Errant Beam Detection Using the
AMD Versal ACAP and Vitis Al

Anthony M Cabrera™”, Yigit A Yucesan”, Frank Y Liu®, Willem Blokland”, Jeffrey S Vetter”
Oak Ridge National Laboratory”, Washington University in St. Louis®
{cabreraam, yucesanya, blokland, liufy} @ornl.gov, vetter @computer.org

Abstract—The prevalence of ML and Al-powered solutions
along with the slowing of Moore’s Law has given rise to
novel hardware platforms aimed at accelerating ML and Al
While programming these hardware platforms can be difficult,
particularly for non-hardware experts, hardware vendors provide
high-level tooling in an effort to address this difficulty. The
Versal ACAP is an SoC designed by AMD that combines CPU
cores, FPGA fabric, and a tiled, vector architecture called an
Al engine all on the same socket. In an effort to more easily
program this heterogeneous system, AMD has provided the Vitis
Al development stack. In this work, we leverage Vitis Al to
program a Versal ACAP to perform errant beam detection in
the Spallation Neutron Source at Qak Ridge National Laboratory.
QOur initial work shows that after quantization and compilation
of the model for the Versal ACAP, the classification accuracy,
as measured by the AUC metric, is over 95% accurate while
achieving this accuracy in 46 microseconds on average.

Index Terms—Heterogeneous Computing, Edge Computing,
Machine Learning, Artificial Intelligence, Versal ACAP, Vitis Al

I. INTRODUCTION

The prevalence of machine learning and artificial intelli-
gence is marked, in part, by the ubiquity of neural network
(NN) models being leveraged to solve high impact problems
in spaces such as object recognition [1]] and natural language
processing [2]. In concert with the end of Dennard’s Scal-
ing [3]] and Moore’s Law [4], this rise in these NN models has
been accompanied by an increase in the amount of specialized
hardware architectures and accelerators for deploying these
models.

Historically, shrinking transistor process size has enabled
better performance on traditional CPUs through additional
compute capability being packed into the same square area.
However, scaling feature sizes is becoming increasingly diffi-
cult as foundries are pushing the boundaries of just how small
the process size can get. Thus, a need to rethink traditional
architectures has given rise to a golden age of computer
architecture [5].

While architectural innovation has enabled development
of new microarchitectures and hardware accelerators for NN
inference, harnessing the compute capability of these new
hardware platforms is hampered by programming difficulty.
This observation is especially apparent for domain scientists,
e.g., physicists, chemists, who are experts and architect solu-
tions for high impact problems in their respective fields, but

Funding redatcted for anonymity.

face a programming barrier when realizing these solutions on
leading-edge hardware systems. To this end, hardware vendors
e.g., Groq, Cerebras, and GraphCore, often supply high-level
Python or C++ APIs and tools that aim to ease the burden of
programming these systems.

In this work, we explore a new hardware platform —
the AMD Versal Adaptive Compute Acceleration Platform
(ACAP) — and its respective tooling — Vitis Al — provided
by AMD that aims to make the utilization of the Versal
ACAP for ML and Al more amenable to non-hardware experts.
The Versal ACAP is a system-on-chip (SoC) that combines
hardened CPU cores, programmable logic, and a 2D-tiled
architecture called an Al engine all on the same socket.
The Versal ACAP has both PCle card (VCKS5000) and edge
compute (VCK190) form factors, and Vitis Al can target both
variants, as well as other AMD hardware backends. Vitis Al
enables developers to take NN models trained in mainstream,
high-level ML frameworks like PyTorch and TensorFlow and
create a binary that can be executed on a desired AMD
hardware platforms Common use-cases for Vitis Al

The common use of Vitis Al, as evidenced by provided
examples in AMD’s Vitis Al software release, is centered
around image-based tasks. Our work, instead, focuses on first
steps towards using the Versal ACAP to detect abnormal
operating modes of the Spallation Neutron Source (SNS),
located at Oak Ridge National Laboratory (ORNL), using a
neural network trained on sensor data produced during the
instrument’s operation. To the best of our knowledge, our work
is the first in the literature to leverage Vitis Al to target the
VCK190 for a non-image based ML task. Specifically, our
contributions are:

o Designing an NN model to predict errant beams at the
ORNL SNS

o Deploying a non-image-based machine learning model
for the AMD VCK190 platform using Vitis Al

¢ An end-to-end methodology for using Vitis Al to target
a Versal ACAP platform

o Lessons learned using the Vitis Al and Versal ACAP-
enabled platform

The rest of the paper is structured as follows. Section [[l|does
background. Section does related work. Section talks
about creating the high-level float model. Section [V]talks about
creating the model for the VCK190. Section talks about
board and host stuff. Section talks about experimental

setup. Section talks about results. Sections [[X] and [X] talks
about future work and conclusions, respectively.

II. PRELIMINARIES

A. Vitis

Before we can understand the Vitis Al platform, we must
first explain Vitis, which is the platform that Vitis Al is built
on top of. Vitis is a unified software development platform
that enables hardware and software development that targets
a range of AMD platforms, ranging from edge, on-premise,
and cloud deployments. Vitis encompasses all of the tooling
necessary for traditional and high-level synthesis FPGA devel-
opment, as well as tooling for the Versal ACAP. Additionally,
Vitis contains the Xilinx runtime library, which contains the
implementation for host and device communication. While
Vitis allows developers to create bespoke hardware solutions,
Vitis also provides a librar of IP solutions for a wide
variety of domains, including high-performance computing,
data analytics, and quantitative finance. These solutions are
also composable with other designs in the library, or custom,
user-defined IP.

B. Vitis Al

Vitis A]E] is a platform that builds on top of Vitis through
providing tooling that streamlines the deployment of deep
learning models trained in high-level ML frameworks, e.g.,
PyTorch and TensorFlow. We will now breifly describe rel-
evant pieces of this framework, i.e., the quantizer, compiler,
and Deep-learning Processor Unit (DPU).

The ideal flow of Vitis Al is to take a trained, floating point
model and use the Vitis Al toolchain to create the components
necessary to execute inference on the desired AMD hardware
target. As we describe in later sections, there is more developer
effort that must take place in order to facilitate this flow. But
the overall goal of the Vitis Al platform is to provide another
layer of abstraction between the application developer and
cutting-edge hardware in order to make deployment easier.

Two major components of the flow that enable model
deployment onto a Vitis Al supported hardware target are
the Vitis Al quantizer and compiler. The floating point model
serves as input to the Vitis Al quantizer, and the output of the
quantizer serves as input to the compiler.

The Vitis Al quantizer is responsible for quantizing the
weights and activations of a f£loat-precision model trained
from a high-level ML framework into corresponding fixed-
point representations, i.e., 8-bit integers. On first princi-
ples alone, using smaller, less complex types enables higher
throughput and better power efficiency. However, these bene-
fits come potentially at the expense of prediction accuracy.

The Vitis Al compiler takes the quantized model and
compiles it for the desired hardware target, e.g., VCK190,
VCK5000, or U250. The model gets compiled into an spe-
cial DPU instruction set architecture (ISA) from AMD that

Uhttps://github.com/Xilinx/Vitis_Libraries
Zhttps://github.com/Xilinx/Vitis-Al

was designed with ML and Al operations in mind. DPU
microarchitectures and performance benefits vary based on
what the hardware target is, e.g., the DPU implementation
and latency profile for an edge-based Versal ACAP device is
different than that of a data center-grade FPGA PCle card.
Though the instructions for the DPU ISA are proprietary, the
documentation states that it it is designed at the tensor level,
with the goal of facilitating the efficient implementation of
deep learning networks.

We describe the use of the quantizer, compiler, and DPU in
more detail in Section [V}

C. Versal ACAP

The Versal ACAP is an SoC that combines both scalar
and vector processing elements, as well as programmable
logic, all on the same socket [6]. The scalar component
refers to the hardened, dual-core ARM Cortex-A72 CPU. The
programmable logic is refers to the reprogrammable FPGA
fabric. Finally, the vector processing elements refer to the Al
Engine, which is a 2D array of processor tiles that consist
of a 2D array of processors called Al Engine tiles that are
optimized for AI/ML Workloads. Each Al engine consists of a
very long instruction word (VLIW), single instruction multiple
data (SIMD) processor. All of these processing elements
are interconnected using a network-on-chip (NoC). Because
of constantly changing workloads, there is often not one
flavor of processing element that can performantly execute all
workloads. Thus, one of the benefits of the Versal ACAP is
the flexibility in choosing which type of processing element
is the right one for the task at hand. There is both a PCle
card and edge deployment variant of the Versal ACAP. In this
work, we focus on the latter variant, known as the VCK190.

D. Spallation Neutron Source and Errant Beam Detection

The Spallation Neutron Source at ORNL is the world’s
most powerful proton accelerator to date. The accelerator
provides high-intensity proton beam to a liquid mercury target
for neutron production to be used for various experiments in
research fields such as drugs [7]], batteries [8]], and engines
[O]. In the design phase of the accelerator, the availability
requirement is set to be at least 90%, and ultimately achieving
95% with continuous beam on target [[10]. Unexpected beam
failure, then, becomes very costly and disrupts the operation
schedule. Unscheduled maintenance ultimately leads to loss of
production and postponing the experiments that take months
and in some cases years to prepare for. Another disadvantage
of an errant beam is the potential to damage the expensive
equipment located across the linear accelerator, which can
further increase the downtime and additional maintenance
costs.

Predicting impending failures only by utilizing data col-
lected from diagnostic equipment already on board can help
operators to avoid installing expensive sensors, unscheduled
downtime and associated costs. To this end, we exploit the
predictive power of ML to detect faulty beams at the SNS
linear accelerator prior to failure. As part of our contribution,

https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/Vitis-AI

we propose an ML model to detect abnormal operating modes
trained on data from a pair of sensors located across the
accelerator. While the model is trained to construct normal
operation, we evaluate the predictive performance on known
faulty beam pulses. We will discuss the creation of this model
further in Section [Vl

III. RELATED WORK

The Cerebras Wafer Scale Engine 2 [[11]], GraphCore Colos-
sus Mk2 Intelligence Processing Unit [12], and GroqChip
Processor [13] are all examples of hardware vendors that
have designed hardware for ML/AI workloads. Similar to
the Versal ACAP, each of these solutions relies on a tiled
approach to accelerating ML/AI workloads. Additionally, each
vendor offers a path to take models trained a high-level ML
framework and deploy them onto their respective hardware
platform. There are two salient differences between these
hardware platforms, and the Versal ACAP, though. The first
is that none of these vendors offer an edge compute form
factor for their respective offerings. Second, the Versal ACAP
includes programmable logic on the same socket, creating a
path for low-latency communication between heterogeneous
processing elements.

To our knowledge, there is one other instance in the liter-
ature that uses Vitis Al to target the VCK190. Ibrahim et al.
modify the YOLO object detection model for ship detection,
and deploy this model on the VCK190 using Vitis Al [14].
However, our work uses Vitis Al to deploy a non-image-
based ML model. Both works, though, contribute to the sparse
literature on leveraging Vitis Al to target the VCK190.

IV. ERRANT BEAM DETECTION ML MODEL
A. Model Architecture and Standard Operating Procedure

The information that we to train an ML model to detect
faulty beam operation comes from the Beam Position Monitors
(BPMs) located along the beamline data path in the proton
accelerator in the SNS. BPMs are crucial pieces of diagnostic
equipment located across the linear accelerator tunnel. One of
the variables BPMs measure is the phase of the beam, which
provide valuable information about acceleration process and
potential anomalies.

We utilize BPM phase signals for anomaly prediction, by
training a multi-layered perceptron to map phase signal from
an upstream BPM (HEBT-BPMO1) into a downstream BPM
(HEBT-BPM32). In other words, we are using output data
from the upstream sensor to predict the output data from the
downstream sensor.

The architecture of the model is a multi-layer perceptron
(MLP), and the layers are shown in Figure |1} The model is
trained on data that represents normal beamline operation.

The trained model is then given both normal and abnormal
phase signals — that represent normal and faulty operation,
respectively — where the output given a normal phase signal
should return an output that reflects what the downstream
sensor would output if operating normally. However, the model
is not trained on faulty data — only normal operating data.

InputLayer

Dense

kernel (900x500)
bias (500>

RelU
Dropout

Dense

kernel (500x500)
bias (500)

RelU
Dropout

Dense

kernel {500x900)
bias 900)

Fig. 1. Architectural overview of the layers in the MLP model trained for
errant beam prediction.

When given an abnormal signal — a signal that occurs before
an errant beam signal is measured — we distinguish that
this is indicative of an incoming faulty state by calculating
the root mean squared error (RMSE) between predicted and
actual downstream BPM signal. Smaller RMSE values indicate
that the model has correctly predicted the downstream signal.
Larger RMSE values indicate the opposite. We use a simple
threshold to determine when a caluclated RMSE value is large
enough such that is in indicative of an abnormal signal.

B. Floating Point Model Training

We use TensorFlow2 as the high-level ML framework to
create this model. To build the MLP model, we use the Keras
Functional API (tensorflow.keras.Functional) to
construct and connect the layers. Note that the Vitis Al user
guide makes sure to specify that the Sequential API is not
supported [15]. Additionally the user guide also mentions that
the Vitis Al toolchain expects the model format to be .h5
when using TensorFlow2. Model creation must be configured
manually to specify this format because the ProtoBuf (.pb)
format is what is generated by default. As mentioned in
Section [[V-B] we use BPM phase signals as training data for
the model.

V. CREATING THE MODEL FOR VCK190 DEPLOYMENT

A. Using the Vitis Al Tools

Once the floating point model has been trained, the model
can be ingested by the Vitis Al toolchain to create a binary that
can program the VCK190. The Vitis Al toolchain is intended

to be used in a Docker container. The user can either create
their own Docker container to target their local host machine,
or source a pre-built Docker container from DockerHutﬂ In
this work, we take the latter approach.

B. Quantization and Compilation

The way that Vitis Al invokes the quantizer depends
on which ML framework (and version, if applicable) is
being used. For the TensorFlow2 tools, the quantizer is
invoked through an API call from a Python library —
quantizer.quantize_model. It is worth noting here
that, if using Microsoft VSCode as the development environ-
ment, the configuration file for the Docker container must set
the remote user as vitis—ai-user. Otherwise, the user
will not have the right permissions to step through the Python
code in Vitis AL

When invoking the quantizer, there are different parameters
that can be toggled to configure the quantizer. Of note is
the choice of quantization strategy — either a post training
quantization (default setting) or quantization aware training
approach — that may better performance. In our work, we
found that the the default settings for each parameter provided
satisfactory performance, but we leave the exploration of
tuning these parameters to future work.

Once the model has been quantized, we verify that the
effect of model quantization by calculating the area under the
curve (AUC) for the quantized model and comparing it to the
performance of the float-precision model. In order to perform
inference using the quantized model, the user must import the

tensorflow_model_optimization.quantization.keras

module from Vitis Al. In our case, the AUC of the float
and quantized model were 0.9099 and 0.9149, respectively.
This indicated that the performance of the model through the
quantization phase was performing with high accuracy.

Once the performance of the quantized model can be
shown to be satisfactory, we now use the quantized model
as input to the Vitis Al compiler. The compiler is in-
voked as a utility on the command line using the command
vai_c_tensorflow2. One of the parameters of the com-
piler is ——arch, which takes a . json file that contains the
intended hardware target, and subsequently, the intended DPU,
for execution. The result of compilation is a .xmodel file,
which is a binary that contains all of the information needed to
perform inference on the VCK190. As mentioned in Section
the Vitis Al compiler creates a binary for the DPU ISA,
but DPU microarchitectures depend on the hardware target.
For the VCKI190, the DPU microarchitecture is shown in
Figure 2]

The DPU implementation for the VCK190 takes advantage
of both the programmable logic and the AI engine on the
Versal ACAP. The programmable logic side is primarily used
to transfer data between the NoC and the Al engine. The Al
engine is responsible for performing the heavy mathematical
operations, such as convolutions.

3https://hub.docker.com/u/xilinx

o m
)
[AIE Interface
T L4

| AlIE

—

(L S - PL
(Batch1

Batch O
Local Memory

Load/Save Elt-wise
b FAY Y
i} U U

Schedul
Global cheduier

Memory

7Y DPUCVDXSG
il

‘ NoC

Fig. 2. Block diagram of the VCK190 DPU microarchitecture.

1) Understanding the Quantized and Compiled Model: Part
of what the Vitis Al compiler does is partition the necessary
computation of the model into nodes of computation. These
nodes then get grouped together to form subgraphs. These
subgraphs then get mapped to either the CPU or DPU for
execution. To generate a graph of how the subgraphs have
been partitioned is to use the following utility provided in the
Vitis Al docker container to query the model for the structure:

xdputil xmodel <model_name> -1

where model_name is the output model from the Vitis Al
compiler, and -1 is the option for outputting the subgraph
structure. A graphical depiction of this form can be obtanined
by replacing -1 with —p to generate a PNG image of the
computation graph and its subgraph.

In our case, running xdputil command shows that there
are are 3 subgraphs that make up the entire model of computa-
tion. The first and third subgraphs are mapped to the CPU and
the second subgraph is mapped to the DPU. While this utility
shows us the flow of data between CPU and DPU, the user
is still responsible for facilitating the communication between
the two compute components. We will explain how to achieve
this communication in Section [VIl

VI. VCK190 AND HOST SIDE SETUP
A. VCKI90 Board Setup and Cross-Compilation

To help facilitate the programming of the VCK190, AMD
provides a generic board image equipped with the Vitis Al
Runtime at Vitis Al version 3.(ﬂ This image must be flashed
to a mini SD card and physically installed into the VCK190.

While AMD has provided a scripﬂ to enable cross-
compilation for the ARM architecture-based CPU, we create
a CMake Toolchain file that embeds the same information
sourced in the script and allows us to use CMake to make
building of the host binary easier.

In order to transfer files and serially send commands to the
VCK190, it is connected to a host side system via Ethernet and

4Link to VCK190 board image
SLink to cross-compilation script

https://hub.docker.com/u/xilinx
https://www.xilinx.com/member/forms/download/design-license-xef.html?filename=xilinx-vck190-dpu-v2022.2-v3.0.0.img.gz
https://github.com/Xilinx/Vitis-AI/blob/3.0/board_setup/vck190/host_cross_compiler_setup.sh

USB, respectively. Specifically, we use SSH for data transfer
and minicom for serial communication with the VCK190.

B. Host Side Code

The host side code is written in C++ and compiled using
the cross-compilation setup from Section The host-side
code’s main components can be broken down into the follow-
ing components: creating a runner to handle data transfer and
model execution on the DPU, setting up the input and output
buffers on the VCK190 side, pre-processing the raw data into
the format expected by the model on the VCK190, batching
the data appropriately for consumption by the model, then
post-processing the data. In our case, post-processing is done
in order to compare the predicted output with the expected
output data.

1) Data Integration for DPU Input: From Section
recall that the Vitis Al compiler has partitioned the model into
three subgraphs: pre-processing of the input data, execution of
the ML model, and post-processing of the output data. In this
section we will focus on the pre- and post-processing of the
input and output data.

There are two transitions between the CPU and DPU in
the compute graph: one for transferring the input data to
the VCK190 for consumption by the model, and one for
transferring the prediction results back to the host-side CPU.
In this case, the outgoing edge from the CPU to the DPU
contains the shape information for what is expected by the
DPU. Similarly, the outgoing edge from the DPU back to
the CPU gives the shape of the data that the CPU should
expect. This information is necessary when constructing the
input and output buffers on both the host- and device sides.
At runtime, we use the Vitis Al runtime (VART) API to query
the compiled model in order to create CPU- and DPU-side
buffers for incoming and outgoing data.

The pre- and post-processing of the input and output data
that must be performed is the conversion between floating
and fixed point precision. As noted in Section the
quantizer transforms the weights and activations of the original
float-precision model into corresponding fixed-point, 8-bit
representations. The conversion of the inputs, though, must
be authored in the host-side code because the DPU expects
8-bit inputs-bit inputs. Additionally, once the prediction is
completed, the output data is still in its fixed-point, 8-bit
representation. The scaling factors for conversions in both
directions are embedded into the .xmodel file, and can be
queried at runtime in order to scale the input to and the output
of the DPU.

In order to transfer data and perform inference tasks, the
VART API facilitates the submission and collection of jobs
between the CPU and DPU. The VART API enables the setup
of the runner initialized with the subgraph assigned to the
DPU, the transfer of data to and from the DPU, as well as the
asynchronous execution of the model on the DPU.

VII. EXPERIMENTAL SETUP

At this point, the VCK190 board has been equipped with the
image provided from AMD, the errant beam detection model

has been quantized and compiled for the VCK190, and the
host code has been authored such that it handles data transfers
between the host and DPU as well as inference.

The host-side code drives execution. Once the host-side
code has been cross-compiled, the resulting binary is trans-
ferred to the VCK190 along with the compiled model and
input data. The executable run via a command line interface to
the VCK190 enabled by minicom. The result of running the
binary is the predicted output of the model. These predictions
are then transferred off of the VCK190 to compare against the
expected outputs. Inference is run a total of 10000 times to
generate the amount of time elapsed when pre-processing the
input data, performing inference, and then post-processing the
output data. The results of these experiments are shown in the
next section.

VIII. RESULTS

Figure [3] shows the accuracy of the errant beam detection
model — through measuring the area under the curve (AUC)
— at three stages: when the model is initially trained using
the TensorFlow, the model after quantization, and the model
when its deployed onto the VCK190. Before exploring this
result, it should be noted that the AUC result for the VCK190
needed to be inverted, i.e., the classification of errant beams
was backwards. Further exploration into the tools is necessary
to understand why this was necessary.

1.0 e = -

o .

& 0.5 /,/
e —— Float AUC: 0.9186
P Quantized AUC: 0.9169
e —— HW AUC: 0.968
0.0 - ‘
0.0 0.5 1.0
FPR

Fig. 3. AUC curves for the float, quantized, and compiled (hw) models.

From the graph, we see that the MLP model for errant beam
detection resulted in an effective classifier. The accuracy of the
classifier is over 95%. Furthermore, the performance on the
VCK190 performed better than the float and quantized models,
suggesting that quantization of the weights and activations
made the model more accurate. This shows that, for this
particular model, 8 bits of precision was enough to make the
correct classifications.

In addition to the accuracy of the model deployed on the
VCK190, the latency of the model was on the order of tens of

microseconds. The average time for pre-processing the input
data, performing inference, and post-processing the data, av-
eraged over 10000 inference instances, was 46 microseconds.
In order be considered a viable option for integration into
the proton accelerator, the classification must happen, ideally,
within 100 microseconds [16].

IX. FUTURE WORK

As mentioned in Section [V| there are parameters that are
exposed during quantization and compilation that can be
explored in order to gauge their effect on performance. This
parameter tuning becomes a design space that can be explored
in order to find the most performant inference solutions.
Integrating the Versal ACAP into the beamline data path is
another avenue for future work. Right now, the VCKI90
ingests data that already exists on the VCK190’s SD card.
Using this initial exploration as a baseline, we can begin to
explore more complex models, their design space, and their
performance with respect to accuracy and latency.

X. CONCLUSION

In this work, we show an end-to-end example of using Vitis
Al from training a model in a high-level ML framework to de-
ployment on a Versal ACAP platform. The trained model was
responsible for detecting abnormal operating modes for the
beamline in the proton accelerator at the Spallation Neutron
Source at Oak Ridge National Laboartory.

We employed the Vitis Al development stack to quantize the
model to use 8-bit weights and activations, and then compiled
that model for deployment onto the VCK190 variant of the
Versal ACAP. Additionally, we disseminated lessons learned
when using the Vitis Al toolchain, since, to date, there is only
one other instance in the literature that leverages Vitis Al to
target the VCK190. In particular, we describe what work needs
to be done on the host side, i.e., pre- and post-processing of
data and scheduling inference jobs and data transfers between
the Versal ACAP’s CPU and DPU. We showed that, even after
quantization, the model deployed on the VCK190 was able
to achieve over 95% accuracy with an average latency of 46
microseconds.

XI. ACKNOWLEDGEMENTS

This research used resources of the Experimental Comput-
ing Laboratory (ExCL) at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. De-
partment of Energy under Contract No. DE-AC05-000R22725

This research was supported by the Defense Advanced
Research Projects Agency Microsystems Technology Office
Domain-Specific System-on-Chip Program.

The authors would like to thank Joseph Melber and Paul
Hartke at AMD for helping to procure the VCK190 and
connecting us with technical staff to troubleshoot issues.

[1]

[2

—

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

REFERENCES

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

M. Bohr, “A 30 year retrospective on dennard’s mosfet scaling paper,”
IEEE Solid-State Circuits Society Newsletter, vol. 12, no. 1, pp. 11-13,
2007.

R. R. Schaller, “Moore’s law: Past, present and future,” IEEE spectrum,
vol. 34, no. 6, pp. 52-59, 1997.

J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Communications of the ACM, vol. 62, no. 2, pp. 48-60,
2019.

AMD, “Versal: The first adaptive compute acceleration platform
(acap),” Online, Sep 2020. [Online]. Available: https://docs.xilinx.com/
v/u/en-US/wp505-versal-acap

P. S. Langan, V. G. Vandavasi, C. J. Cooper, K. L. Weiss, S. L. Ginell,
J. M. Parks, and L. Coates, “Substrate binding induces conformational
changes in a class a -lactamase that prime it for catalysis,” ACS
Catalysis, vol. 8, no. 3, pp. 2428-2437, Feb. 2018. [Online]. Available:
https://doi.org/10.1021/acscatal.7b04114

H. Zhou, K. An, S. Allu, S. Pannala, J. Li, H. Z. Bilheux, S. K.
Martha, and J. Nanda, “Probing multiscale transport and inhomogeneity
in a lithium-ion pouch cell using in situ neutron methods,” ACS Energy
Letters, vol. 1, no. 5, pp. 981-986, Oct. 2016. [Online]. Available:
https://doi.org/10.1021/acsenergylett.6b00353

M. L. Wissink, Y. Chen, M. J. Frost, S. J. Curran, O. Rios, Z. C.
Sims, D. Weiss, E. T. Stromme, and K. An, “Operando measurement
of lattice strain in internal combustion engine components by neutron
diffraction,” Proceedings of the National Academy of Sciences, vol.
117, no. 52, pp. 33061-33071, Dec. 2020. [Online]. Available:
https://doi.org/10.1073/pnas.2012960117

S. Henderson et al., “The spallation neutron source accelerator
system design,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 763, pp. 610-673, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168900214003817
G. Lauterbach, “The path to successful wafer-scale integration: The
cerebras story,” IEEE Micro, vol. 41, no. 6, pp. 52-57, 2021.

S. Knowles, “Graphcore,” in 2021 IEEE Hot Chips 33 Symposium
(HCS). IEEE, 2021, pp. 1-25.

D. Abts, J. Kim, G. Kimmell, M. Boyd, K. Kang, S. Parmar,
A. Ling, A. Bitar, I. Ahmed, and J. Ross, “The groq software-defined
scale-out tensor streaming multiprocessor : From chips-to-systems
architectural overview,” in 2022 IEEE Hot Chips 34 Symposium (HCS).
Los Alamitos, CA, USA: IEEE Computer Society, aug 2022, pp.
1-69. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
HCS55958.2022.9895630

Y. Ibrahim, L. Chen, and T. Haonan, “Deep learning-based ship detection
on fpgas,” in 2022 14th International Conference on Computational
Intelligence and Communication Networks (CICN). 1EEE, 2022, pp.
454-459.

AMD, “Vitis ai overview,” Online, Jun 2023. [Online]. Available:
https://docs.xilinx.com/r/en- US/ug1414-vitis-ai

N. R. Miniskar, A. Young, F. Liu, W. Blokland, A. Cabrera, and J. S.
Vetter, “Ultra low latency machine learning for scientific edge applica-
tions,” in 2022 32nd International Conference on Field-Programmable
Logic and Applications (FPL). 1EEE, 2022, pp. 01-07.

https://docs.xilinx.com/v/u/en-US/wp505-versal-acap
https://docs.xilinx.com/v/u/en-US/wp505-versal-acap
https://doi.org/10.1021/acscatal.7b04114
https://doi.org/10.1021/acsenergylett.6b00353
https://doi.org/10.1073/pnas.2012960117
https://www.sciencedirect.com/science/article/pii/S0168900214003817
https://doi.ieeecomputersociety.org/10.1109/HCS55958.2022.9895630
https://doi.ieeecomputersociety.org/10.1109/HCS55958.2022.9895630
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai

	Introduction
	Preliminaries
	Vitis
	Vitis AI
	Versal ACAP
	Spallation Neutron Source and Errant Beam Detection

	Related Work
	Errant Beam Detection ML Model
	Model Architecture and Standard Operating Procedure
	Floating Point Model Training

	Creating the Model for VCK190 Deployment
	Using the Vitis AI Tools
	Quantization and Compilation
	Understanding the Quantized and Compiled Model

	VCK190 and Host Side Setup
	VCK190 Board Setup and Cross-Compilation
	Host Side Code
	Data Integration for DPU Input

	Experimental Setup
	Results
	Future Work
	Conclusion
	Acknowledgements
	References

