown as dimension×heads.

C. Metrics

We evaluate the proposed approach using the following
metrics: precision, recall, and F1-score [37], to evaluate the
memory access prediction performance of the GNN models.

D. Results

Fig. 4: F1-score of the aggregation-tuned GNNs and MLP.

Fig. 5: Influence of model size on model performance.

1) Evaluation of Aggregations: We evaluate the perfor-
mance of Sum, Max, and Mean aggregation functions in vari-
ous GNN models for various applications. The precision, recall
and F1-score is shown in Figure 3. On average, GCN using
Sum, Max, and Mean as the aggregation functions achieves an
F1-score of 0.6476, 0.6594 and 0.6359, respectively. Similarly,

GG-NN achieves an F1-score of 0.7526, 0.715, and 0.7073,
respectively. Under similar settings, GAT achieves an F1-score
of 0.6721, 0.6424 and 0.6475, respectively. Overall, Max is
the best performing aggregator for GCN, and Sum is the best
performing aggregator for GG-NN and GAT.

2) Evaluation of GNN Models: Using the best-performing
aggregation functions explored above, the F1-score of all mod-
els the and applications are shown in Figure 4. We compare
the various GNN models as well as an MLP model that only
has two linear layers without graph neural network processing
steps. Result show that GG-NN achieves the highest average
F1-score across all applications at 0.7526, higher than GAT
at 0.6819, GCN at 0.6691, and MLP at 0.6794. GG-NN
shows 10.77% improvement compared with MLP without
graph mapping and graph-based processing.

3) Influence of GNN Model Sizes: We further explored the
influence of GNN model sizes to the prediction performance.
By tuning the number of model layes and dimensions, we
design four level of model sizes: 50K, 100K, 500K, and 1M
parameters. GG-NN outperforms GCN and GAT for all the
tested model sizes, demonstrating its high capacity in learn-
ing from streaming patterns in a graph. Notably, the model
performance does not always improve with larger model size.
Using GG-NN, a small model with 50K parameter achieves
the highest F1-score among the the models under various sizes.

VI. CONCLUSION

In this paper, we introduced G-MAP, a novel graph neural
network framework for the task of memory access prediction.
We represented the memory access sequences as graphs by
mapping each memory access as a node and linked both
the temporally subsequent memory access and the spatially
subsequent access within a page. We also implemented various
graph neural network models that take the graph representation
of the memory access sequence as input and predict the future
memory access deltas. G-MAP, using GG-NN as the backbone
achieves an F1-score of 0.7526 on average, which is 10.77%
higher than the MLP baseline without any graph mapping and
GNN layer. In the future, we will optimize the mapping from
memory accesses to graphs by introducing weights and types
in edges and building heterogeneous-edge graphs to better
capture the memory patterns.

ACKNOWLEDGMENT

This work was supported by Army Resarch Lab (ARL)
under award number W911NF2220159 and National Science
Foundation (NSF) under award number OAC-2209563.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[2] C. Carvalho, “The gap between processor and memory speeds,” in Proc.
of IEEE International Conference on Control and Automation, 2002.

[3] M. Dubois, M. Annavaram, and P. Stenström, Parallel computer orga-
nization and design. cambridge university press, 2012.

[4] S. P. Vander Wiel and D. J. Lilja, “When caches aren’t enough: Data
prefetching techniques,” Computer, vol. 30, no. 7, pp. 23–30, 1997.

[5] S. Byna, Y. Chen, and X.-H. Sun, “A taxonomy of data prefetching
mechanisms,” in 2008 International Symposium on Parallel Architec-
tures, Algorithms, and Networks (i-span 2008). IEEE, 2008, pp. 19–24.

[6] P. Zhang, A. Srivastava, B. Brooks, R. Kannan, and V. K. Prasanna,
“Raop: Recurrent neural network augmented offset prefetcher,” in The
International Symposium on Memory Systems, 2020, pp. 352–362.

[7] P. Zhang, R. Kannan, X. Tong, A. V. Nori, and V. K. Prasanna, “Sharp:
Software hint-assisted memory access prediction for graph analytics,” in
2022 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2022, pp. 1–8.

[8] P. Zhang, A. Srivastava, T.-Y. Wang, C. A. De Rose, R. Kannan,
and V. K. Prasanna, “C-memmap: clustering-driven compact, adaptable,
and generalizable meta-lstm models for memory access prediction,”
International Journal of Data Science and Analytics, pp. 1–14, 2021.

[9] S. Rahman, M. Burtscher, Z. Zong, and A. Qasem, “Maximizing hard-
ware prefetch effectiveness with machine learning,” in 2015 IEEE 17th
International Conference on High Performance Computing and Com-
munications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems, Aug. 2015, pp. 383–389.

[10] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz,
J. Chang, C. Kozyrakis, and P. Ranganathan, “Learning memory
access patterns,” CoRR, vol. abs/1803.02329, 2018. [Online]. Available:
http://arxiv.org/abs/1803.02329

[11] L. Peled, U. Weiser, and Y. Etsion, “A neural network memory prefetcher
using semantic locality,” arXiv preprint arXiv:1804.00478, 2018.

[12] Y. Zeng and X. Guo, “Long short term memory based hardware
prefetcher: a case study,” in Proceedings of the International Symposium
on Memory Systems, 2017, pp. 305–311.

[13] P. Braun and H. Litz, “Understanding memory access patterns for
prefetching,” in International Workshop on AI-assisted Design for Ar-
chitecture (AIDArc), held in conjunction with ISCA, 2019.

[14] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A hierarchical neural model of data prefetching,” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 861–873.

[15] P. Zhang, A. Srivastava, A. V. Nori, R. Kannan, and V. K. Prasanna,
“Fine-grained address segmentation for attention-based variable-degree
prefetching,” in Proceedings of the 19th ACM International Conference
on Computing Frontiers, 2022, pp. 103–112.

[16] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI open, vol. 1, pp. 57–81, 2020.

[17] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The world wide web
conference, 2019, pp. 417–426.

[18] W. Fan, Y. Ma, Q. Li, J. Wang, G. Cai, J. Tang, and D. Yin, “A
graph neural network framework for social recommendations,” IEEE
Transactions on Knowledge and Data Engineering, vol. 34, no. 5, pp.
2033–2047, 2020.

[19] L. Wu, Y. Chen, K. Shen, X. Guo, H. Gao, S. Li, J. Pei, B. Long et al.,
“Graph neural networks for natural language processing: A survey,”
Foundations and Trends® in Machine Learning, vol. 16, no. 2, pp. 119–
328, 2023.

[20] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

[21] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision gnn: An image
is worth graph of nodes,” Advances in Neural Information Processing
Systems, vol. 35, pp. 8291–8303, 2022.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[23] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[24] A. Jaleel, “Memory characterization of workloads using
instrumentation-driven simulation,” Web Copy: http://www. glue.
umd. edu/ajaleel/workload, 2010.

[25] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying mem-
ory access patterns for prefetching,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 513–526.

[26] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” in
Proceedings of the 24th annual international symposium on Computer
architecture, 1997, pp. 252–263.

[27] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
arXiv preprint arXiv:1803.02329, 2018.

[28] A. Srivastava, A. Lazaris, B. Brooks, R. Kannan, and V. K. Prasanna,
“Predicting memory accesses: the road to compact ml-driven prefetcher,”
in Proceedings of the International Symposium on Memory Systems,
2019, pp. 461–470.

[29] S. Kumar and C. Wilkerson, “Exploiting spatial locality in data caches
using spatial footprints,” in Proceedings. 25th Annual International
Symposium on Computer Architecture (Cat. No. 98CB36235). IEEE,
1998, pp. 357–368.

[30] P. Zhang, A. Srivastava, A. V. Nori, R. Kannan, and V. K. Prasanna,
“Fine-grained address segmentation for attention-based variable-degree
prefetching,” in Proceedings of the 19th ACM International Conference
on Computing Frontiers, ser. CF ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 103–112. [Online].
Available: https://doi-org.libproxy2.usc.edu/10.1145/3528416.3530236

[31] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2017.

[32] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” 2017.

[33] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2018.

[34] D. Buterez, J. P. Janet, S. J. Kiddle, D. Oglic, and P. Liò, “Graph neural
networks with adaptive readouts,” 2022.

[35] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[37] D. Powers, “Evaluation: From precision, recall and f-factor to roc,
informedness, markedness correlation,” Mach. Learn. Technol., vol. 2,
01 2008.

