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Abstract—Queries in a graph database are often converted
into a sequence of graph operations by a graph query engine. In
recent years, it has been recognized that the query engine benefits
from using high-performance graph libraries via the GraphBLAS
interface to implement time-consuming operations such as graph
traversal. However, using GraphBLAS requires explicitly casting
data into linear algebra objects and decomposing the query
into multiple operations, some of which are expressible by the
GraphBLAS. The combination of these two requirements trans-
lates into increased memory footprints and additional execution
times. In this paper, we show that fusing different stages of the
query engines into GraphBLAS calls can reduce the size of the
intermediate data generated during the query. Furthermore, by
relaxing the semi-ring constraints imposed by GraphBLAS, more
aggressive fusions of the stages can be performed. We show a
speedup of up to 1235.89x (8.82x on geometric average) relative
to an open-source graph query engine using GraphBLAS (i.e.
RedisGraph) for processing undirected subgraph enumeration
queries.

Index Terms—linear algebra, graph algorithms, high perfor-
mance, graph database systems

I. INTRODUCTION

Research in graph database systems, for example, [1], [8],
has largely been independent of the field of graph algorithms.
However, graph algorithms such as subgraph enumeration and
graph traversal that are commonly used in graph database
systems [4], [15], are the focus of much research in graph
algorithms [3], [10]. More recently, there has been interest
in leveraging the community-led GraphBLAS interface to
improve the performance of graph databases. The GraphBLAS
provides standard building blocks for graph algorithms in the
language of linear algebra [12], [13]. RedisGraph [5] and
MAGIQ [11] are two example graph databases that leverage
the GraphBLAS at various stages in their graph query en-
gines. The graph query engines benefit from high-performance
implementations by linking to high-performance GraphBLAS
backends such as SuiteSparse [6], [7]. We term query engines
that utilize the linear algebraic approach (e.g., GraphBLAS)
as linear algebraic graph query engines.

We make the observation that many graph query engines are
implemented to carry out an execution plan comprising many
stages, and selected stages in these query engines are imple-
mented as a sequence of GraphBLAS routines. This approach
introduces numerous inefficiencies in the use of GraphBLAS
for the implementation of query engines. Firstly, there is a

difference in the data format used by GraphBLAS and the
more traditional query engine processes. Hence, there is a need
to translate between the linear algebraic (matrices/vector) data
format required by GraphBLAS and the “list of data” format
in more traditional database systems. Second, each stage pro-
duced by the query engine may involve multiple GraphBLAS
calls. This means (with current library-based implementations
of GraphBLAS) that there is a need to materialize a large
amount of intermediate data after every GraphBLAS call.

In this work, we focus on effectively using the Graph-
BLAS within graph query engines. Specifically, we identify
opportunities to fuse different operations in a typical graph
database query engine with more efficient use of GraphBLAS
routines. Given that graph algorithms are generally memory-
bound operations, fusing multiple operators will allow us
to increase the arithmetic intensity while also reducing the
amount of intermediate data that needs to be written out
after each stage of the query engine. Specifically, we focus
on 1) fusing across multiple linear-algebraic stages of the
query engines using the masked-matrix multiplication operator
in GraphBLAS, 2) introducing the use of common neighbor
identification [10], [20] to fuse across different stages of the
query engine, and to reduce the number of GraphBLAS calls
required, and 3) relaxing the semi-ring constraints imposed by
GraphBLAS while relying on the data access pattern of typical
graph algorithms to expose even greater amount of fusion.

We demonstrate the feasibility of our approach by reimple-
menting the query engine in RedisGraph [5], demonstrating
that these insights can provide performance improvements of
more than 3 orders of magnitude (1235.89x) over the baseline
RedisGraph implementation. Furthermore, these insights allow
us to compute on large graphs and queries than the baseline
implementation, demonstrating a reduction in the resource
required to execute a query.

II. ANATOMY OF A GRAPH QUERY ENGINE

In this section, we describe the typical tasks performed by a
graph query engine when servicing a graph query. Specifically,
we use triangle enumeration, i.e., finding all triangles in a
graph, as our running example throughout this paper.
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Fig. 1. A sequence of operations for a triangle enumeration query

A. Triangle Enumeration as a graph query

Triangle enumeration is a well-studied problem in the
graph algorithm domain, where there are closed-form solu-
tions/algorithms for counting and/or enumerating the different
triangles formed in a graph [2], [16], [17], [19], [21], [22].
However, for a graph query engine, the query itself is first
converted into a query execution plan, and the plan is executed
in multiple stages shown in Figure 1. We provide a brief
overview of the different stages in a graph query plan1.

Specifically, triangles are enumerated via eight stages ( 1
to 8 ). The sequence starts by ( 1 ) reading all nodes from
a node list in graph database systems. These nodes form the
starting node of a possible triangle. Starting from each node
( 2 ), a single step of traversal is performed from the starting
node to each of its neighbors. These identified nodes are then
considered to be possible second nodes of the triangle. This
step creates a list of two-node walks. Then, the list is filtered
( 3 ) to eliminate walks where the first and second nodes are
the same node. Three-node walks are then identified through
a repeated process of traversal ( 4 ) and filtering ( 5 ). Having
found a list of three node walks, we need to ensure that
the third node must be connected to the first node. This is
performed via another traversal ( 6 ) from the third node to the
first node. This turns the list of three-node walks into a list of
three-node cycles (triangles). The last two stages of the query
process are to format the intermediate data representation into
a user-friendly format ( 7 ) and then pack the result data for
presentation to the user ( 8 ).

B. Graph query as linear algebra-like operations

The implementation of graph query engines with a lin-
ear algebraic approach has been proposed. The essence of
MAGIQ [11] and RedisGraph [5] leverages the GraphBLAS
APIs by casting various stages (e.g., traverse and filter) of the
query as matrix-matrix multiplication of appropriately created
matrices and the adjacency matrix representing the data graph.
To illustrate: consider an S matrix that selects 4 out of the 5
nodes in a data graph. A is an adjacency matrix of the data
graph. Multiplying S with A gives us a result matrix M whose

1It should be noted that while different graph database systems may produce
different execution plans, the plans are largely similar in the stages and tasks
performed per stage.
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Fig. 2. Conversions between lists and matrices occurring before and after
traverse in RedisGraph

different rows represent different neighborhoods for different
nodes in the list as shown below:

M = SA =

Selector Matrix︷ ︸︸ ︷
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1



Adjacency Matrix︷ ︸︸ ︷
0 1 0 0 1
1 0 0 1 1
0 0 0 0 0
0 1 0 1 0
1 1 0 0 0


Note that we assume all matrices are boolean matrices.

The result of the matrix-matrix multiplication is either used
as inputs to other matrix-multiplication operations or will be
converted to other data formats (e.g., lists of nodes/walks)
where other database operations (e.g., relational join, filter)
are employed in stages of the query process that have not
been or cannot be written using the GraphBLAS API.

C. Translation to/from GraphBLAS and database operations

While the graph query engine benefits from high-
performance GraphBLAS libraries, there is a need to convert
between the matrix/vector view of GraphBLAS and the “list
of data” view favored by traditional databases and expected by
users. As such, there is a need to perform these conversions.
Examples of such conversions are shown in Figure 2, where at
the start, there is a need to convert from the “list of nodes” into
a selector matrix. After the results have been obtained, there
is a need to separate multiple results into individual records.
In the above example, multiple identified neighbors of node 0
need to be separated into multiple separate records to create
a list of two-node walks.

Furthermore, any additional data operations that are not
implemented in terms of linear algebraic (specifically Graph-
BLAS) operations will require data representation conversion.

III. OPPORTUNITIES FOR FUSION

Fusing multiple stages in the query engine allows us to
utilize more efficient implementations in GraphBLAS. In this
section, we illustrate different fusion opportunities to perform
fusion within the query engine.

A. Filter with masked matrix-matrix multiply

Recall that in a typical graph query engine, the filtering
of the intermediate result is performed as a separate stage
from the traversal process. Furthermore, traversal in a linear
algebraic query engine is implemented as a matrix-matrix



multiplication, and filtering can be implemented as an element-
wise multiply. This implies that these two stages can often
be implemented as a masked matrix-matrix multiplication as
follows:

M = (SA⊙ ¬F )

Here, F selects all the nodes that must not appear in M ,
where F often is the previous stage’s M . This leverages
the capabilities of GraphBLAS more efficiently, and it allows
the fusion of the filtering as part of the write mask in the
computation of the traversal step. This is also a common
approach in many graph algorithm implementations using
GraphBLAS [9]. Applying this to our triangle enumeration
would mean that stages 2 and 3 are fused.

B. Common neighbor identification

Finding common nodes that are in the neighborhoods of
two or more other nodes is also known as common neighbor
identification. Note that in the triangle enumeration example,
this is performed as 3 separate stages ( 4 through 6 ).
Coupled with the masked-matrix multiplication, these 3 stages
can be combined into 2 steps using GraphBLAS as follows:

1) Finding all neighborhoods of interest, by performing
a matrix-matrix multiplication of the adjacency node
against a selector matrix where a 1 along the diagonal
represents a node whose neighborhood is of interest2.

2) All identified neighborhoods are intersected to find the
nodes common across all neighborhoods.

To illustrate common neighbor identification, consider the case
where we have identified two lists of candidates for 2 of the 3
nodes in a triangle enumeration query. This list of candidates
can be implemented as 2 separate matrices as follows:

Sa =


1 0 0 0 0
1 0 0 0 0
0 1 0 0 0

...

 Sb =


0 1 0 0 0
0 0 0 0 1
1 0 0 0 0

...

 ,

where Sa and Sb represent the two separate lists of candidates.
Note that there are duplicated rows in Sa because each row
could have multiple neighbors. In this case, the first node has
2 neighbors, and so 2 separate intersection operations (one
with each neighbor of the first node) have to be performed to
identify common neighbors3.

After separately multiplying Sa and Sb with the adjacency
matrix of the data graph, A, different intermediate matrices
(Ma and Mb) where each row representing the neighborhoods
of each node from their respective candidate lists are created.

2It should be noted that this step is already a fusion of multiple traversals
to find all neighborhoods of interest.

3A way to identify how many rows need to be duplicated is to see how
many times a node is represented in the list view as shown in Figure 2 (after
conversion).

The intersection of the neighborhoods can then be per-
formed via an element-wise multiplication of both interme-
diate matrices as follows:

Mc = Ma ⊙Mb =


0 0 0 0 1
0 1 0 0 0
0 0 0 0 1

...


which, along with the original candidate lists Sa and Sb, can be
interpreted as the following three-node cycles: cycles (0, 1, 4),
(0, 4, 1), (1, 0, 4), and so on. Note that there may be multiple
common nodes in a single intersection.

1) Fused implementation: Note that Ma and Mb can be
obtained by performing masked-matrix multiplication, and
they are element-wise multiplied together to obtain the list
of common neighbors. The number of GraphBLAS calls
can be further reduced by recognizing that the element-wise
multiplication can only return a result if an element Mb is
already present in Ma. This means we can use Ma as the
write-mask for the masked-matrix multiplication to compute
Mb, i.e.,

Mc = Ma ⊙Mb

= Ma ⊙ SbA

This reduces the number of GraphBLAS operations from 3 to
2 and also reduces the need for producing results that may be
eliminated by the intersection (element-wise) operation.

C. Fusing multiple common neighbor operations
Notice that computing common neighbors identification

operation requires multiple passes through the adjacency ma-
trices. As the number of neighborhoods that need to be
intersected increases, this increases the number of matrix
multiply that has to be performed. An alternative is to keep
the previously computed results, but this is only an option for
small graphs and queries.

Recall that each row in Sx represents a selector that picks
out a particular row in the adjacency matrix. Multiple non-
zero elements in the same row can serve to pick out the
appropriate rows in the adjacency matrix via the same matrix
multiplication routine. Therefore, to reduce the number of
passes, one possibility is to merge both the candidate lists
Sa, Sb into a single paired candidate list Sa,b, i.e.,

Sa,b = Sa + Sb

where each row in Sa,b represents all nodes whose neighbor-
hood needs to be intersected.

However, while the combined selector matrix Sa,b can pick
out the appropriate rows of the adjacency matrix, implemen-
tations using the GraphBLAS yield incorrect results because
this formulation violates the properties of the semi-ring.

Specifically, the properties of a semiring require that:
• Additive Identity (Id⊕). The addition must have an ele-

ment that, when added with any element x, will yield x
as the result, i.e.

Id⊕ ⊕ x = x⊕ Id⊕ = x



.
• Multiplicative Annihilator. When multiplying Id⊕ with

any element, the result will always be Id⊕, i.e.,

Id⊕ ⊗ x = x⊗ Id⊕ = Id⊕.

To illustrate the problem, let us consider the problem of
performing the intersection as part of the reduction/additive
operator in GraphBLAS. Here, the multiplicative operator is
used to select the approprate rows of the adjacency matrix.

In order for the intersection to be correct, the reduction
operator has to be the logical AND operator. This means that
additive identity has to be true or 1. However, true cannot
be the multiplicative annihilator as multiplying 1 with any
input x with return x. Similarly, 0 or logical false cannot
be the additive identity, as performing intersection with 0 will
always return 0.

To solve this problem, we implement a custom masked
matrix-matrix multiply routine that utilizes a custom multi-
plicative operator that does not have the semi-ring constraints.
Our routine has a similar data access pattern as a regular sparse
matrix-matrix multiply. Specifically, our custom operator has
to have the following properties:

1) When the element in a row of the selector matrix is 1,
an intersection is performed using the selector row and
the resulting vector. This means that the selected row
must be passed unmodified to the intersection operator.

2) When the element in a row of the selector matrix is 0,
the result vector must not be changed, since that row
does not contribute to the result. To preserve the results
after the intersection, the selected row must be all 1.

This means that the custom operator changes the value of the
selected rows, as shown in the truth table below:

p q p⊗ q
0 0 1
0 1 1
1 0 0
1 1 1

The astute reader will recognize that the truth table above is
the same as the boolean implication operator. This expected,
since the value of the row used for intersection is dependent
on whether that particular row is selected or not.

Implementing this operator using GraphBLAS matrix-
matrix multiply routine yields incorrect results as its specifica-
tion is only defined where both input elements are common in
the index sets of the input matrices, i.e. k ∈ Ind(S)∩Ind(A).
However, this operator needs to be performed for all values
in the selector matrix S, including those containing implied
zeros, i.e. k ∈ Ind(S) ∪ Ind(S)′.

IV. EXPERIMENTAL RESULTS

We compared the performance of our optimization against
the original RedisGraph (Commit No. ddcbcf4) and Neo4j
(v.5.2.0, community edition).

Fifteen datasets from the Stanford Network Analysis Project
(SNAP) [14] were selected from various categories. A total of
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Fig. 3. The nine motifs used as input queries. with their name as a label for
the experiments.

9 different queries were used. These queries were undirected
versions of motifs commonly found in biochemistry, neurobi-
ology, ecology, and engineering [18]. The undirected versions
of the motifs are visualized in Figure 3.

A. Experimental setup

We experimented on a dual-socket machine with 128 GB
DRAM memory and 24 threads. Each CPU is an Intel(R)
Xeon(R) CPU E5-2620 v2 @ 2.10GHz. We modified the
original RedisGraph by replacing the default query engine with
different optimizations applied. Suitesparse 7.3.0 was used as
the GraphBLAS implementation. The following implementa-
tions were created:

• Baseline. This is the default/unmodified RedisGraph im-
plementation.

• Fused T&F. RedisGraph with a fused traverse and filter
implementation using GraphBLAS in Section III-A.

• Fused CNI&F. RedisGraph with a fused common neigh-
bor identification and filter implementation using Graph-
BLAS in Section III-B. We also replaced all traverse op-
erations with appropriate common neighbor identification
operations.

• Beyond GB. RedisGraph with our fused common neigh-
bor identification and filter implementation in Section
III-C.

• Beyond GB W/O Conversion. The Beyond GraphBLAS
implementation but conversions between successive com-
mon neighbor identification operations are removed.

For all RedisGraph implementations (including the baseline),
we adjusted BATCH_SIZE in the traverse operation (as well
as the fused operation) to INT_MAX to reduce the number
of GraphBLAS operation calls. As a side effect, it used more
space. For Neo4j, we set the maximum heap size to 120 GB,
close to our DRAM capacity.

B. Performance breakdown

To identify the performance improvements yielded by the
different techniques, we compared the runtimes and the
breakdown for all 4 implementations running against the
largest graph in our experiment, cit-Patents (3774768 nodes,
33037894 edges), and the triangle enumeration query. The
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results are shown in Figure 4. The built-in RedisGraph profiler
was used to obtain the breakdown of runtime.

A modest 1.32x speedup is gained from fusing the traverse
and filter operations using GraphBLAS using masked-matrix
multiplication. The largest gain of 7.1x speedup over the
baseline is attained by switching to a common neighbor
implementation in GraphBLAS. Using our custom common
neighbor implementation, we gain a further speedup, resulting
in a gain of 9.51x speedup over the baseline. Removing data
conversions between stages 2 and 4 , a 14.47x speedup over
the baseline is attained.

C. Applicability to other motifs and graphs

We picked Neo4j, the baseline RedisGraph, and Beyond GB
W/O Conversion implementations to evaluate the applicability
of the approaches to more graphs and queries. Figures 5 and 6
report runtimes for all graphs and queries, except for timeout
(1 hour) or out-of-memory cases. We illustrate the timed-out
workloads as a bar hitting 3600 seconds. The out-of-memory
workloads are shown as no bar. Note that timeout and out-
of-memory status are not mutually exclusive; we show the
first status each workload encountered. Plots are ordered by
the size of the original graph, starting with the smaller graphs
from left to right and from top to bottom.

1) Three-node queries: Figure 5 shows the performance
for all three graph databases on three-node queries. As these
three-node queries often require only a few stages, most
workloads can be completed within the time limit and available
memory. Only the three-node chain (3ch) query could not
be completed within the allocated time frame (Neo4j) or
the memory constraints (RedisGraph-based implementations).
This is expected since both graph sizes and characteristics
of query subgraphs often affect the number of query results,
which affects both time and space.

Across the board, the linear algebraic (RedisGraph-based)
implementations were often significantly faster than the Neo4j

(non-linear algebraic) implementation. For the largest graph,
Neo4j did not complete within the time limit, but the linear
algebraic approaches ran out of memory well before the
time limit. This could suggest that either better memory
management is required for linear algebraic approaches, or
the Neo4j query could have needed more time to run out of
memory. This is something we intend to investigate further.

More importantly, the optimizations introduced in this paper
are often more beneficial for the three-node cliques (3cl) than
three-node chains (3ch). This is because the three-node clique
query enabled the use of a common neighbor approach to
find the third node that is in the neighborhood of multiple
nodes. This is consistent with the performance breakdown
shown in Figure 4, where most of the performance gained
in our implementations comes from the common neighbor
optimization.

2) Queries with larger node count: Figure 6 reports the
performance of the same implementations on larger query
graphs. Generally, our custom implementation returned the
query results faster than the baseline RedisGraph, and Neo4j
implementations.

We also find that our trend in terms of speedup signifi-
cantly improves from, at most, 25x speedup over the baseline
RedisGraph implementation to more than 1200x speedup. The
better speedup happens in the workload whose graph contains
a small number of results relative to the graph size, such as
p2p-Gnutella04 (1235.89x). Since such workloads spend most
of the time on the operation, we are capable of improving like
traverse and filter, attaining higher speedup can be expected
as we gain in this workload.

One of the interesting insights is that there are workloads
that the baseline RedisGraph cannot outperform a non-linear
algebra implementation like Neo4j. However, our implemen-
tation in RedisGraph can outperform Neo4j in all workloads
all implementations can complete. This highlights that there
is an opportunity to improve the linear algebra approaches in
the domain of graph query engines, as shown in this work.

V. CONCLUSION

This paper highlighted multiple fusion opportunities for
using linear algebra within graph query engines. We argued
that by leveraging the identified fusion opportunities, we can
reduce the number of GraphBLAS calls, which in turn reduces
both the intermediate data that needs to be written out, and the
number of times the data format has to be switched between
the matrix/vector view required by GraphBLAS, and the ”list
of data” view typical of databases.

We demonstrated the performance improvement from ex-
ploiting these identified fusion opportunities by replacing
the query engine within RedisGraph. Our modified database
attained over three orders of magnitude speedup relative to
the original RedisGraph implementation. We also showed that
our implementation is more efficient in terms of compute and
resource utilization as compared to the baseline implementa-
tion, as our modified implementation is capable of performing
queries on larger data graphs and more complex queries.
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Fig. 5. On geometric average, a 2.22x speedup improvement is attained by running our implementation using our operation fusion techniques against the
baseline RedisGraph for three-node subgraphs. Against Neo4j, our implementation can gain an 11.1x speedup on the geometric average.
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Fig. 6. Our implementation outperforms the baseline RedisGraph and Neo4j by 8.82x and 14.9x speedup on geometric average, respectively. The results also
show that our implementation can complete most of the workloads than the other implementations.

While our work highlights the benefits of linear algebraic
graph query, it also shows a need to robustly bridge the
gap between the high-performance library standards for graph
algorithms and the use cases of interest to graph database
system communities. Future work could explore how node
properties can be included in the search for common neigh-
bors, performing graph algorithms on dynamic graphs, and

using linear algebra equivalence as rule-based optimizations
for graph queries.

A key work we intend to explore is to identify “good” linear
algebraic formulations from a given graph query. Our measure
of “goodness” would be one that translates to an execution
plan that requires either lesser resources and/or execution time
overall.
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