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Abstract—High Performance Computing (HPC) aids in 

solving numerous complex scientific problems such as weather 

forecasting, drug discovery, physical simulations, molecular 

modeling, nuclear research, cryptanalysis, oil and gas exploration. 

To scale these kinds of applications across the nodes of a cluster 

or supercomputer Message Passing Interface (MPI) is used. The 

performance of MPI is one of the key aspects to achieve the 

expected speedup in the application performance on a HPC 

cluster, which in turn depends on the architecture of the servers 

and hence it is important to understand the same for HPC 

practitioners. Application performance is dependent not only on 

an applications’ capability to scale but also on the efficiency of 

application to execute on an architecture. In this paper, we 

compare the performance of applications using MPI on two 

architectures of based on Intel and ARM. This is important as the 

former is a predominant architecture and the latter is one of the 

upcoming architectures among the supercomputers. We have used 

benchmarks which cover a wide variety of applications belonging 

to the Berkley dwarfs. This will help to analyze the comprehensive 

behavior of HPC applications on both the architectures. Finally, 

we present our observations in terms of computation, 

communication, data size and functional behavior of the 

applications.  

Keywords—High Performance Computing, Supercomputers, 

Berkley dwarfs, MPI applications, ARM A64FX, Intel Xeon, 

OpenMPI, TAU  

I. INTRODUCTION  

High Performance Computing (HPC) solves a wide range 
of complex problems. Solving these problems require a lot of 
computational resources and time. In order to get the solution 
faster, parallel programming is required. In parallel 
programming the problem is divided into multiple smaller 
problems or data sets and these are worked upon individually 
and simultaneously. Execution of these tasks are done by 
exploiting message passing techniques, shared and distributed 
memory. Message Passing Interface (MPI) [1] is a prevalent 
communication library used for passing messages between 
processes. MPI is used for spawning the tasks across the nodes 
since a single node may not be able to accommodate the full 
computation.   

A. Application Classification 

The HPC applications can be classified into 13 categories 
using the Berkley dwarfs [2]. Each of the dwarfs address a 
different class of computational problem along with a 
different pattern of the communication among the processes. 

Classification of the applications is important to avoid 
benchmarking similar kinds of algorithms for the hardware. It 
also helps to group similar kind of applications based on the 
communication and computation pattern used among them.  
This in turn assists in evaluating hardware architectures [3]. 
Berkley dwarfs is a widely accepted algorithmic method based 
classification. It was first classified by Phil Colella, who 
identified seven numerical methods [4] .The dwarfs are 
specified at a high level of abstraction based on their 
behaviour across a range of applications. Programs of a 

particular class can be implemented differently and the 
underlying numerical methods may change over time, but the 
underlying patterns have persisted through generations and 
will remain important into the future. 

 The Berkley dwarfs can be used to find the performance 
of new architectures and novel programming model across all 
dwarfs to find the suitability for a broad range of applications. 
The characteristics summary of the original 7 dwarfs is 
described below:  

• Dense linear algebra consists of dense matrix and vector 
operations. It has a high ratio of math-to-load operations 
and a high degree of data interdependency among the 
threads. 

• Sparse linear algebra solves the same problem as dense 
linear algebra but has matrices with few more non-zero 
entries. To reduce space and computation, such 
algorithms store and operate on a list of values and indices 
rather than proper matrices, resulting in more indirect 
memory accesses. 

• Spectral methods work on transformation of data from 
spatial to temporal domain or vice versa. The execution 
profile is typically characterized by multiple stages of 
processing, where dependencies within a stage form a 
“butterfly” pattern of computation. 

• MapReduce or Monte-carlo captures the repeated 
independent execution of a “map” function and results are 
aggregated at the end via a “reduce” function. No 
communication is required between processes in the map 
phase, but the reduce phase requires global 
communication. These kinds of problems usually fall into 
the category of ‘embarrassingly parallel’. 

• Structured grids organize data in a regular 
multidimensional grid, where computation proceeds as a 
series of grid updates. For each grid update, all points are 
updated using values from a small neighbourhood around 
each point. The algorithm determines the data distribution 
and showcases specific update patterns.  

• Unstructured grids possess data structures such as a linked 
list of pointers, that keep track of the location and 
‘neighbourhood’ of points that are used to update the 
location. Data access and distribution do not showcase 
any specific pattern and are highly irregular.  

• N-body methods calculate interactions between many 
discrete points and are characterized by large numbers of 
independent calculations within a timestamp, followed by 
all-to-all communication between the timestamp. 

B. Architectures 

In Top 500 [5], majority of HPC clusters use CISC based 
processors, but there are other computer architectures also 
which show promise in the HPC workspace. ARM based 
processors occupy about 1.2% in the Top500 list. Fugaku 
cluster at RIKEN Center for Computational Science uses an 
ARM based processor. One of the major reasons for looking 



at ARM based processors for HPC clusters is because of its 
less power consumption than other CISC based processors 
such as Intel. Our study here aims to find the applications that 
work well on these computer architectures. Through our work 
we compare the performance of these architectures when they 
are exposed to different classes of HPC applications. 

C. Message Passing Interface 

Message Passing Interface specifies how data is moved 
from address space of one process to another. It acts as a 
standard for different vendors and users. There are multiple 
implementations of MPI such as: Intel MPI, OpenMPI, 
MPICH, MVAPICH. OpenMPI is one of the implementations 
of MPI which is an open-source software and has a huge user 
base. Hence, we use OpenMPI for our evaluation. Our aim is 
to compare the performance of applications using OpenMPI 
based on the original seven Berkley dwarfs on two different 
architectures: ARM and Intel.  

The further sections of the document are classified as 
follows: section 2 deals with related works, section 3 explains 
the experimental setup and our methodology, section 4 lists 
the observations and our inferences with section 5 concluding 
our work with future prospects.  

II. RELATED WORKS 

Banchelli et. al  [6] have presented the evaluation of CTE-
Arm, a Fugaku like system. For the evaluation they use fined 
tuned micro-benchmarks as well as five other scientific 
applications being GROMACS, Alya, NEMO, OpenIFS and 
WRF. These applications were not fine-tuned to the system. 
The focus of their paper was to evaluate the performance for 
the CTE-Arm system by comparing the results with an Intel 
based HPC system. The CTE-Arm system was performing 
worse than other systems, the authors suspected this was cause 
of CTE-Arm was not able to leverage the vectorization 
properly. 

Odajima et. al [7] have evaluated the performance of 
A64FX using seven different HPC benchmarks/applications. 
They compared the performance of A64FX based on these 
benchmarks with Marvell (Cavium) ThunderX2 processor 
and Intel Xeon Skylake processor. The results showed high 
performance in memory intensive applications due to its high 
memory bandwidth. But in other applications it 
underperformed due to lack of out-of-order resources. 

Jackson et. al [8] have investigated the performance for 
complex scientific applications on A64FX across single node 
as well as multiple nodes. They compared the performance of 
A64FX with other HPC systems. They found certain 
benchmarks to perform better on A64FX even without 
specific application optimizations. Though, there were 
benchmarks where A64FX was underperforming than other 
systems. OpenSBLI had the worst performance drop when 
compared to other benchmarks.  

III. EXPERIMENTAL SETUP AND METHODOLOGY 

We use two different HPC clusters for our evaluation. 
PARAM Utkarsh is an Intel based cluster situated at CDAC 
Bengaluru. PARAM Neel is an ARM (A64FX) based cluster 
situated at CDAC Pune. For ARM based architecture we 
selected Fujitsu’s A64FX processor as it is currently ranked 
second in Top 500 [9]. Details of both the clusters have been 
summarized in Table 1. 

There is a plethora of compilers, profilers, libraries 
available. In order to do fair comparison, we executed using 
the same version of open-source softwares’ on both the 
architectures as the optimized Fujitsu compiler was not 
available on the ARM cluster. For profiling OpenMPI’s 
internal functions we use Tuning and Analysis Utilities (TAU) 
[10]. It gathers information using instrumentation as well as 
event-based sampling method. Since it supports both x86_64 
and aarch64 architecture it seemed like the best fit for our 
cause. We use GNU compiler collection (GCC) [11] version 
12.2 along with OpenMPI version is 4.1.1 for compiling the 
benchmarks. As network topology for both the clusters is 
different, we use nodes that are connected to a single switch 
on the Intel cluster to have fair comparison of the execution 
runs. 

TABLE I.  DETAILS OF HPC CLUSTERS 

Configuration PARAM Utkarsh PARAM Neel 

Processor 
Intel Xeon platinum 
8268 

Fujitsu A64FX 

Memory type DDR-4 HBM-2  

Memory / node 192 GB 32 GB 

Clock speed 2.9 GHz 1.8 GHz 

No. of cores/socket 24 48 

No. of socket/node 2 1 

No of nodes 150 38 

Interconnect 
Mellanox 
InfiniBand 

Mellanox 
InfiniBand 

Peak bandwidth 100 Gbps 200 Gbps 

Cluster topology Fat - tree Star 

L1 cache size/core 1.5 MiB 6MiB 

L2 cache size/core 24 MiB 32 MiB 

L3 cache size/core 35.75 MiB  - 

SIMD extension 
AVX, AVX2, 
AVX-512 

Neon, SVE 

A. Comparing latencies 

Since MPI communicates between nodes/processors, it 
becomes imperative that we take network topology and 
latency of the cluster network into account while doing our 
experiments. Hence, we start by comparing the latencies for 
MPI functions on both ARM and Intel clusters. Our aim here 
is to keep an eye on any difference caused by network latency 
observed in any of the clusters. We transmit a message from 
one process to another in a round robin fashion and finally 
compute the time taken for the message transmitted to be 
received by the original sender. The process ranked p 
transmits a data to a process ranked p+1. Then the process 
ranked p+1 forwards the data received to process ranked p+2 
which forwards it to process ranked p+3. This forwarding of 
message continues till we reach a process ranked N-1 which 
will transmit the data back to process ranked 0. Where N is the 
total number of processes spawned. 

For our experiment we spawn 2, 4, 8 and 16 processes with 
one process per node. On performing the experimentation, we 
find that ARM cluster shows less round-trip time than Intel as 
shown in Fig 1. We find that the performance varies anywhere 
between 2.2x to 6.99x. In terms of latency ARM performs 
better than Intel. To a great extent we can attribute this 



difference to the higher bandwidth available on ARM cluster. 
We observe there is a linear curve in time taken when the 
number of nodes is increased. On ARM cluster we find that 
initially time decreases when the number of nodes is increased 
but gradually the time taken increases linearly. 

Fig. 1. Round trip time for Intel and ARM clusters 

B. Berkley dwarfs 

We benchmark the performance of MPI applications based 
on the original seven Berkley dwarfs. For five of the Berkley 
dwarfs, we use NPB benchmarks/kernels[12]. For N-body 
methods and unstructured grids we use GROMACS[13] and 
OpenFOAM [14] respectively. Table 2 lists the dwarfs and the 
benchmarks chosen for the experimentation. 

TABLE II.  BENCHMARKS CHOSEN FOR A DWARF 

Sr. no Berkley dwarf Benchmark chosen 

1 Dense linear algebra LU, BT 

2 Sparse linear algebra CG 

3 Spectral methods FT 

4 Map Reduce/Monte carlo EP 

5 Structured grids MG, SP 

6 Unstructured grids OpenFOAM 

7 N-body methods GROMACS 

For comparison between Intel and ARM we use Class C 
problem size for all the benchmarks as it contains acceptable 
data size / number of iterations that are commonly observed in 
HPC applications. Since our Intel cluster has 2 sockets per 
node we choose to spawn 2 processes per node. For CG, EP, 
FT, IS, LU and MG we use 16 nodes with 2 process per node 
(represented by 16N x 2P) while for BT and SP we use 16 
nodes with 4 processes per node (represented by 16N x 4P), 
since BT and SP require number of processes to be a perfect 
square. We also make sure to bind the processes onto a core 
in order to avoid any core switching during the execution runs.  

Since NPB does not cover MPI based benchmarks for n-
body methods and unstructured grid we use GROMACS and 
OpenFOAM. For GROMACS we use one of the available 
benchmark suites “HECBioSim” [15]. We use Intel MKL [16] 
and FFTW [17] for building GROMACS. OpenFOAM uses 
the classical example of a motorbike but with cell count set to 
8.5 million [18]. As vector instructions provide better 
performance on both Intel [19] and ARM [20], we executed 
the default benchmarks along with a version where vector 

extensions for both architectures were enabled. We used 
Advanced Vector Extensions (AVX-512) for Intel and 
Scalable Vector Extension (SVE) for ARM. 

Fig. 2. LU  

Under Dense algebra, we have benchmarked it using LU 
decomposition (LU) and Block Tri-diagonal solver (BT). 
Performance for Lower-Upper Gauss-Seidel solver 
represented in the Fig 2. We observe that Intel performs 3.29x 
better than ARM when using the base benchmark. This 
difference further increases to 4.8x when vector instructions 
are used. Using vector instructions in ARM did not result in 

significant performance improvement. 

Fig. 3. BT  

Fig. 3 presents the performance observed for Block Tri-
diagonal solver. We observe that Intel performs 1.5x times 
better than ARM. Though on using vectorization we see a 
decrease in the performance on both the architectures. Intel 
takes a heavy toll on the performance when compared to ARM 

using vectorization. 

Fig. 4. CG 

We have chosen Conjugate Gradient (represented by Fig. 
4) for sparse linear algebra. For CG, Intel performs 4.69x 
better than ARM. On using vectorization, we observe 

 

 

 

 



performance increase of 1.12x and 1.003x for Intel and ARM 

respectively.  

Fig. 5. FT  

Fig. 5 represents data for discrete 3D fast Fourier 
Transform. We observe that Intel performs 2.31x times better 
than ARM for the original benchmark. When vectorization is 
used the difference increases to 2.88x. Using vectorization on 
ARM results in 1.08x increase in performance as contrary to 
1.34x for Intel. 

Fig. 6. EP 

Fig. 6 showcases the performance for Embarrassingly 
Parallel kernel. When base kernel is used, we observe 3.83x 
performance of ARM in Intel. On using vectorization, we 
observe the performance gap to widen by 5.08x. 

Fig. 7. MG 

Performance data for Multi-Grid is represented by Fig. 7. 
When using the original benchmark, we observe 2.17x 
performance better on Intel, though on using vectorization we 
observe decrease in the performance gap. Using vectorization 
in ARM results in 2.11x increase in performance contrary to 
Intel’s 1.17x.  

 
 
 
 
 

Fig. 8. SP 

Scalar Penta-diagonal solver performance data is 
represented in Fig. 8. We observe Intel performing 2.44x 
better when compared to ARM though on using vectorization 

this gap decreases to 2.21x.  

TABLE III.  OPENFOAM PERFORMANCE DATA 

Number of Process ARM Intel 

16 19.8 hours 7.76 hours 

32 18.94 hour 7.71 hours 

64 77 sec 19 sec 

 

Table 3 represents the performance of OpenFOAM using 
8.5 million cell count as a dataset. We observe Intel performs 
4.52x better than ARM. When increasing the process count, 

we see much more performance gap between both the clusters.  

Fig. 9. GROMACS 

GROMACS test results are represented by Fig. 9. We find 
GROMACS performs better on Intel when using the FFTW 
library. Initially, the performance gap was approximately 
5.23x times between ARM and Intel platforms. It decreases 
to 4.54x times as the number of cores is increased to 128. We 
also observed, on increasing the number of cores, MKL 
library performs better when compared to FFTW on the Intel 
platform. 

From the above experiments, Intel shows higher 
performance for all the benchmarks that were tried. However, 
in MG when using vector instructions, we see much higher 
gradient in ARM than in Intel indicating better performance 
increase. In majority of the benchmarks vector instructions 
made slight difference in the performance in ARM, though in 
Intel significant performance was observed on the usage of 
vectorization. On further analysis we found that NAS Parallel 

 

 

 

 

 



Benchmarks are not optimized for a particular architecture 
hence it does not use vectorization and out-of-order execution 
capabilities of A64FX processor. Both GROMACS and 
OpenFOAM use FFTW library, which does not use SVE on 
ARM. We also observe better performance of Intel MKL than 
FFTW, when core count is increased on Intel. This is due to 
the fact that Intel MKL is optimized to efficiently use the 
capabilities of Intel hardware.  On using all the architecture 
capabilities of A64FX we have confidence that dwarfs will 
perform much better than the current scenario. 

C. Behavior analysis of common MPI functions 

Since applications use MPI, it is imperative that we 
investigate the performance of MPI functions. The most 
common MPI functions were chosen and benchmarked. We 
look at three different categories of MPI functions namely: 
point-to-point communication, file input or output and 
collective MPI calls. Other than these categories we also look 
at MPI_Init() and MPI_Finalize() as they are responsible for 
initialization and termination of the MPI environment. For 
point to point communications we chose MPI_Send() and 
MPI_Recv() as a representative. For file handling we chose 
MPI_File_open(), MPI_File_close() and 
MPI_File_write_all() while MPI_Scatter(), MPI_Gather(), 
MPI_Bcast() and MPI_Reduce() were chosen to represent 
collective calls.  

For point-to-point communication calls we send/receive 
1MB, 10 MB and 100 MB of data to observe the trend of 
performance in relation to data for both the architectures. As 
for the file-based operations, we write 10 MB of data to a file. 
For MPI_Bcast(), MPI_Scatter() and MPI_Gather() we 
execute a  single precision, general matrix multiply 
(SGEMM) program with matrix size set to 6400x6400. As for 
MPI_Reduce() we use Monte-Carlo PI calculation program. 
We compile these programs using “-O2 -gdwarf-4” flag with 
OpenMPI v4.1.1 using GCC v12.2.0 as the base compiler and 
execute the binary obtained using TAU profiler.  

Fig. 10. Basic MPI calls 

The performance data for MPI_Init() and MPI_Finalize() 
is represented in Fig. 10. We observe that MPI execution 
environment is much faster on ARM than Intel. Though the 

termination of MPI environment is somewhat similar in Intel. 

 

 

 

 

Fig. 11. MPI_Send Performance 

Fig. 12. MPI_Recv Performance 

For MPI_Send() and MPI_Recv() performance data refer Fig. 
11 & 12 respectively. We observe that MPI_Send() calls on 
ARM perform better than Intel for all three data sizes. 
MPI_Recv() initially performs better for ARM but then 
increases exponentially as the data size increases.  

Fig. 13. File IO calls 

For file operations the performance data is represented by 
Fig. 13. Opening a remote file on ARM was 2.23x faster than 
Intel. For closing a file and writing data to a remote file Intel 
and ARM performed similar. MPI_File_set_view() on ARM 

performed 1.86x better than Intel. 

Fig. 14. Collective calls 

 

 

 

 

 



Performance of collective MPI calls is represented in Fig. 
14. We observe that Intel performs 3.65x and 33x better than 
ARM for MPI_Scatter() and MPI_Gather() respectively. 
MPI_Bcast() performs 1.5x better on ARM than Intel. 
MPI_Reduce() performs 6x times better on ARM than on 
Intel. 

From the above experiments, we observe that Intel’s 
performance is better than ARM for majority of the MPI calls, 
the only exceptions being the MPI_Init(),  MPI_Send(), 
MPI_File_open(), MPI_Bcast() and MPI_Reduce(). We 
observe that currently, OpenMPI is one of the major stumbling 
blocks for ARM's performance. Researchers have optimized 
MPI_Reduce() performance for ARM by using SVE [21]. 
There is a scope for improvement in OpenMPI for ARM 
architecture.  

IV. CONCLUSION  AND FUTURE WORK 

In this paper, we have evaluated the performance of HPC 
clusters consisting of Xeon Platinum 8268 processors and 
A64FX processors using MPI. We considered Berkley dwarfs 
to cover a wide variety of applications that are executed on 
these clusters. This led to using NPB, GROMACS and 
OpenFOAM for evaluating the two architectures. These 
benchmarks helped us to understand the communication-
computation performance gap, impact of increasing data size, 
and network latency between the nodes.  

Through the experiments we found that the performance 
on ARM cluster lags when compared to the Intel cluster with 
the only exception of structured grids where speedup achieved 
on ARM was better with vectorization. In case of OpenMPI, 
the process spawning is faster on ARM, while some collective 
calls execute better on Intel. On further analysis, we found that 
the FFTW library on ARM was not finetuned for A64FX due 
to which the performance was lower compared to Xeon. On 
observing holistically, we conclude that the architectural 
based optimization of libraries and MPI will enhance the 
application performance on a target architecture.  
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