
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Holistic Optimisation - Success Mantra for HPC
Performance

Ashish Bisht, Deepika H.V, Haribabu P, S A Kumar, S D Sudarsan
Centre for Development of Advanced Computing, Bengaluru, India

{ashishbisht, deepikahv, hari, sakumar, sds}@cdac.in

Abstract—High Performance Computing (HPC) aids in

solving numerous complex scientific problems such as weather

forecasting, drug discovery, physical simulations, molecular

modeling, nuclear research, cryptanalysis, oil and gas exploration.

To scale these kinds of applications across the nodes of a cluster

or supercomputer Message Passing Interface (MPI) is used. The

performance of MPI is one of the key aspects to achieve the

expected speedup in the application performance on a HPC

cluster, which in turn depends on the architecture of the servers

and hence it is important to understand the same for HPC

practitioners. Application performance is dependent not only on

an applications’ capability to scale but also on the efficiency of

application to execute on an architecture. In this paper, we

compare the performance of applications using MPI on two

architectures of based on Intel and ARM. This is important as the

former is a predominant architecture and the latter is one of the

upcoming architectures among the supercomputers. We have used

benchmarks which cover a wide variety of applications belonging

to the Berkley dwarfs. This will help to analyze the comprehensive

behavior of HPC applications on both the architectures. Finally,

we present our observations in terms of computation,

communication, data size and functional behavior of the

applications.

Keywords—High Performance Computing, Supercomputers,

Berkley dwarfs, MPI applications, ARM A64FX, Intel Xeon,

OpenMPI, TAU

I. INTRODUCTION

High Performance Computing (HPC) solves a wide range
of complex problems. Solving these problems require a lot of
computational resources and time. In order to get the solution
faster, parallel programming is required. In parallel
programming the problem is divided into multiple smaller
problems or data sets and these are worked upon individually
and simultaneously. Execution of these tasks are done by
exploiting message passing techniques, shared and distributed
memory. Message Passing Interface (MPI) [1] is a prevalent
communication library used for passing messages between
processes. MPI is used for spawning the tasks across the nodes
since a single node may not be able to accommodate the full
computation.

A. Application Classification

The HPC applications can be classified into 13 categories
using the Berkley dwarfs [2]. Each of the dwarfs address a
different class of computational problem along with a
different pattern of the communication among the processes.

Classification of the applications is important to avoid
benchmarking similar kinds of algorithms for the hardware. It
also helps to group similar kind of applications based on the
communication and computation pattern used among them.
This in turn assists in evaluating hardware architectures [3].
Berkley dwarfs is a widely accepted algorithmic method based
classification. It was first classified by Phil Colella, who
identified seven numerical methods [4] .The dwarfs are
specified at a high level of abstraction based on their
behaviour across a range of applications. Programs of a

particular class can be implemented differently and the
underlying numerical methods may change over time, but the
underlying patterns have persisted through generations and
will remain important into the future.

 The Berkley dwarfs can be used to find the performance
of new architectures and novel programming model across all
dwarfs to find the suitability for a broad range of applications.
The characteristics summary of the original 7 dwarfs is
described below:

• Dense linear algebra consists of dense matrix and vector
operations. It has a high ratio of math-to-load operations
and a high degree of data interdependency among the
threads.

• Sparse linear algebra solves the same problem as dense
linear algebra but has matrices with few more non-zero
entries. To reduce space and computation, such
algorithms store and operate on a list of values and indices
rather than proper matrices, resulting in more indirect
memory accesses.

• Spectral methods work on transformation of data from
spatial to temporal domain or vice versa. The execution
profile is typically characterized by multiple stages of
processing, where dependencies within a stage form a
“butterfly” pattern of computation.

• MapReduce or Monte-carlo captures the repeated
independent execution of a “map” function and results are
aggregated at the end via a “reduce” function. No
communication is required between processes in the map
phase, but the reduce phase requires global
communication. These kinds of problems usually fall into
the category of ‘embarrassingly parallel’.

• Structured grids organize data in a regular
multidimensional grid, where computation proceeds as a
series of grid updates. For each grid update, all points are
updated using values from a small neighbourhood around
each point. The algorithm determines the data distribution
and showcases specific update patterns.

• Unstructured grids possess data structures such as a linked
list of pointers, that keep track of the location and
‘neighbourhood’ of points that are used to update the
location. Data access and distribution do not showcase
any specific pattern and are highly irregular.

• N-body methods calculate interactions between many
discrete points and are characterized by large numbers of
independent calculations within a timestamp, followed by
all-to-all communication between the timestamp.

B. Architectures

In Top 500 [5], majority of HPC clusters use CISC based
processors, but there are other computer architectures also
which show promise in the HPC workspace. ARM based
processors occupy about 1.2% in the Top500 list. Fugaku
cluster at RIKEN Center for Computational Science uses an
ARM based processor. One of the major reasons for looking

at ARM based processors for HPC clusters is because of its
less power consumption than other CISC based processors
such as Intel. Our study here aims to find the applications that
work well on these computer architectures. Through our work
we compare the performance of these architectures when they
are exposed to different classes of HPC applications.

C. Message Passing Interface

Message Passing Interface specifies how data is moved
from address space of one process to another. It acts as a
standard for different vendors and users. There are multiple
implementations of MPI such as: Intel MPI, OpenMPI,
MPICH, MVAPICH. OpenMPI is one of the implementations
of MPI which is an open-source software and has a huge user
base. Hence, we use OpenMPI for our evaluation. Our aim is
to compare the performance of applications using OpenMPI
based on the original seven Berkley dwarfs on two different
architectures: ARM and Intel.

The further sections of the document are classified as
follows: section 2 deals with related works, section 3 explains
the experimental setup and our methodology, section 4 lists
the observations and our inferences with section 5 concluding
our work with future prospects.

II. RELATED WORKS

Banchelli et. al [6] have presented the evaluation of CTE-
Arm, a Fugaku like system. For the evaluation they use fined
tuned micro-benchmarks as well as five other scientific
applications being GROMACS, Alya, NEMO, OpenIFS and
WRF. These applications were not fine-tuned to the system.
The focus of their paper was to evaluate the performance for
the CTE-Arm system by comparing the results with an Intel
based HPC system. The CTE-Arm system was performing
worse than other systems, the authors suspected this was cause
of CTE-Arm was not able to leverage the vectorization
properly.

Odajima et. al [7] have evaluated the performance of
A64FX using seven different HPC benchmarks/applications.
They compared the performance of A64FX based on these
benchmarks with Marvell (Cavium) ThunderX2 processor
and Intel Xeon Skylake processor. The results showed high
performance in memory intensive applications due to its high
memory bandwidth. But in other applications it
underperformed due to lack of out-of-order resources.

Jackson et. al [8] have investigated the performance for
complex scientific applications on A64FX across single node
as well as multiple nodes. They compared the performance of
A64FX with other HPC systems. They found certain
benchmarks to perform better on A64FX even without
specific application optimizations. Though, there were
benchmarks where A64FX was underperforming than other
systems. OpenSBLI had the worst performance drop when
compared to other benchmarks.

III. EXPERIMENTAL SETUP AND METHODOLOGY

We use two different HPC clusters for our evaluation.
PARAM Utkarsh is an Intel based cluster situated at CDAC
Bengaluru. PARAM Neel is an ARM (A64FX) based cluster
situated at CDAC Pune. For ARM based architecture we
selected Fujitsu’s A64FX processor as it is currently ranked
second in Top 500 [9]. Details of both the clusters have been
summarized in Table 1.

There is a plethora of compilers, profilers, libraries
available. In order to do fair comparison, we executed using
the same version of open-source softwares’ on both the
architectures as the optimized Fujitsu compiler was not
available on the ARM cluster. For profiling OpenMPI’s
internal functions we use Tuning and Analysis Utilities (TAU)
[10]. It gathers information using instrumentation as well as
event-based sampling method. Since it supports both x86_64
and aarch64 architecture it seemed like the best fit for our
cause. We use GNU compiler collection (GCC) [11] version
12.2 along with OpenMPI version is 4.1.1 for compiling the
benchmarks. As network topology for both the clusters is
different, we use nodes that are connected to a single switch
on the Intel cluster to have fair comparison of the execution
runs.

TABLE I. DETAILS OF HPC CLUSTERS

Configuration PARAM Utkarsh PARAM Neel

Processor
Intel Xeon platinum
8268

Fujitsu A64FX

Memory type DDR-4 HBM-2

Memory / node 192 GB 32 GB

Clock speed 2.9 GHz 1.8 GHz

No. of cores/socket 24 48

No. of socket/node 2 1

No of nodes 150 38

Interconnect
Mellanox
InfiniBand

Mellanox
InfiniBand

Peak bandwidth 100 Gbps 200 Gbps

Cluster topology Fat - tree Star

L1 cache size/core 1.5 MiB 6MiB

L2 cache size/core 24 MiB 32 MiB

L3 cache size/core 35.75 MiB -

SIMD extension
AVX, AVX2,
AVX-512

Neon, SVE

A. Comparing latencies

Since MPI communicates between nodes/processors, it
becomes imperative that we take network topology and
latency of the cluster network into account while doing our
experiments. Hence, we start by comparing the latencies for
MPI functions on both ARM and Intel clusters. Our aim here
is to keep an eye on any difference caused by network latency
observed in any of the clusters. We transmit a message from
one process to another in a round robin fashion and finally
compute the time taken for the message transmitted to be
received by the original sender. The process ranked p
transmits a data to a process ranked p+1. Then the process
ranked p+1 forwards the data received to process ranked p+2
which forwards it to process ranked p+3. This forwarding of
message continues till we reach a process ranked N-1 which
will transmit the data back to process ranked 0. Where N is the
total number of processes spawned.

For our experiment we spawn 2, 4, 8 and 16 processes with
one process per node. On performing the experimentation, we
find that ARM cluster shows less round-trip time than Intel as
shown in Fig 1. We find that the performance varies anywhere
between 2.2x to 6.99x. In terms of latency ARM performs
better than Intel. To a great extent we can attribute this

difference to the higher bandwidth available on ARM cluster.
We observe there is a linear curve in time taken when the
number of nodes is increased. On ARM cluster we find that
initially time decreases when the number of nodes is increased
but gradually the time taken increases linearly.

Fig. 1. Round trip time for Intel and ARM clusters

B. Berkley dwarfs

We benchmark the performance of MPI applications based
on the original seven Berkley dwarfs. For five of the Berkley
dwarfs, we use NPB benchmarks/kernels[12]. For N-body
methods and unstructured grids we use GROMACS[13] and
OpenFOAM [14] respectively. Table 2 lists the dwarfs and the
benchmarks chosen for the experimentation.

TABLE II. BENCHMARKS CHOSEN FOR A DWARF

Sr. no Berkley dwarf Benchmark chosen

1 Dense linear algebra LU, BT

2 Sparse linear algebra CG

3 Spectral methods FT

4 Map Reduce/Monte carlo EP

5 Structured grids MG, SP

6 Unstructured grids OpenFOAM

7 N-body methods GROMACS

For comparison between Intel and ARM we use Class C
problem size for all the benchmarks as it contains acceptable
data size / number of iterations that are commonly observed in
HPC applications. Since our Intel cluster has 2 sockets per
node we choose to spawn 2 processes per node. For CG, EP,
FT, IS, LU and MG we use 16 nodes with 2 process per node
(represented by 16N x 2P) while for BT and SP we use 16
nodes with 4 processes per node (represented by 16N x 4P),
since BT and SP require number of processes to be a perfect
square. We also make sure to bind the processes onto a core
in order to avoid any core switching during the execution runs.

Since NPB does not cover MPI based benchmarks for n-
body methods and unstructured grid we use GROMACS and
OpenFOAM. For GROMACS we use one of the available
benchmark suites “HECBioSim” [15]. We use Intel MKL [16]
and FFTW [17] for building GROMACS. OpenFOAM uses
the classical example of a motorbike but with cell count set to
8.5 million [18]. As vector instructions provide better
performance on both Intel [19] and ARM [20], we executed
the default benchmarks along with a version where vector

extensions for both architectures were enabled. We used
Advanced Vector Extensions (AVX-512) for Intel and
Scalable Vector Extension (SVE) for ARM.

Fig. 2. LU

Under Dense algebra, we have benchmarked it using LU
decomposition (LU) and Block Tri-diagonal solver (BT).
Performance for Lower-Upper Gauss-Seidel solver
represented in the Fig 2. We observe that Intel performs 3.29x
better than ARM when using the base benchmark. This
difference further increases to 4.8x when vector instructions
are used. Using vector instructions in ARM did not result in

significant performance improvement.

Fig. 3. BT

Fig. 3 presents the performance observed for Block Tri-
diagonal solver. We observe that Intel performs 1.5x times
better than ARM. Though on using vectorization we see a
decrease in the performance on both the architectures. Intel
takes a heavy toll on the performance when compared to ARM

using vectorization.

Fig. 4. CG

We have chosen Conjugate Gradient (represented by Fig.
4) for sparse linear algebra. For CG, Intel performs 4.69x
better than ARM. On using vectorization, we observe

performance increase of 1.12x and 1.003x for Intel and ARM

respectively.

Fig. 5. FT

Fig. 5 represents data for discrete 3D fast Fourier
Transform. We observe that Intel performs 2.31x times better
than ARM for the original benchmark. When vectorization is
used the difference increases to 2.88x. Using vectorization on
ARM results in 1.08x increase in performance as contrary to
1.34x for Intel.

Fig. 6. EP

Fig. 6 showcases the performance for Embarrassingly
Parallel kernel. When base kernel is used, we observe 3.83x
performance of ARM in Intel. On using vectorization, we
observe the performance gap to widen by 5.08x.

Fig. 7. MG

Performance data for Multi-Grid is represented by Fig. 7.
When using the original benchmark, we observe 2.17x
performance better on Intel, though on using vectorization we
observe decrease in the performance gap. Using vectorization
in ARM results in 2.11x increase in performance contrary to
Intel’s 1.17x.

Fig. 8. SP

Scalar Penta-diagonal solver performance data is
represented in Fig. 8. We observe Intel performing 2.44x
better when compared to ARM though on using vectorization

this gap decreases to 2.21x.

TABLE III. OPENFOAM PERFORMANCE DATA

Number of Process ARM Intel

16 19.8 hours 7.76 hours

32 18.94 hour 7.71 hours

64 77 sec 19 sec

Table 3 represents the performance of OpenFOAM using
8.5 million cell count as a dataset. We observe Intel performs
4.52x better than ARM. When increasing the process count,

we see much more performance gap between both the clusters.

Fig. 9. GROMACS

GROMACS test results are represented by Fig. 9. We find
GROMACS performs better on Intel when using the FFTW
library. Initially, the performance gap was approximately
5.23x times between ARM and Intel platforms. It decreases
to 4.54x times as the number of cores is increased to 128. We
also observed, on increasing the number of cores, MKL
library performs better when compared to FFTW on the Intel
platform.

From the above experiments, Intel shows higher
performance for all the benchmarks that were tried. However,
in MG when using vector instructions, we see much higher
gradient in ARM than in Intel indicating better performance
increase. In majority of the benchmarks vector instructions
made slight difference in the performance in ARM, though in
Intel significant performance was observed on the usage of
vectorization. On further analysis we found that NAS Parallel

Benchmarks are not optimized for a particular architecture
hence it does not use vectorization and out-of-order execution
capabilities of A64FX processor. Both GROMACS and
OpenFOAM use FFTW library, which does not use SVE on
ARM. We also observe better performance of Intel MKL than
FFTW, when core count is increased on Intel. This is due to
the fact that Intel MKL is optimized to efficiently use the
capabilities of Intel hardware. On using all the architecture
capabilities of A64FX we have confidence that dwarfs will
perform much better than the current scenario.

C. Behavior analysis of common MPI functions

Since applications use MPI, it is imperative that we
investigate the performance of MPI functions. The most
common MPI functions were chosen and benchmarked. We
look at three different categories of MPI functions namely:
point-to-point communication, file input or output and
collective MPI calls. Other than these categories we also look
at MPI_Init() and MPI_Finalize() as they are responsible for
initialization and termination of the MPI environment. For
point to point communications we chose MPI_Send() and
MPI_Recv() as a representative. For file handling we chose
MPI_File_open(), MPI_File_close() and
MPI_File_write_all() while MPI_Scatter(), MPI_Gather(),
MPI_Bcast() and MPI_Reduce() were chosen to represent
collective calls.

For point-to-point communication calls we send/receive
1MB, 10 MB and 100 MB of data to observe the trend of
performance in relation to data for both the architectures. As
for the file-based operations, we write 10 MB of data to a file.
For MPI_Bcast(), MPI_Scatter() and MPI_Gather() we
execute a single precision, general matrix multiply
(SGEMM) program with matrix size set to 6400x6400. As for
MPI_Reduce() we use Monte-Carlo PI calculation program.
We compile these programs using “-O2 -gdwarf-4” flag with
OpenMPI v4.1.1 using GCC v12.2.0 as the base compiler and
execute the binary obtained using TAU profiler.

Fig. 10. Basic MPI calls

The performance data for MPI_Init() and MPI_Finalize()
is represented in Fig. 10. We observe that MPI execution
environment is much faster on ARM than Intel. Though the

termination of MPI environment is somewhat similar in Intel.

Fig. 11. MPI_Send Performance

Fig. 12. MPI_Recv Performance

For MPI_Send() and MPI_Recv() performance data refer Fig.
11 & 12 respectively. We observe that MPI_Send() calls on
ARM perform better than Intel for all three data sizes.
MPI_Recv() initially performs better for ARM but then
increases exponentially as the data size increases.

Fig. 13. File IO calls

For file operations the performance data is represented by
Fig. 13. Opening a remote file on ARM was 2.23x faster than
Intel. For closing a file and writing data to a remote file Intel
and ARM performed similar. MPI_File_set_view() on ARM

performed 1.86x better than Intel.

Fig. 14. Collective calls

Performance of collective MPI calls is represented in Fig.
14. We observe that Intel performs 3.65x and 33x better than
ARM for MPI_Scatter() and MPI_Gather() respectively.
MPI_Bcast() performs 1.5x better on ARM than Intel.
MPI_Reduce() performs 6x times better on ARM than on
Intel.

From the above experiments, we observe that Intel’s
performance is better than ARM for majority of the MPI calls,
the only exceptions being the MPI_Init(), MPI_Send(),
MPI_File_open(), MPI_Bcast() and MPI_Reduce(). We
observe that currently, OpenMPI is one of the major stumbling
blocks for ARM's performance. Researchers have optimized
MPI_Reduce() performance for ARM by using SVE [21].
There is a scope for improvement in OpenMPI for ARM
architecture.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated the performance of HPC
clusters consisting of Xeon Platinum 8268 processors and
A64FX processors using MPI. We considered Berkley dwarfs
to cover a wide variety of applications that are executed on
these clusters. This led to using NPB, GROMACS and
OpenFOAM for evaluating the two architectures. These
benchmarks helped us to understand the communication-
computation performance gap, impact of increasing data size,
and network latency between the nodes.

Through the experiments we found that the performance
on ARM cluster lags when compared to the Intel cluster with
the only exception of structured grids where speedup achieved
on ARM was better with vectorization. In case of OpenMPI,
the process spawning is faster on ARM, while some collective
calls execute better on Intel. On further analysis, we found that
the FFTW library on ARM was not finetuned for A64FX due
to which the performance was lower compared to Xeon. On
observing holistically, we conclude that the architectural
based optimization of libraries and MPI will enhance the
application performance on a target architecture.

V. ACKNOWLEDGEMENT

We would like to thank Shamjith K V and Prachi Pandey
for the paper review and all others without whom this work
would not have been possible.

REFERENCES

[1] “MPI Documents”, [online], Available: https://www.mpi-
forum.org/docs/, July 2023

[2] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P.,
Keutzer, K., ... & Yelick, K. A, “The landscape of parallel computing
research: A view from berkeley”, 2006.

[3] Laion F. Manfroi, Mariza Ferro, André M. Yokoyama, A. Mury, B.
Schulze, “A Walking Dwarf on the Clouds”, In IEEE/ACM 6th
International Conference on Utility and Cloud Computing, 2013.

[4] Kaltofen, E. L, The “seven dwarfs” of symbolic computation (pp. 95-
104). Springer Vienna, 2012.

[5] “Top 500 JUNE 2023 list”, [online], Available:
https://www.top500.org/lists/top500/2023/06, July 2023

[6] Banchelli, F., Peiro, K., Ramirez-Gargallo, G., Vinyals, J., Vicente,
D., Garcia-Gasulla, M., & Mantovani, F, "Cluster of emerging
technology: evaluation of a production HPC system based on A64FX,"
In 2001 IEEE International Conference on Cluster Computing
(CLUSTER) (pp. 741-750). IEEE, September 2021.

[7] Odajima, T., Kodama, Y., Tsuji, M., Matsuda, M., Maruyama, Y., &
Sato, M, "Preliminary performance evaluation of the Fujitsu A64FX
using HPC applications," In 2020 IEEE international conference on
cluster computing (cluster) (pp. 523-530). IEEE, September 2020.

[8] Jackson, A., Weiland, M., Brown, N., Turner, A., & Parsons, M,
"Investigating Applications on the A64FX", In 2020 IEEE
International Conference on Cluster Computing (CLUSTER) (pp. 549-
558). IEEE, September 2020

[9] “Supercomputer Fugaku”, [online], Available:
https://www.top500.org/system/179807/, July 2023

[10] “Tuning and Analysis Utilities”, [online], Available:
https://www.cs.uoregon.edu/research/tau/home.php, July 2023

[11] “GCC, the GNU Compiler Collection”, [online], Available:
https://gcc.gnu.org, July 2023”

[12] “NAS Parallel Benchmarks”, [online], Available:
https://www.nas.nasa.gov/software/npb.html, July 2023

[13] “GROMACS”, [online], Available: https://www.gromacs.org, July
2023

[14] “OpenFOAM”, [online], Available: https://www.openfoam.com/, July
2023

[15] “The HECBioSim Benchmarks”, [online], Available:
https://www.hecbiosim.ac.uk/access-hpc/benchmarks, July 2023

[16] “Intel MKL”, [online], Available:
https://www.intel.com/content/www/us/en/docs/onemkl/get-started-
guide/2023-0/overview.html, July 2023

[17] “FFTW”, [online], Available: https://www.fftw.org/, July 2023

[18] “OpenFOAM HPC benchmark suite”, [online], Available:
https://develop.openfoam.com/committees/hpc, July 2023

[19] Somaia Awad Hassan, A.M. Hemeida, Mountasser M.M. Mahmoud,
“Performance Evaluation of Matrix-Matrix Multiplications Using
Intel's Advanced Vector Extensions (AVX)”, 2016

[20] Y. Kodama, T. Odajima, M. Matsuda, M. Tsuji, J. Lee and M. Sato,
"Preliminary Performance Evaluation of Application Kernels Using
ARM SVE with Multiple Vector Lengths," 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Honolulu, HI, USA,
2017, pp. 677-684, doi: 10.1109/CLUSTER.2017.93.

[21] D. Zhong et al., "Using Arm Scalable Vector Extension to Optimize
OPEN MPI," 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID), Melbourne, VIC,
Australia, 2020, pp. 222-231, doi: 10.1109/CCGrid49817.2020.00-71.

