
Quantifying the gap between open-source and
vendor FPGA place and route tools

Shachi Khadilkar
ECE Department

UMass Lowell
Lowell, United States

ShachiVaman Khadilkar@student.uml.edu

Ahmed Sanaullah
Red Hat Research

Red Hat Inc.
Boston, United States
asanaull@redhat.com

Martin Margala
School of Computing and Informatics
University of Louisiana at Lafayette

Lafayette, United States
martin.margala@louisiana.edu

Abstract—The use of Field Programmable Gate Arrays (FP-
GAs) has increased greatly as a result of their flexibility, power
efficiency, and hardware acceleration capabilities. CAD tools
needed to map hardware description language (HDL) code to the
FPGA are complex and challenging to build. Open-source CAD
tools for FPGAs have been developed to facilitate restriction-
free customization and have more control over the mapping
process. A significant milestone in the development of open-
source CAD tools was the ability to target real commercial
devices. In recent years, multiple academic CAD tools can map
circuits to commercial FPGAs. It is essential to identify and
quantify the performance gap between academic and vendor
tools targeting commercial devices. To this effect, we compare
relevant hardware quality metrics after placement and routing
for five tool-flows targeting a commercial FPGA. Our results
show the divide between academic and commercial place and
route tools for device utilization, run time, and maximum circuit
speeds.

Index Terms—Computer Aided Design, FPGAs, place and
route, tool comparison.

I. INTRODUCTION

FPGAs have gained popularity after Moore’s law ended as
they are well suited for a variety of applications like hardware
acceleration, machine learning, edge computing, digital signal
processing. FPGAs can easily be reconfigured “in the field”
and are equipped with parallel compute capabilities, power
efficiency and incur lower non-recurring engineering costs
compared to Application Specific Integrated Circuits (ASICs)
[1]. Digital circuits written in high-level languages like C++ or
Hardware Description Languages like Verilog require several
processing steps before they can be mapped to the FPGA hard-
ware. CAD tools are needed for this mapping. Commercial
CAD tools are proprietary, often require expensive licenses,
and provide limited opportunity for customization [2]. Open-
source CAD tools have been developed for the past several
years to overcome the problems associated with commercial
FPGA CAD tools. Older research works show open-source
tool flows built for theoretical architectures, possibly because
of the heavy dependence of several stages of the FPGA CAD
tool flow on knowledge of the device architecture, and these
details are not known for vendor devices. In recent times,
several tool-flows have been built for commercial FPGAs
as well as device architectures of some vendor FPGAs are
now available [3]. Open-source CAD tools allow researchers

to modify and build on existing work. However, there is a
significant gap in hardware quality generated by vendor CAD
tools and open-source tools. Prior research work mentions that
new academic architectures and tool flows for FPGAs are
declining, and the ones that are proposed do not provide major
improvements when used with a commercial setup [25]. [25]
claim that the large performance gap between open-source and
commercial tools is responsible for this. This research work is
aimed at comparing the hardware quality of a set of real and
synthetic benchmarks placed and routed with commercial and
open-source tools, targeting the same commercial FPGA. We
compare open-source place and route tools Nextpnr [8] and
Versatile Place and Route (VPR) [3], [6] with state-of-the-art
commercial tools, Xilinx Vivado 2017.2 and Xilinx Vivado
2023.1 [26]. We use synthesis tools Yosys [12] (open-source)
and commercial Xilinx Vivado.

II. BACKGROUND

The FPGA CAD tool has a series of steps from HDL/high-
level code to a bitstream and, finally programming the hard-
ware.

A. FPGA CAD flow

The typical CAD tool flow:
• Synthesis: In this step, the digital circuit described by an

HDL like Verilog/VHDL is converted to a netlist, which
describes the logical connectivity between the logic/hard
blocks on a particular FPGA [4].

• Technology Mapping: Technology mapping accounts for
the variations in building blocks across different FPGA
architectures (E.g., Block RAMs and DSP blocks may be
different for different device architectures). Any generic
blocks in the netlist are replaced with specific ones with
the help of a technology mapping library [4].

• Packing/Clustering: The basic logic elements like Look
Up Tables (LUTs) and Flip-flops (FFs) are grouped into
clusters according to resource and timing information [4].

• Placement: The packed netlist has all the clustered netlist
elements; the placement algorithm finds the optimal lo-
cation for all the packed clusters. This is influenced by
the placement algorithm (e.g., simulated annealing) and
the optimization goals, etc. [4].



• Routing: The routing algorithm finds the optimal route
to connect the placed clusters [4]. Routing is the most
compute-intensive and time-consuming task in the im-
plementation (place and route) process.

• Bitstream generation: The implemented netlist is then
converted to a bitstream, which can be loaded into the
FPGA to program it.

B. Related work

Several academic FPGA CAD tools are based on state-of-
the-art open-source FPGA CAD tool VTR (Verilog to Rout-
ing), which includes open-source place and route tool VPR
[6]. Versatile Place and Route (VPR) was developed several
years ago to target a wide range of FPGA devices with circuit
design sizes comparable to industrial ones at the time [5].
Since then, several enhancements have been made to the VPR
tool. The VTR project integrates Odin II [13], ABC [11], and
VPR for synthesis, technology mapping, and implementation
(place and route), respectively [6]. VTR facilitates architecture
exploration, provides flexibility, and is well-documented [6].
There are a few previous research works that analyze the gap
between academic and commercial FPGA CAD tools. In [7],
a novel open-source framework, VTR to bitstream (VTB),
was proposed to enable researchers to use their innovations
and techniques on commercial Xilinx FPGAs. They enhance
VTR’s capabilities to generate Xilinx bitstreams using Xilinx
Design Language (XDL) [7]. One of the major contributions
was enabling academic researchers to assess their CAD tools
on real vendor FPGAs instead of previously used theoretical
architectures [7]. They used VTB to compare the open-source
academic tool VTR with its vendor counterpart Xilinx ISE tar-
geting Virtex-6 FPGAs [7]. Their results showed the disparity
between Xilinx ISE and VTR with respect to area and delays
[7]. The performance gap is attributed to missing architectural
components like carry chains and better commercial CAD
algorithms [7]. [24] presents Verilog to Bitstream 2.0, which
includes capabilities to pack, place, and route (routing is done
by Xilinx in earlier VTB version) netlists which can then
be programmed to Xilinx devices. VTB 2.0 is then used to
analyze the discrepancy between research and commercial
performance after each major stage in the CAD tool flow:
synthesis, packing placement, and routing targeting a Xilinx
Virtex-6 FPGA [24]. [24] show that maximum degradation
for the delay gap between research and vendor tools is seen
with the synthesis step, followed by routing, and minimum
degradation is seen at the pack and place step. According
to [24], this points to opportunities to work on and improve
the front-end tools and not just place and route tools. [25]
compare Xilinx vendor tools with equivalent academic tools.
As VTR could not be used to target vendor FPGAs, for the
academic implementation, an advanced academic target FPGA
was used with process technology close to the Xilinx device
being used [25]. Xilinx Vivado is used with 20 nm Ultrascale
Kintex FPGAs and compared with VTR targeting a similar
22nm architecture [25]. Their results show significant gaps in
speed performance and runtime [25]. [25] also enhanced VTB

to target Xilinx Virtex-7 FPGAs to compare Xilinx Vivado
and VTB. They reported that Vivado designs occupy less
area and operate at higher frequencies [25]. In recent years,
more academic tool-flows can be used with real commercial
FPGAs. For example, the Symbiflow (f4pga) project [3] uses
Yosys, ABC, and VPR for synthesis, technology mapping,
and implementation, respectively. They have extended VPR to
target commercial devices, and their framework can generate
bitstreams for a Xilinx Artix-7 device [3]. Yosys + Nextpnr
can target commercial FPGAs from Lattice and Xilinx [8].

III. METHOD

A. Experimental Setup

For the first tool flow, we have used the open-source tool
Yosys for synthesis, and the commercial tool Xilinx Vivado
2017.2 [28] for placement and routing. The second tool flow
has Yosys for synthesis and open-source tool VPR/Symbiflow
[3], [6], [21] for pack, placement and routing. The third
tool flow uses Yosys for synthesis and the open-source tool
Nextpnr-xilinx [23] for packing, placement, and routing. The
fourth tool flow uses Vivado 2017.2 for synthesis and place
and route. The fifth tool flow uses Yosys for synthesis and
Vivado 2023.1 for placement and routing. In summary, four
tool-flows use the Yosys front-end, implementation (pack,place
and route) for two of these four tools is done using open-
source tools Nextpnr-xilinx and VPR/SYmbiflow. The other
two of these four tools are commercial Xilinx Vivado 2017.2
and Xilinx Vivado 2023.1. For Vivado 2023.1, we use the
default mode and not the Intelligent Design Runs [27]. The
remaining toolflow is synthesized and implemented by Xilinx
Vivado so we can observe the effect of changing the front-
end tool. We use a Xilinx Artix-7 FPGA [14] device for our
experiments, as all the tools we have discussed above can
implement designs on Artix-7.

B. Benchmarks

We use a few real benchmarks from typical CAD evaluation
benchmark suites and also build a set of synthetic benchmarks
for our experiments. Our synthetic benchmarks are similar to
hardware patterns described in [22]. Our synthetic benchmarks
include simple circuits of connected basic logic elements like
Look Up Tables (LUTs), Flip-flops(FFs), and carry chains
[22] that can be varied to achieve higher utilization. Our
synthetic benchmarks also include circuits with over 70%
slice register utilization and slice LUT utilization. Example
synthetic benchmarks can be seen in Figures 2,3 and 4.

C. Standardization and constraints

We take reasonable measures to standardize our experi-
ments across all the tool flows. We have used the Xilinx
xc7a50tfgg484 [19] device across all tool flows. Since several
benchmarks need more I/O than what is available on the
FPGA, we use BRAMs for getting additional input signals.
For the synthetic benchmarks, we prevent the synthesis tools
from over-optimizing the circuit. We use equivalent physical
constraints for clocks and I/O across all tool flows. We have



Fig. 1. Synthetic benchmark: LUT chain

Fig. 2. Synthetic benchmark: LUT FF chain

Fig. 3. Synthetic benchmark: LUT Carry FF chain

used a trial-and-error approach to set timing constraints that
are just met.

IV. RESULTS

All the tool-flows are compared for hardware metrics post
routing. We measure maximum frequency, implementation run
times, LUT, and FF utilization. Measurements are normalized
to Yosys + Vivado 2017. Of the eleven benchmarks we
have used, the first five are real, and the remaining are
synthetic. Diffeq1, Diffeq2, and sha benchmarks are from the
VTR benchmark suite [15], Picosoc is from the Symbiflow
benchmarks [21], and the fifth benchmark used is the Murax
core [16]. lut5chain-500 and lut6chain-500 are chains of 500
5-LUTs and 500 6-LUTs respectively. ffchain-1k is a chain of
1000 flip-flops. Lut5ffchain-500 and lut6ffchain-500 are chains
of 500 lut5-ff pairs and 500 lut6-ff pairs, respectively. The
inputs for these five synthetic benchmarks are sourced from
cascaded BRAMs. ffchain-12k is a chain of 12000 flip-flops.
Synthetic benchmarks also include ffchain-48k with 48000
chained LUTs, lut5chain12k, and lut5chain24k with 12000
and 24000 5-luts. ffchain-48k uses 73.6% slice registers on
the device, and lut5chain 24k uses 73.6% Slice LUTs on the
device (from Vivado reports).

V. DISCUSSION

From figure 4, average max. circuit frequency (fmax) is
highest for Yosys + Nextpnr (2.01x higher than average fmax
for Yosys + Vivado 2017). Yosys + VPR 8 has lowest average
fmax (0.78x fmax for Yosys + Vivado 2017). Average fmax



Fig. 4. Maximum frequency across all tool flows

Fig. 5. Implementation run time across all tool flows



Fig. 6. LUT utilization across all tool flows

Fig. 7. FF utilization across all tool flows



for Vivado + Vivado 2017 is 1.44x higher than average fmax
for Yosys + Vivado 2017; this could point to scope for
improvements in the open-source synthesis tool.

Figure 5 shows the place and route run time for the five
tool-flows under consideration. VPR has the slowest average
implementation run time (3.3x slower than Yosys + Vivado
2017). Yosys + Nextpnr has the fastest average implementation
run time (0.95x faster than Yosys + Vivado 2017).

Figure 6 shows the LUT utilization for the tool-flows.
Average LUT utilization over all benchmarks for Yosys +
Nextpnr is 2.56x higher than average LUT utilization for Yosys
+ Vivado 2017. Yosys + VPR has 1.12x higher LUT utilization
than Yosys + Vivado 2017. Yosys + Vivado 2023 has the
lowest LUT utilization (0.95x lower than Yosys + Vivado
2017).

Figure 7 shows Flip-flop utilization for all tool flows. Vivado
2017 + Vivado 2017 has highest average FF utilization (2.42x
higher than Yosys + Vivado 2017). Yosys + Nextpnr average
LUT utilization is 2x that of Yosys + Vivado 2017. Yosys +
VPR has the lowest LUT utilization (0.95x Yosys + Vivado
2017).

We also run three additional synthetic benchmarks -
ffchain48k (0 LUTs, 48k FF), lut5chain12k (12k 5-LUTs,
0 FF) and lut5chain24k (24k 5-LUTs, 0 FF). Vivado 2017
and Vivado 2023 can place and route all three benchmarks.
VPR and Nexpnr fail to place and route ffchain48k synthetic
benchmark.

VI. CONCLUSION

In this work, we have compared results from five different
tool flows across the Xilinx Artix-7 board and quantified
the gap between open-source and commercial implementation
CAD tools for a set of hardware quality metrics.

ACKNOWLEDGMENT

We thank Red Hat for their financial support for this project.

REFERENCES

[1] W. Li and D. Z. Pan, “A New Paradigm for FPGA placement Without
Explicit Packing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 11, pp. 2113-2126, Nov.
2019.

[2] A. Sanaullah, “Rolling your own processor”, Red Hat Research Quar-
terly, Vol.1:3, 2019.

[3] K. Murray, T. Ansell, K. Rothman, A. Komodi, M. Elgammal and V.
Betz, “Symbiflow & VPR: An open-source design flow for commercial
and novel FPGAs” IEEE Micro vol. 40, issue 4, 2020.

[4] “F4PGA Documentation,” https://f4pga.readthedocs.io/en/latest/ (ac-
cessed: Sept. 9, 2023).

[5] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in Proc. of 7th International Workshop on
Field-Programmable Logic and Applications, SpringerVerlag, Berlin,
Heidelberg, 213–222, 1997.

[6] K. E. Murray et al., “VTR 8: High-performance CAD and Customizable
FPGA Architecture Modelling,” ACM Trans. Reconfigurable Technol.
Syst., 13, 2, Article 9, June 2020.

[7] E. Hung, F. Eslami and S. J. E. Wilton, “Escaping the Academic
Sandbox: Realizing VPR Circuits on Xilinx Devices,” 2013 IEEE 21st
Annual International Symp. on Field-Programmable Custom Computing
Machines, pp. 45-52, 2013.

[8] D. Shah, E. Hung, C. Wolf, S. Bazanski , D. Gisselquist and M.
Milanovic´, “Yosys + nexpnr: an Open Source Framework from Verilog
to Bitstream for Commercial FPGAs”, in IEEE Field Programmable
Custom Computing machines (FCCM), 2019.

[9] C. Lavin and A. Kaviani, “RapidWright: Enabling Custom Crafted
Implementations for FPGAs,” 2018 IEEE 26th Annual International
Symp. on Field-Programmable Custom Computing Machines, pp. 133-
140, 2018.

[10] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson and B.
Hutchings, “RapidSmith: Do-It-Yourself CAD Tools for Xilinx FPGAs,”
2011 21st International Conference on Field Programmable Logic and
Applications, pp. 349-355, 2011.

[11] R Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength
Verification Tool,” in Touili, T., Cook, B., Jackson, P. (eds) Computer
Aided Verification. CAV 2010. Lecture Notes in Computer Science, vol
6174. Springer, Berlin, Heidelberg.

[12] “Yosys Open SYnthesis Suite,” https://yosyshq.net/yosys/ (accessed:
Nov.27, 2022).

[13] P. Jamieson, K. Kent, F. Gharibian and L. Shannon, “Odin II - An Open-
Source Verilog HDL Synthesis Tool for CAD Research,” 18th IEEE
Annual International Symp. on Field-Programmable Custom Computing
Machines, pp. 149-156, 2010.

[14] “Artix-7,” https://www.xilinx.com/products/silicon-devices/fpga/artix-
7.html (accessed: Sept.9, 2023).

[15] “VTR Benchmarks,” https://docs.verilogtorouting.org/en/latest/vtr/
benchmarks/ (accessed: Sept.9, 2023).

[16] GitHub repository for RISC-V implementations in SpinalHDL,
https://github.com/SpinalHDL/VexRiscv#murax-soc (accessed: Sept.10,
2023).

[17] “Xilinx Architecture Terminology,” https://www.rapidwright.io/docs/
Xilinx Architecture.html (accessed: Sept. 10, 2023).

[18] “Vivado Design Suite Properties Reference Guide,”
https://docs.xilinx.com/r/en-US/ug912-vivado-properties/SITE
(accessed: Sept. 9, 2023).

[19] AMD Xilinx page describing xc7a50tfgg484 device package,
https://www.xilinx.com/content/dam/xilinx/support/packagefiles
/a7packages/xc7a50tfgg484pkg.txt (accessed: Sept. 8, 2023).

[20] F4PGA documentation ”Supported Architectures”,
https://f4pga.readthedocs.io/en/latest/status.html (accessed: Sept. 9,
2023).

[21] Github for Symbiflow(f4pga), https://github.com/f4pga (accessed: Sept.
10, 2023).

[22] S. Khadilkar and M. Margala, ”Optimizing open-source FPGA CAD
tools,” 2022 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1-4, 2022.

[23] Github page for nextpnr-xilinx, https://github.com/gatecat/nextpnr-xilinx
(accessed: May.10 2023).

[24] E. Hung, ”Mind the (synthesis) gap: Examining where academic FPGA
tools lag behind industry,” 2015 25th International Conference on Field
Programmable Logic and Applications, London, UK, pp. 1-4, 2015.

[25] E. Vansteenkiste, A. Kaviani and H. Fraisse, ”Analyzing the divide
between FPGA academic and commercial results,” 2015 International
Conference on Field Programmable Technology, Queenstown, New
Zealand, pp. 96-103, 2015.

[26] AMD Xilinx page for Vivado ML 2023.1,
https://www.xilinx.com/support/download.html (accessed: June 15th,
2023).

[27] Vivado Design Suite User Guide, https://docs.xilinx.com/r/en-US/ug906-
vivado-design-analysis/Intelligent-Design-Runs (accessed Sept. 9,
2023).

[28] Vivado 2017.2, https://www.xilinx.com/support/download/index.html/co
ntent/xilinx/en/downloadNav/vivado-design-tools/archive.html (accessed
Sept. 9, 2023).


