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Abstract—Sensors used to collect human physiological data
often necessitate the processing and classification of time series
data, which can quickly become intractable with very lengthy
inputs or many time series features. In this study we compared
the performance of two methods of time series feature extraction
and dimensionality reduction, Minimally Random Convolutional
Kernel Transform (MiniRocket) and statistical feature engi-
neering using TSFresh, to determine the optimal hardware
configurations and associated performance-accuracy trade-offs
between model speed and complexity. Our results showed that
MiniRocket scales extremely well with only linear complexity
while the scaling of TSFresh is dependent on the set of features
selected for computation. Further, MiniRocket outperformed
the TSFresh model accuracy for all configurations except the
most comprehensive (but slowest) feature extraction set thereby
highlighting MiniRocket as a great all-purpose dimensionality
reduction tool for human physiological time series data.

Index Terms—Artifical Intelligence, dimentionality reduction,
Multimodality, MiniRocket, Physiology, Scalability, TSFresh

I. INTRODUCTION

High global demand for experienced pilots has led to a
critical deficit of aviators, both within the civilian and gov-
ernment organizations in the United States [1] and is expected
to lead to a severe pilot shortage by 2037 [2]. The reasons for
the shortage in the United States range from Federal Aviation
Authority (FAA) regulations (forced retirement at age 65) to
an explosion of commercial use of airlines due to e-commerce
expansion in the last two decades [3].

Adequate training of new pilots is of critical importance
but has come at the expense of long training pipelines and
rigorous practical testing before accession into the piloting
career field. Further, according to the 2022 FAA report of
U.S. civil airman statistics, the pass rate on FAA practical
tests decreased on average for all types of pilots for the first
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time since 2012 [4]. Further, the RAND corporation identified
a critical pilot shortage in the US military as early as 2000 and
projected the retention of experienced pilots and the lengthy
certification process to be the primary reasons for continued
future shortages [5].

While the crisis extends from initial training to experi-
enced pilot retention, the focus of this paper is on improving
the efficacy and throughput of the pilot training pipeline
so support the burgeoning demand of both commercial and
military aviators. While the Air Force leadership has recently
emphasized flight simulators to modernize pilot training [6]
as a way to reduce the material cost of training flights
during the 55 week long course, objective evaluation of pilot
performance has not yet been adequately established. While
previous research conducted by the U.S. Department of the
Air Force and Massachusetts Institute of Technology/Lincoln
Laboratory have demonstrated promising gains toward such
objective assessments, a comparison of both the methods
and the associated performance and computing demands is
warranted [7] [8] [9].

Our approach to evaluating these objective measures of
performance was to choose two distinct methods and compare
both accuracy and computational expense to generate infer-
ences using only human physiological data gathered from the
pilot during the simulated flight. The first method, MiniRocket,
applies 1-dimensional convolutions to the time series for
dimension reduction and feature extraction over very high-
dimensional spaces [10]. The second method calculates a large
number of time series statistics in order to characterize the
observations. Both methods were then passed into various
classifier models to predict the difficulty of the flight run and
the accuracy was measured against the objective difficulty level
[11]. We then compared the relative computational expense of
the two methods and discuss the trade-offs between accuracy
and performance, as well as practical use-cases for such
models.

Providing personalized feedback using Artificial Intelli-
gence (AI) tools can help reduce the need for human in-
structors . Previous work has been done to equip simulators
with personalized AI feedback; Yang et al. [12] described



TABLE I
DESCRIPTION OF DATA ANALYZED

Modality Location Facet Unit Sampling
Rate (Hz)

x-axis m/sˆ2 128
y-axis m/sˆ2 128Right forearm
z-axis m/sˆ2 128
x-axis m/sˆ2 128
y-axis m/sˆ2 128

Accelerometry

Torso
z-axis m/sˆ2 128
LA-RA mV 512
LL-RA mV 512
Vx-RL mV 512Electrocardiogram Chest

Respiration mv 512
Extensor mV 128Electromyography Right wrist Flexor mV 128

Electrodermography Left hand kOhms 1024
Photoplethysmography Left hand mV 1024

Plethysmography Diaphragm V 1024

a conceptual model to design an ML system for real-time
feedback to pilots, and Guevarra et al. [13] implements a
reinforcement learning agent to first learn flight manuevers
from instructors, then pass this knowledge on to student
pilots. For these works, the systems make use of exact plane
position data generated by the simulator. However, some of the
simulator systems, including those used by DAF Specialized
Undergraduate Pilot Training (SUPT) program, are legacy
systems, thus integrating AI teachers into and reading position
data from the simulators can be overly arduous.

A more flexible system design would avoid needing to
integrate with pre-existing flight simulators. Bineas et al.
[14] confirmed that it is possible to detect unexpected events
via EEG measurements, leading to the possibility of an AI
system that provides feedback based directly on physiological
readings taken from the pilot. Such a system wouldn’t need
to interface with the simulator, and could even be deployed
inside real trainer jets.

The CogPilot dataset [11] was collected to facilitate the
development of physiology-informed machine learning models
to monitor flight performance in tasks of varying difficulty.
The CogPilot team so far has run two competitions among
teams of university researchers to find the best performing
models. Two additional works have been published based on
the CogPilot dataset by Powell [15] and Cabellero et al. [16].

Our work extends upon prior work done on the CogPilot
dataset. We analyze the degradation in performance of mod-
els under different sampling frequencies, and detect artifacts
present in the different modalities of the CogPilot dataset. We
also evaluate two different featurizing transforms: MiniRocket
[10], a modern deep-learning inspired approach and TSFresh
[17], which features traditional time series feature calculators.
Finally, we introduce a scalable pipeline to evaluate hundreds
of hyperparameter combinations on any distributed computing
environment using Dask [18], Optuna [19], and the Scikit-
Learn API [20].

II. MATERIALS AND METHODS

A. High performance computing environment

The computation for this paper was performed on the
high performance computing (HPC) system provided by MIT
Supercloud [21], where we were able to utilize nodes equipped
with Intel Xeon Platinum 8260 CPUs (48 total cores) with 192
GB of RAM. The high memory capacity was especially critical
to our research, since resampling our dataset to 1024Hz creates
a 23.5 GB object in memory. We run jobs through a SLURM
workload manager [22] and use 4 nodes for each job, out of
a maximum of 8 nodes for a base user.

B. Dataset

The dataset used by this paper is a subset of the physio-
logical data collected by the DAF-MIT CogPilot team [11].
All subjects volunteered to participate in the study and gave
written informed consent under a protocol approved by the
MIT Committee on the Use of Humans as Experimental
Subjects. The study involved 35 subjects varying between zero
hours and 3000+ hours of fixed-wing flight experience who
each attempted 12 simulated landings of an airplane under 4
different difficulty levels.

The subset used in this paper excluded the eye tracking
and head movement modalities which have previously been
explored [8]. Table I describes the six modalities studied,
which include electrocardiography, respiration, accelerometry,
electromyography, electrodermal activity, and photoplethys-
mography, from which 14 distinct features were derived.

C. Preprocessing

As with many multimodal sensor studies, preparation of the
dataset was carefully attended to ensure quality and unbiased
data was eventually feed to the classifier models. Across the
six separate modalities included in the data, three distinct
nominal sampling rates were found (128Hz, 512Hz, 1024Hz).
The first preprocessing step required aligning all time series
observations to a common start time through timestamp con-
version and interpolation where necessary.

Once the time series observations had a common starting
timestamp, the various sampling rates were rectified through
aggregation, where necessary. The decision to resample the
time series to the greatest common factor of 128Hz or less
was made to allow aggregation of time elements rather than
interpolation, which also assisted in filling random missing
values due to sensor fault.

Outlier analysis revealed that nearly all time series obser-
vations began and ended with significant noise and artifacts.
This was most pronounced in the accelerometry data, which
suggested that the subjects were likely adjusting their position
for comfort early on or were reacting to stimulus outside the
simulator (e.g., instruction from the research administrator)
both directly before and after the flight run.

Further, the variability across subjects for the time required
to complete the exact same runs suggested that some flights
ended prematurely compared to the expected time for com-
pletion, while others lingered on for nearly twice as long.



Fig. 1. Example time series data by modality

This was confirmed by administrators to be scenarios where
subjects crashed early in the flight or became disoriented
and were unable to find their way back to the runway for
a successful landing.

Clipping the time series to between 25 seconds and 470
seconds was done to eliminate the ”settling” period at the
beginning of each run as well as terminate the observation
beyond a reasonable time to land the plane. For those subjects
who crashed prior to the expected time to land, the series
was padded with the last valid value to ensure uniform length
of the time series across all observations (a requirement of
MiniRocket Multivariate).

D. MiniRocket

Minimally Random Convolutional Kernel Transform, or
MiniRocket, is a transform for time series data that handles
both univariate or multivariate data [10]. In the case of
univariate data, each time series observation of size m × n
is transformed with a 1-dimensional convolution using a
kernel of length 9. Biases are randomly sampled from the
output so that all convolutions are of the same relative scale,
thereby eliminating the need to normalize the data before
application of the MiniRocket method. After each observation
is convoluted, it is further distilled as the proportion of positive
values in the output. Hence, one value from the interval [0,1]
is returned for each input observation and each of k kernels,
resulting in a new transformed dataset of size m× k.

For multivariate datasets, the same process is applied except
for each observation all time series features are padded to the
same length (length n) and concatenated together before the
convolution. This provides additional benefits as the original
data is reduced from m × n × t (where t is the number of
time series features) to size m× k. Common values for k are
typically between 5000 and 30000 kernels, with more complex
relationships likely captured for greater kernel samplings. For
our experimentation, 5000 kernels were used for each model
and each of the 14 unique time series features was clipped
between to the interval [25, 470] seconds. Thus, for a given
sampling rate h, the dataset was transformed from m× 445 ∗
h× 14 to m× 5000.

E. TSFresh

TSFresh (Time Series FeatuRe Extraction on basis of Scal-
able Hypothesis tests) [17] is a Python package for time series
transformation that we explore as an alternative to MiniRocket.
TSFresh automates the feature extraction process with 63
different time series characterization methods, resulting in 794
total computed time series features from a single input feature.
The package also automatically performs feature selection
using the FRESH [23] algorithm on these generated features,
to mitigate the combinatorial explosion of features.

TSFresh implements the Scikit-Learn API [20], and works
solely with Pandas DataFrames [24]. This makes the library
widely compatible with most of the Python machine learning
ecosystem. For production environments, TSFresh is highly
parallelizable to enable high throughput. On a single machine,
it uses the Python module multiprocessing and in a
distributed environment, it uses Dask [18].

The reason we choose to use TSFresh as a comparison to
MiniRocket is the flexibility it provides for choosing time
series characteristics. For example, the summary statistics
computed in [16] are all available as feature calculators in
TSFresh. We choose to use the three default feature sets in
TSFresh: minimal, efficient, and comprehensive. The minimal
set of feature calculators has the lowest compute requirement
but the lowest expressivity, whereas the comprehensive feature
set takes the longest to compute, but is expected to lead to the
most accurate classifier

F. Lazy Dataset Pre-processing Pipeline

One of the problems faced while pre-processing the dataset
was running out of RAM on the node. The CogPilot team
used the lab streaming layer [25] to synchronize data streams
from multiple sensors, yet when all of the data streams were
collected into a single DataFrame without merging by times-
tamp, the RAM consumption of the complete frame ballooned
to 140+ GB. An exclusive node on the MIT SuperCloud can
load the DataFrame since it has a memory limit of 192 GB,
but it is difficult to perform operations on this DataFrame
because Pandas has adopted a copy-only programming model.
We turned to Dask [18] as a solution to merge all of the data
into a single DataFrame and resample it without running out of
memory on the node. Dask processes data lazily, and optimizes
computations so that the memory limit is never exceeded. As
an added bonus, Dask is able to perform the entire process
of loading all of the CSV files, merging them, and resampling
the DataFrame within 5 minutes. Further optimizations include
storing datasets as HDF5 [26] files and compressing them
using the LZO [27] compressor for faster read/write from disk.

III. EXPERIMENTAL RESULTS

A. Computational Performance

The comparison of computational performance between TS-
Fresh and MiniRocket methods was done both by the relative
size of the time series observation and the number of CPU
cores available to process the data. During the preprocessing
step, each time series observation was clipped to the interval



Fig. 2. Receiver Operating Characteristic Area Under the Curve for model
built with 16Hz downsample data

[25, 470] seconds, so by adjusting the sampling rate aggrega-
tion we were able to precisely scale the data by increasing the
density of data rather than extending the length of the time
the observation spanned. This allowed for direct comparison
of accuracy and computational performance between various
sampling rates and across hardware configurations.

For all MiniRocket models, the size of the output was fixed
at exactly m×5000, regardless of the number or length of the
input time series. For a fixed number of CPU cores, the time
required to fit/transform the MiniRocket model scaled linearly
for linear increases in the length of the time series input. The
TSFresh model exhibited the same behavior, as shown in figure
6.

When fixing the sampling rate and scaling the number of
available CPUs, the MiniRocket method observed a gradual
speed-up of performance from 2 to 12 CPU cores before
leveling around 46.5 seconds per Hertz to fit/transform the
data. This trend was noticed for all sampling rate levels
and indicates little benefit to utilizing more than 20 CPU
cores for data with sampling rates up to 128 Hz. Potential
performance gains for time series lengths beyond 128 Hz are
left to future experimentation. We saw no such benefit for
TSFresh. The performance with respect to the number of CPU
cores remained consistent all the way up to 48 cores.

B. Accuracy

While accuracy was not the explicit focus of this study,
it is important to acknowledge that the scalability of the
MiniRocket method does carry potential trade-offs with ac-
curacy. As we vary the sampling rate of the dataset from
1Hz to 1024Hz, we note in 3 that MiniRocket very slightly
trends downward in performance as the sampling frequency
decreases, whereas the TSFresh featurizer experiences almost
no change in performance.

A drawback to using the MiniRocket method is the loss
of explainability of the model due to the convolutions. For-
tunately, the speed and consistency of MiniRocket allows for
building quick classifiers for each time series feature to inspect
the relative contribution to the overall performance. Figure 2

Fig. 3. Comparison between MiniRocket and TSFresh featurizers as sampling
frequency changes.

Fig. 4. One-vs-One Receiver Operating Characteristic Area Under the Curve
for 16Hz dataset model

shows an example of how the same fixed set of MiniRocket
transforms provide different levels of predictive power for
different features.

It should also be noted that the complexity for MiniRocket
is O(k ∗ n ∗ linput) [10], so for a fixed length of time series
and number of observations, the complexity scales linearly
with respect to an increase in kernels. For this experiment we
fixed the number of convolutions applied to the time series
input at 5000 kernels, however, we leave the determination of
the impact of kernel choice on final accuracy to future work.

IV. DISCUSSION AND FUTURE WORK

In this study we compared two different methodologies for
preparing time series data for a machine learning classification
task. MiniRocket was shown to be a highly scalable method



Fig. 5. Time (sec/Hz) to fit and transform time series data by the number of
CPU cores available

Fig. 6. Time (sec/Hz) to fit and transform the dataset by the number of CPU
cores used, for the TSFresh-based model.

capable of marginal accuracy when used with untuned vanilla
classifiers while TSFresh showed better accuracy with more
comprehensive features, albeit at the expense of greater time
to fit and transform the input data. The information from this
study can be used to estimate resource requirements when
performing time series classification in future experiments or
when incorporating in edge technologies.

A significant drawback to using MiniRocket, however, is
the loss of explainability in the output after feature selection.
This is manageable, to some extent, by performing feature
selection prior to pass through the MiniRocket model, but
this excludes potentially useful signal from the final classifier
model. Another alternative is to apply the MiniRocket method
to univariate time series and generate transforms of each
sensor feature separately rather than concatenating all together.
Although this leads to an increased final output size before
passing into a classifier, it is possible to extract through
feature selection methods only those kernel transforms that
provide significant signal from each of the sensor features.

Unfortunately, it is difficult to interpret the significant of
the percentage positive value (PPV) even when characterized
as an important feature. In this sense, TSFresh provides a
much more interpretable model and would likely be a better
option in instances where explainability is more important than
performance.

Other considerations for choice of methodology is the final
application of the model and any associated hardware con-
straints. While MiniRocket underperforms slightly in accuracy
when compared to the most comprehensive TSFresh model,
the time to fit and transform MiniRocket is relatively constant
up to 128Hz when more than 12 CPUs are available, regardless
of the number of the length of the time series input. This is
also the case for TSFresh using minimal feature calculators;
however, the runtime of TSFresh is heavily dependent on
which calculators are used.

Future work could include examining the impact of very
high sampling rates on the ability of MiniRocket keep the
fit and transform time per Hertz fixed around 46.5 seconds.
Additionally, MiniRocket maintains an option to leverage
GPUs for performance speed ups, however, TSFresh does not
allow for the same ability so this option was excluded from
our study. Future work could compare the performance gains
of GPU vs CPU models and seek to define the break even
point for number of each type of processor for equivalent
performance at different fix sample rates.

V. CONCLUSION

In this study we compared two different feature extraction
methodologies, MiniRocket and TSFresh, for processing and
classifying human physiological time series data. Our study
found generally that MiniRocket scaled linearly with increases
in either time series input length or number of kernels chosen,
while TSFresh also scaled in a similar manner. We also found
that classifer models with MiniRocket inputs outperformed
TSFresh inputs for all sampling rates and configurations except
for the most comprehensive (and slowest) TSFresh statistical
feature set. Overall, this study characterized the expected
performance of each methodology when using human physi-
ological time series data under various hardware constraints.
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