
Multiarchitecture Hardware Acceleration of
Hyperdimensional Computing

Ian Peitzsch, Mark Ciora, Alan D. George
Department of Electrical and Computer Engineering

University of Pittsburgh
NSF Center for Space, High-performance, and Resilient Computing (SHREC)

Pittsburgh, PA, USA
{ian.peitzsch, alan.george}@nsf-shrec.org

Abstract—Hyperdimensional computing (HDC) is a machine-
learning method that seeks to mimic the high-dimensional nature
of data processing in the cerebellum. To achieve this goal, HDC
represents data as large vectors, called hypervectors, and uses a
set of well-defined operations to perform symbolic computations
on these hypervectors. Using this paradigm, it is possible to
create HDC models for classification tasks. These HDC models
work by first transforming the input data into hypervectors,
and then combining hypervectors of the same class to create
a hypervector for representing that task. These HDC models
can classify information by transforming new input data into
hypervectors, comparing the similarity between data hypervector
with each class hypervector, then classifying it based on which
class has the highest similarity. Over the past few years, HDC
models have greatly improved in accuracy and now compete with
more common classification techniques for machine learning,
such as neural networks. Additionally, manipulating hypervectors
involve many repeated basic operations, making them easy to
accelerate using different hardware platforms. This research
seeks to exploit this ease of acceleration of HDC models and
utilize oneAPI libraries with SYCL to create multiple accelerators
for HDC learning tasks for CPUs, GPUs, and field-programmable
gate arrays (FPGAs). The oneAPI tools are used in this research
to accelerate single-pass learning, gradient-descent learning using
the NeuralHD algorithm, and inference. Each of these tasks is
benchmarked on the Intel Xeon Platinum 8256 CPU, Intel UHD
11th generation GPU, and Intel Stratix 10 FPGA. The GPU
implementation showcased the fastest training times for single-
pass training and NeuralHD training, with 0.89s and 126.55s,
respectively. The FPGA implementation exhibited the lowest
inference latency, with an average of 0.28ms.

Index Terms—Hyperdimensional computing, machine learn-
ing, FPGA, GPU, HLS

I. INTRODUCTION

In recent years, hyperdimensional computing (HDC) has
been receiving more attention as an alternative machine-
learning method to more well-known methods, such as neural
networks. HDC is based on the observation that the brain
uses high-dimensional representations of information to per-
form cognitive tasks [1]. To mimic this brain function, HDC
represents data using high-dimensional vectors (hypervectors).

This research was supported by SHREC industry and agency members and
by the IUCRC Program of the National Science Foundation under Grant No.
CNS-1738783.

HDC models can operate on these hypervectors to perform var-
ious learning tasks, such as activity recognition [2], language
recognition [3], [4], and robot navigation [5], [6]. HDC is
well suited for many applications as HDC models are highly
parallel, well suited for hardware-level optimization, human
interpretable, and robust to noise [1].

Recent research has increased its focus on HDC, with most
of the work focusing on FPGA acceleration using hardware
description languages (HDL). HDL implementations often
offer the best possible FPGA-runtime performances; however,
this increase in performance comes at a significant cost in
development time. To ameliorate this lengthy development
time, high-level synthesis (HLS) tools have been created to
allow developers to design in high-level programming lan-
guages, such as C or C++. One novel HLS tool of interest
is oneAPI, which uses SYCL to allow for the development of
multiarchitecture accelerators. As computing systems become
increasingly heterogeneous, such a multiarchitecture acceler-
ator development tool allows for decreased development time
for these heterogeneous systems.

In this paper, we investigate the acceleration of HDC
learning tasks on FPGAs and GPUs using oneAPI. Unlike
prior work on HDC acceleration, this work makes use of the
oneAPI HLS tool instead of HDL. This research optimizes
and compares general HDC implementations for both FPGAs
and GPUs on training time, retraining time, latency, and
throughput.

II. BACKGROUND

The brain is the center of cognitive function. HDC seeks to
mimic how the brain represents and manipulates information
in high-dimensional space by using large vectors. The follow-
ing sections gives insight into how this feat is accomplished.

A. Hyperdimensional Computing

In HDC applications, data are represented as hypervectors:
vectors in high-dimensional space (often >10,000) [6]. These
hypervectors benefit from the ”curse of dimensionality”, which
states that in high-dimensional spaces, randomly generated
vectors are nearly orthogonal [7]. This orthogonality makes
random hypervectors able to represent different classifications

1

of objects. The key aspects of hypervectors and their most
common operations are covered in the following subsections.

1) Similarity (δ): Similarity measures the ”relatedness”
of two hypervectors. Two hypervectors A,B are considered
related if δ(A,B) >> 0. Similarly, A,B are considered un-
related if δ(A,B) ≈ 0. Oftentimes similarity is implemented
as cosine similarity, so δ(A,B) = A·B

|A||B| [8], [9].
2) Bundling (+): Bundling combines hypervectors to make

a hypervector that is similar to the inputs [6]. So, hypervectors
A,B can be bundled together to form C = A+ B, and then
δ(A,C) >> 0 and δ(B,C) >> 0. Commonly, bundling
is implemented as the element-wise addition of the input
hypervectors [10], [11].

3) Binding (⊗): Binding combines hypervectors to make a
hypervector that is dissimilar to the inputs [6]. So, hypervec-
tors A,B can be binded together to form C = A⊗B, and then
δ(A,C) ≈ 0 and δ(B,C) ≈ 0. The binding operation has an
inverse operation, named unbinding (⊘), which allows for the
approximate retrieval of the input hypervectors [11], [12]. So,
C⊘A ≈ B and C⊘B ≈ A. Binding is often implemented as
element-wise XOR of the input hypervectors [7], [10], [12].

4) Permutation (ρ): Permutation rotates a hypervector and
makes a hypervector that is dissimilar to the input [6]. So,
hypervector A can be permuted and δ(A, ρ(A)) ≈ 0. In
practice, ρ(A) is doing a right rotation of the elements of
A [7], [11].

B. HDC Learning

Using hypervectors and the previously mentioned opera-
tions, an HDC classification model can be constructed. The
general dataflow for such a model is as follows: first, an
encoding scheme is generated, then input data is encoded into
hypervectors, and finally the hypervectors are operated on to
either train the model or perform inference. The following
sections describe in more detail the stages of this dataflow.

1) Encoding: As most real-world data is not already hy-
perdimensional, an encoding process is necessary to transform
from the input feature space to the hyperdimensional space.
Using randomly generated hyperdimensional basis vectors and
the HDC operations, an input feature vector h can be encoded
into its corresponding hypervector H . H can then be used by
the HDC model for either inference or training.

2) Training: To train an HDC learning model, encoded
hypervectors H l of class l can be bundled into a class vector
Cl =

∑
i H

l
i [7], [9]. This method of training can be done in

a single epoch, making it fast. While this method is fast, it
does not always yield the highest accuracy, so retraining may
be necessary.

3) Retraining: Simple training does not always produce the
best accuracy, so the model can be fine-tuned using retrain-
ing [8]. Retraining works by comparing encoded hypervector
H l of class l to all class vectors Cj and getting the prediction
l′ = argmax

j
δ(H l, Cj). If l′ = l, then there is no need to

change Cl or Cl′ . If l′ ̸= l, then Cl and Cl′ are adjusted by
Cl = Cl+αH l and Cl′ = Cl′ −αH l, where α is some scalar

factor [13]. Since this readjustment bundles H l with Cl and
debundles H l from Cl′ , it makes H l more similar to Cl and
less similar to Cl′ .

4) Inference: Inferencing using an HDC classification
model is achieved by selecting the class with the highest
similarity to the encoded hypervector. So, the model predicts
the encoded hypervector H is part of class l by finding
l = argmax

j
δ(H,Cj) [9]. As the δ function on large vectors is

embarrassingly parallel, this step can be efficiently computed
on both GPUs and FPGAs.

C. oneAPI

Intel oneAPI is an open-source, multiarchitecture hardware
acceleration interface. OneAPI uses SYCL and C++ to allow
for single-source code development for CPUs, GPUs, and
FPGAs [14], [15]. This single-source development process
allows for code reuse for both host and accelerator code
leading to faster development. OneAPI’s execution model
works by having accelerator code kernels submitted to an
execution queue by the host. The execution of these kernels
is then offloaded to the accelerator to run [14]. For mem-
ory management between the host and accelerator, oneAPI
provides two methods: buffers and unified shared memory
(USM) [16]. Buffers act as wrappers around data which can
then be accessed on the accelerator using an accessor. Buffers
abstract away data movement between the host and accelerator
for ease of development. USM makes use of pointers to
shared memory to facilitate data access. USM supports explicit
data movement, where the developer must state where and
when to move data, and implicit data movement, where
the data movement is abstracted away. To aid in general
development, oneAPI provides various libraries that contain
already optimized code for general applications. One of these
libraries is the oneAPI Math Kernel Library (oneMKL) which
provides many pre-optimized math functions, such as matrix
multiplication and vectorized operations [14]. Additionally, to
aide in FPGA development, oneAPI provides useful reports to
give area and throughput information about the design [17].
These reports give information about how much area/memory
is being taken up by specific parts of code and what the
maximum frequency and initiation interval of each loop are,
allowing for fine-grain optimizations to the design.

III. RELATED WORK

One of the advantages of HDC is how amenable it is to
hardware acceleration, especially on FPGAs and GPUs. Due
to this trait, many works have explored accelerating HDC on
these platforms. The following sections describe work in the
areas of both FPGA and GPU acceleration for HDC.

A. FPGA Acceleration

NeuralHD [1] is a training method for HDC models that
increases model accuracy and reduces the necessary hyper-
dimensions to achieve that accuracy. This feat is achieved
by using a dynamic encoder during training and altering this
encoder to have the best accuracy. Using a Kintex-7 FPGA, the

2

researchers achieved a 26.8× speedup for NeuralHD training
time over an FPGA accelerated dense neural network (DNN)
training time with little reduction in accuracy between the
NeuralHD trained model and the DNN. This work also demon-
strated 12.6× speedup for FPGA accelerated HDC inference
over FPGA accelerated DNN inference.

F5-HD [18] is an HDC accelerator generator. F5-HD gener-
ates an FPGA accelerator using specifications and constraints
given by the user. This abstraction removes the need for knowl-
edge of HDL for designing custom FPGA accelerators for
many HDC applications which greatly reduces development
time. An F5-HD FPGA accelerator running on a Kintex-7
FPGA achieved 7.8× faster training and 1.7× faster inference
compared to an AMD R9 390 GPU.

B. GPU Acceleration

While GPUs have been targeted for HDC acceleration, often
they are being used as a baseline for comparison with FPGA
acceleration. However, there are fewer publications optimizing
HDC specifically for GPUs. Though, recently there have been
efforts on this front.

XCelHD [19] is one of the first GPU-focused frameworks
for HDC. In its initial paper, XCelHD achieved 35× speedup
over then state-of-the-art TensorFlow-based HDC implementa-
tion when benchmarked on an NVIDIA Jetson TX2. XCelHD
introduced a parallel training method, called ParTrain. Par-
Train works by training multiple local models in parallel and
then combines these local models to form a single global
model. Additionally, XCelHD made use of various memory
optimizations, such as a streaming module for encoding and
compute recycling for similarity calculations.

OpenHD [20] is a more recent GPU-focused HDC frame-
work. OpenHD achieved upwards of 9.8× speedup for train-
ing time over XCelHD on the same device. Additionally,
OpenHD achieved around 1.4× speedup for inference latency
over XCelHD. OpenHD performs the same optimizations as
XCelHD, but also makes use of data type mutation. Data
type mutation reduces the data type used for the hypervector
elements to its minimal necessary size, which allows for the
smallest memory footprint and more efficient use of local
memory.

IV. SYSTEM ARCHITECTURE

This section describes the system architectures for both
the FPGA- and GPU-accelerated HDC models. Both models
rely on a modified Radial Basis Function (RBF) kernel as
described in [1] for the encoding method. This kernel relies
on using D randomly generated basis vectors B⃗1, B⃗2, ..., B⃗D

all of length n. Then, an input data vector F⃗ = {f1, f2, ..., fn}
can be encoded into its corresponding hypervector H⃗ =
{h1, h2, ..., hD} by performing:

hi = cos(B⃗i · F⃗ + b)× sin(B⃗i · F⃗) (1)

where b is randomly sampled uniformly from [0, 2π). H⃗ can
then be passed onto the classification stage for inference or the
fitting stage for training. The following sections go into more

Fig. 1. High-level system architecture for inference with FPGA.

Fig. 2. High-level system architecture for single-pass learning with FPGA.

detail about the various optimizations specific to the FPGA-
and GPU-optimized designs.

A. FPGA System Architecture

The general dataflow for the FPGA inference design is
shown in Fig. 1. It begins with streaming in feature vectors
from the host using unified shared memory (USM) with
explicit data movement. The input vectors are then scattered
to 25 compute units for encoding. As each dimension of
a hypervector can be encoded independently, each compute
unit can run in parallel. This parallel execution significantly
reduces the inference time compared to using a single compute
unit, as the encoding stage is the bottleneck of the data
pipeline. From the encoders, the encoded hypervectors are
then piped to a single classification kernel. This classification
kernel pieces the parts from each encoding compute unit
together to form a single hypervector. Then, this hypervector
is compared to each class hypervector and the class with the
highest similarity is selected as the prediction. The prediction
is then streamed out using USM with explicit data movement.

The dataflow for the FPGA single-pass training design is
similar to the inference dataflow and is shown in Fig. 2. Again,
training feature data is first streamed onto the FPGA from
the host using USM with explicit data movement. This data
is then scattered to 8 compute units for the encoding stage.
The number of compute units is reduced because of memory

3

Fig. 3. High-level system architecture for NeuralHD learning with FPGA.

constraints, as can be seen in Table I. The output encoded
partial hypervectors are sent to the fitting kernel. This kernel
combines the partial hypervectors to form a single hypervector
and reads in the corresponding label. Then the kernel bundles
the hypervector into the class corresponding to that label. After
all the training data has gone through the encoding and fitting
stages, the class hypervectors are streamed from the FPGA
to the host using USM with explicit data movement. Finally,
the host normalizes each class hypervector. This normalization
reduces the complexity of the similarity function when doing
inferences, as δ(H⃗, C⃗) = H⃗·C⃗

|H⃗||C⃗|
simplifies to just δ(H⃗, C⃗) =

H⃗·C⃗
|H⃗|

.

The dataflow for the NeuralHD training using an FPGA
is shown in Fig. 3. The encoding implementation is different
for the NeuralHD training than the other FPGA implementa-
tions because sufficient FPGA resources to accommodate the
number of encoding compute units to see higher performance
were not available. Instead, the input training data is streamed
onto the FPGA in batches where then each feature vector is
individually encoded through a matrix-vector multiplication
and cosine/sine function. After the encoding stage, the en-
coded hypervectors are sent to the fitting stage. The fitting
stage takes the hypervectors in batches and trains the class
vectors as described in II-B3 using α = 0.037. This process
is repeated for an arbitrary number of iterations. Once the
number of iterations has been reached, the class hypervectors
are streamed back to the host. The host then calculates the
dimension-wise variance between the class hypervectors. The
200 dimensions with the lowest variances are dropped and
regenerated by generating a new basis hypervector for each of
these dimensions and zeroing that entry in each class. This
process of dropping and regeneration is performed on the
FPGA. The training data is then re-encoded and the process
continues. Training ends when either a maximum number
of regeneration iterations has been reached or training has
converged to 100% accuracy on the training set.

Fig. 4. High-level system architecture for inference with GPU.

Fig. 5. High-level system architecture for single-pass learning with GPU.

B. GPU System Architecture

Unlike the FPGA designs, the GPU designs made use
of buffers and accessors for data movement between the
host and accelerator. This choice was made as there was a
negligible difference in runtime between using buffers and
accessors instead of USM. Additionally, buffers and accessors
allowed for easier programming since they abstract away data
movement.

The GPU dataflow for inference is shown in Fig. 4. Input
feature vectors are first passed to the encoder. Encoding
is achieved by using oneMKL’s general matrix multiply to
compute

B⃗1

B⃗2

...
B⃗D

 F⃗ =

B⃗1 · F⃗
B⃗2 · F⃗

...
B⃗D · F⃗

 (2)

. Then using oneMKL’s element-wise cosine and sine, this
intermediate vector is fully encoded into its corresponding
hypervector. This encoding implementation is easily batched,
as batching it transforms it from a matrix-vector multiplication
to a true matrix-matrix multiplication. The encoded hypervec-
tor is then sent to the classification kernel which calculates
similarities between the hypervector and each class in sepa-
rate parallel work items. Finally, the maximum similarity is
calculated using a reduction, and the class value associated
with the max similarity is sent back to the host.

4

Operation Clock Freq. (MHz) II % DSP % LUT % FF % BRAM
Inference 225 1 10 0 11 48

Single-pass Training 263 1 1 0 7 82
NeuralHD 198 1 5 0 7 64

TABLE I
CLOCK FREQUENCY AND AREA DATA FOR THE FPGA DESIGNS.

Fig. 6. High-level system architecture for NeuralHD learning with GPU.

The dataflow for the single-pass training using a GPU
is shown in Fig. 5. The encoding stage for the single-pass
training with the GPU is exactly the same as the encoding
stage for inference. After the encoding stage, the encoded hy-
pervectors are sent to the fitting stage. The fitting stage creates
a separate work item for each class. Each work item goes
through the entire training set of hypervectors and bundles
hypervectors with labels matching their designated class value
into that class hypervector. Finally, each work item normalizes
its class hypervector. The dataflow for the NeuralHD training
using a GPU is shown in Fig. 6. The encoding stage used
for this implementation is identical to the encoding stages
used in inference and single-pass learning. After the encoding
stage, the encoded hypervectors are sent to the fitting stage.
In the fitting stage, the encoded hypervectors are split into
512 groups. Each group has its own copy of the classes
and retrains this local copy against its set of hypervectors
with α = 0.037. After each group has finished, all of the
local classes are averaged together to form the new global
classes. This process is repeated for an arbitrary number of
iterations. The number of iterations is determined through trial-
and-error for maximizing accuracy and training time. Once
the number of iterations has been reached, the dimension-
wise variance between the class hypervectors is calculated.
The 200 dimensions with the lowest variances are dropped
and regenerated by generating a new basis hypervector for
each of these dimensions and zeroing that entry in each class.
The training data is then re-encoded and the process continues.
Training ends when either a maximum number of regeneration
iterations has been reached, training has converged to 100%
on the training set, or training accuracy has remained stagnant

Fig. 7. Comparison of single-epoch training times. Lower values are better.

for more than 3 iterations.

V. RESULTS

This research benchmarked single-epoch training, Neu-
ralHD retraining, inference latency, and inference throughput
using an Intel Stratix 10 FPGA and an Intel UHD 630 GPU
as accelerators. For these benchmarks, the MNIST handwritten
numbers dataset was used to train and test. Additionally, all
metrics are compared to an optimized serial implementation
that was executed on an Intel Xeon Platinum 8256 (Cascade
Lake) CPU (3.8GHz, 4 Cores). All development, benchmark-
ing, and data collection was conducted using Intel’s DevCloud
[21]. All implementations use an HDC classification model
that uses 2000 hyperdimensions of 32-bit floating-point values.
The FPGA implementation would benefit from quantization,
but this is outside the scope of this work. The results from the
benchmarks of the single-epoch training are shown in Fig. 7.
All three of the implementations achieved similar accuracy of
approximately 85%. Of the three architectures benchmarked,
the GPU achieved the fastest training time with speedup of
almost 60× over the CPU baseline. The FPGA design only
achieved a speedup of 17.9× over the CPU baseline. The likely
limiting factor with the FPGA design is onboard memory, as
the read/write memory required for the class vectors takes up
18% of the BRAM, while the read-only memory used in the
inference design only takes up 2% of the BRAM (see Table I).
Due to this limiting factor, the encoding stage in the single-
epoch training design could not be optimized as much as the
encoding stage used in the inference designs.

Figure 8 shows the training times on all three architec-
tures using the NeuralHD retraining algorithm. Similar to the
single-epoch training results, the GPU design was faster than
the other designs, achieving a speedup of 13.9× over the

5

Fig. 8. Comparison of training times using the NeuralHD training algorithm.
Lower values are better.

Fig. 9. Comparison of inference latencies. Lower values are better.

CPU baseline. However, the CPU and FPGA implementations
achieved an accuracy of approximately 97% while the GPU
implementation only achieved an accuracy of approximately
94%. This reduction in accuracy is due to fitting implemen-
tation for GPU as described in Section IV-B. The FPGA
implementation only achieves a 2.3× speedup over the CPU
baseline which is lower than both the GPU implementation
of NeuralHD and the speedup for single-epoch training on
FPGA. There are two main limiting factors as to why this is
the case. First, as NeuralHD is a more complex algorithm,
more FPGA memory is required, which significantly reduced
the optimizations that were possible. Secondly, fewer stages
of the NeuralHD algorithm could be effectively accelerated
by the FPGA. The main stage that could not be effectively
offloaded was the dimension dropping stage because it requires
calculating variance and normalizing the class hypervectors,
which are operations that require thousands of divisions and
are not well suited for FPGAs.

The inference latency benchmarks are shown in Figure 9.
The FPGA design achieved the lowest latency, with a speedup
of 3× over the CPU baseline. This latency was achieved by
spreading the encoding stage across many compute units. The
GPU design exhibited higher latency than the CPU baseline.

Fig. 10. Comparison of throughput (images per second) with varying batch
sizes. Higher values are better.

As the UHD is an embedded GPU, its memory is shared
with the host CPU. This shared memory should lead to lower
latency compared to the FPGA, which has its own memory
separate from the CPU and requires transfer time. However,
the FPGA design offers enough speedup to fully overcome
this added latency and give further speedup.

Figure 10 shows the average throughputs of each design
with batch sizes of 128, 256, and 512. For batch sizes of 256
and 128, the FPGA design achieves the highest throughput.
For the batch size of 512, the GPU design surpasses the FPGA
design in throughput. These results indicate the GPU design
has the highest throughput out of the three designs with larger
batch sizes.

VI. CONCLUSIONS

This research benchmarks and compares GPU and FPGA
accelerators written in oneAPI for HDC learning tasks. The
GPU achieved upwards of 44× higher throughput than the
CPU, 53× faster single-pass learning, and 13.9× faster Neu-
ralHD training, making it the best performing in these metrics.
However, the GPU was the worst performing device for
inference latency with a 3.9× slowdown compared to the
CPU. The FPGA design showcases better inference latency at
3× speedup over the CPU. The FPGA design also performs
competitively for training times and throughput at upwards
of 39× higher throughput, 17.9× speedup for single-pass
learning, and 2.3× speedup for NeuralHD training. By lever-
aging oneAPI to create these designs, these performances were
achieved without the need for multiple different libraries and
compilers. Furthermore, using oneAPI allowed for a quick
development time and accelerators that can be easily integrated
into larger C++-based systems. Unfortunately, comparisons
between the designs in this work and designs from related
works are not able to be fairly made. This lack of comparable
work is due to many factors including a lack of easily
interpretable latency, training time, and throughput values for
similar hardware and similar datasets. Additionally, many of
these related works do not make their source code available
for lines of code or other ease-of-use comparisons.

6

VII. ACKNOWLEDGMENT

This research was supported by SHREC industry and agency
members and by the IUCRC Program of the National Science
Foundation under Grant No. CNS-1738783.

REFERENCES

[1] Z. Zou, Y. Kim, F. Imani, H. Alimohamadi, R. Cammarota,
and M. Imani, “Scalable edge-based hyperdimensional learning
system with brain-like neural adaptation,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3480958

[2] Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity
recognition using hyperdimensional computing,” in Proceedings of the
8th International Conference on the Internet of Things, ser. IOT ’18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3277593.3277617

[3] A. Joshi, J. Halseth, and P. Kanerva, “Language Recognition using
Random Indexing,” arXiv e-prints, p. arXiv:1412.7026, Dec. 2014.

[4] G. Karunaratne, A. Rahimi, M. L. Gallo, G. Cherubini, and A. Sebastian,
“Real-time language recognition using hyperdimensional computing on
phase-change memory array,” in 2021 IEEE 3rd International Confer-
ence on Artificial Intelligence Circuits and Systems (AICAS), 2021, pp.
1–1.

[5] A. Menon, A. Natarajan, L. I. G. Olascoaga, Y. Kim, B. Benedict,
and J. M. Rabaey, “On the role of hyperdimensional computing for
behavioral prioritization in reactive robot navigation tasks,” in 2022
International Conference on Robotics and Automation (ICRA), 2022,
pp. 7335–7341.

[6] P. Neubert, S. Schubert, and P. Protzel, “An introduction to
hyperdimensional computing for robotics,” KI - Künstliche Intelligenz,
vol. 33, no. 4, pp. 319–330, Sep. 2019. [Online]. Available:
https://doi.org/10.1007/s13218-019-00623-z

[7] T. Yu, Y. Zhang, Z. Zhang, and C. D. Sa, “Understanding
hyperdimensional computing for parallel single-pass learning,” in
Advances in Neural Information Processing Systems, A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available:
https://openreview.net/forum?id=8ON84BdnSn

[8] L. Ge and K. K. Parhi, “Classification using hyperdimensional comput-
ing: A review,” IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp.
30–47, 2020.

[9] A. Thomas, S. Dasgupta, and T. Rosing, “A theoretical perspective on
hyperdimensional computing,” J. Artif. Int. Res., vol. 72, p. 215–249,
jan 2022. [Online]. Available: https://doi.org/10.1613/jair.1.12664

[10] R. W. Gayler, “Multiplicative binding, representation operators
& analogy (workshop poster),” 1998. [Online]. Available: http:
//cogprints.org/502/

[11] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A survey
on hyperdimensional computing aka vector symbolic architectures, part
i: Models and data transformations,” ACM Comput. Surv., vol. 55,
no. 6, dec 2022. [Online]. Available: https://doi.org/10.1145/3538531

[12] P. Kanerva, “Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional random
vectors,” Cognitive Computation, vol. 1, no. 2, pp. 139–159, Jan. 2009.
[Online]. Available: https://doi.org/10.1007/s12559-009-9009-8

[13] M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey,
and T. Rosing, “Quanthd: A quantization framework for hyperdimen-
sional computing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 10, pp. 2268–2278, 2020.

[14] Intel® oneAPI Programming Guide, Intel, 2022, release
2023.0. [Online]. Available: https://www.intel.com/content/dam/develop/
external/us/en/documents/oneapi-programming-guide.pdf

[15] SYCL™ Specification, Khronos, 2020. [Online]. Available: https:
//registry.khronos.org/SYCL/specs/sycl-2020-provisional.pdf

[16] oneAPI GPU Optimization Guide, Intel, 2022, release 2022.3. [Online].
Available: https://www.intel.com/content/dam/develop/external/us/en/
documents/oneapi-gpu-optimization-guide.pdf

[17] FPGA Optimization Guide for Intel® oneAPI Toolkits, Intel, 2022,
rev. 13. [Online]. Available: https://www.intel.com/content/dam/develop/
external/us/en/documents/oneapi-dpcpp-fpga-optimization-guide.pdf

[18] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible
fpga-based framework for refreshing hyperdimensional computing,” in
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 53–62. [Online].
Available: https://doi.org/10.1145/3289602.3293913

[19] J. Kang, B. Khaleghi, Y. Kim, and T. Rosing, “Xcelhd: An efficient
gpu-powered hyperdimensional computing with parallelized training,”
in 2022 27th Asia and South Pacific Design Automation Conference
(ASP-DAC), 2022, pp. 220–225.

[20] J. Kang, B. Khaleghi, T. Rosing, and Y. Kim, “Openhd: A gpu-powered
framework for hyperdimensional computing,” IEEE Transactions on
Computers, vol. 71, no. 11, pp. 2753–2765, 2022.

[21] “Intel® devcloud for oneapi.” [Online]. Available: https://devcloud.
intel.com/oneapi/

7

