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Abstract—Meta learning methods have found success when
applied to few shot classification problems, in which they quickly
adapt to a small number of labeled examples. Prototypical
representations, each representing a particular class, have been
of particular importance in this setting, as they provide a
compact form to convey information learned from the labeled
examples. However, these prototypes are just one method of
representing this information, and they are narrow in their
scope and ability to classify unseen examples. We propose
the implementation of contextualizers, which are generalizable
prototypes that adapt to given examples and play a larger role
in classification for gradient-based models. We demonstrate how
to equip meta learning methods with contextualizers and show
that their use can significantly boost performance on a range
of few shot learning datasets. We also present figures of merit
demonstrating the potential benefits of contextualizers, along with
analysis of how models make use of them. Our approach is
particularly apt for low-data environments where it is difficult
to update parameters without overfitting. Our implementation
and instructions to reproduce the experiments, available at
https://github.com/naveace/proto-context/, are thoroughly tested
on MIT SuperCloud, and scalable to other state-of-the-art HPC
systems.

Index Terms—meta-learning, few-shot learning, attention
mechanism

I. INTRODUCTION

With the rise of deep learning, models have become re-
markably successful at mastering challenging, large scale
image classification tasks by training on enormous amounts
of data [1, 24, 13, 2, 12]. However, this reliance on “big
data” remains a key flaw in most deep learning models,
limiting their use cases and making them expensive to train
[61, 42, 57]. To address this problem, many have turned to few
shot learning methods: algorithms and architectures designed
to perform tasks such as image classification with very small
amounts of task-specific data. Much progress has been made
in this area [66, 62, 52, 59], however many of these models
nonetheless remain specific to the tasks for which they are
designed to solve [48, 36, 28, 46]. Coming from another line
of research, self-attention mechanisms [65] have enabled the
ongoing revolution of large universal self-supervised models
trained on a large quantities of data, which are extremely
capable in numerous tasks [44, 6, 10, 69, 7]. Instead, when data
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is scarce, in a preliminary study [67] we have explored how the
attention mechanism can help with efficient task adaptation.

Another method of addressing the “big data” problem with
more generalizability has been found in meta learning [25], a
field very closely related to few shot learning, in which models
and algorithms are designed to quickly fine-tune on new tasks
either through transferring knowledge from previously seen
data samples or optimizing themselves for fast adaptation in
just a few gradient updates [64]. An example of the latter is
model agnostic meta learning (MAML), an algorithm designed
by Finn et al. [16] that excels at training neural networks for
meta learning problems, and which was improved upon by
Nichol et al. [40], Antoniou et al. [3], Behl et al. [5], Song
et al. [56] and many more.

Metric learning, such as that proposed by Snell et al. [52],
has also been shown to be successful in the area of few
shot learning. Prototypes—averages of examples that share
the same class—were used by Snell et al. [52] to make
classification decisions by measuring how close unclassified
samples are to each prototype. Triantafillou et al. [63] helped
marry prototypes with MAML through ProtoMAML, a version
of MAML that initializes the head of the network (the final
layer that maps features to output classes) with scaled versions
of the prototypes; thus it is end-to-end trainable with MAML.

However, current models that combine few shot learning
with meta learning fail to produce task specific initializations
for heads. In addition, although the ideas of task-specific
feature spaces have been explored [41, 43], these have yet to
be combined with the advances in head initialization proposed
in [63]. Finally, most meta-learning models rely on several
gradient steps to adapt the model to a particular task and can
be prone to overfitting, a problem that has gained attention
before [3, 75, 36, 45]. We address these problems through
the use of “contextualizers:” a generalization of prototypes
that produce (i) a task-specific initialization (ii) a task-specific
feature space and (iii) achieve near peak accuracy in as little
as one inner loop gradient step.

In this paper, we focus on applying contextualization to
the problem of few shot classification. This setup consists
of training on separate tasks, where each task consists of a
support set S = (X,y) ≡ {(xj , yj)}|S|j=1 and a query set Q =



(X′,y′) ≡
{
(x′

j , y
′
j)
}|Q|
j=1

of images and labels [52]. Each task
consists of n different classes with k samples per class in the
support set. This type of learning is referred to as n-way k-
shot, and we will use this terminology throughout [66]. We
fine-tune the model on the samples in S and then test the
fine-tuned model on the samples in Q. The performance on
Q is used to meta train the model, which in the second order
version of MAML consists of propagating the loss through the
update made from the gradient on S to the base parameters,
and thus requires the calculation of Hessians (second order
gradients). This method of updating can be impractical due to
size and time constraints; hence, we focus on the first order
setting of MAML [16]. In this setting, we begin each task with
a model at a set of base parameters θ. Next, we fine-tune the
model on S and then evaluate it on Q. Finally, we apply the
gradient of the loss on Q with respect to the tuned parameters
directly to the base parameters as follows:
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)
= L

(
θ(0),S

)
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,

outer loop update of base parameters θ(0)

where L is our loss function and α and β are our inner loop
and base update (outer loop) learning rates. We modify the
MAML algorithm to allow for the creation of task-specific
intializations for the head of the model as well as the creation
of task-specific feature spaces. Our main contributions are:

1) We propose a new method of inference in meta learning
that combines task-specific feature spaces with task-
specific head initializations and demonstrate its ability
to outperform conventional gradient methods on a range
of few shot learning datasets.

2) We present empirical and theoretical analysis of our con-
textualization mechanism demonstrating that our contex-
tualizers play a major role in the model.

3) We introduce a new figure of merit, intra-class simi-
larity, to measure upstream benefits our contextualizers
may have in the training process.

The rest of the paper is organized as follows. In Section II
we discuss related work. In Section III we introduce the
concept of contextualization. In Section IV we introduce and
motivate our method. In Section V we describe the datasets we
use. In Section VI we present our experiments. In Section VIII
we present an empirical analysis of our experiments. In
Section A (in the appendix) we present a theoretical analysis
of our method. In Section IX we conclude and discuss future
work.

II. RELATED WORK

A. Few shot learning

Few shot learning is, broadly, the task of making inference
with use of few labeled examples [35, 37]. To solve this fairly
formidable problem, many fields have been explored including
meta learning [58, 36, 48, 16], metric learning [53, 66, 9, 29],
as well as more broad approaches [14, 62, 60, 33]. Closest to
our work are methods that approach few shot learning through
forms of contextualization [8, 41, 20]. We were particularly
encouraged by the results of Ye et al. [72], who found that
attention mechanisms are a very powerful set-to-set function
for few shot learning. However, no approach that we are aware
of makes use of attention not only to construct task-specific
initializations, but also to modify features in a meta-learning
model.

B. Meta learning

Meta learning algorithms create models that quickly adapt
to new tasks [73]. The goals of meta learning fit those
of few shot learning very well, and many meta learning
ideas have been successfully applied to few shot learning
[27, 74, 23]. Approaches vary, but can broadly be split into
those that focus on using architectures or learned gradient
updates [34, 71, 70, 41, 17] and those that make use of learned
initializations which can quickly adapt to new tasks through
gradient descent [16, 40, 50, 11, 15, 18]. The latter approach
is much closer to our work. We take this approach one step
further and construct task-specific initializations before fine-
tuning occurs along the lines of Triantafillou et al. [63]. In
addition, we produce a task-specific feature space through our
contextualizers that is somewhat similiar to the ideas presented
in [75, 43]. Our mechanism is very different, however, using
self-attention to learn our feature space. Furthermore, none of
these approaches explore both empirically and theoretically
the benefits provided by contextualization in very challenging
environments, such as allowing only 1 gradient step for
adaptation.

C. Metric learning

Deep metric learning produces algorithms and models
which are able to construct “metrics” by which images can be
compared or retrieved. Much work focuses on loss functions in
metric learning [19, 55, 54, 39, 68], and some of this work has
led to methods useful for few shot learning [52, 52]. Metric
learning has also been used in one-shot learning [31, 66]. This
work is useful in comparison to our gradient-based methods;
however, we seek to extend it by using strong metrics for
initialization of gradient learners. More recenlty, in state of the
art self-supervised learning, Gidaris et al. [21] use a dynamic
predictor module to learn useful representations without labels,
which can also be adapted in few-shot settings. The dynamic
predictor is contextualized at every step to an online bag-of-
visual-words, which resembles our contextualziation methods.
Inspired by this, for future work we will pursue our contextu-
alization methods for improving self-supervised learning with
specific emphasis on few-shot learning.



III. THE CONCEPT OF CONTEXTUALIZATION

Concretely, Contextualization is a modification to the output
features of a Feature Extraction Model (such as a Deep
Convolutional Neural Network) using a set of contextualizer
vectors which develops a task-specific feature space.

A. Model

We denote our feature extractor by fθ, parameterized by the
weights θ, the contextualization mechanism by sϕ (we use
a self-attention mechanism [65] in our model), parametrized
by the weights ϕ, the predictor function (head) by hw,b,
parametrized by the weights w and bias b, and the loss as
L. For notation, we note that while the above θ referred to
any set of parameters being trained via MAML, for the rest of
the paper it refers specifically to the parameters of the feature
extractor. In addition, because we sometimes discard parts of
the output of the self-attention mechanism that implements
contextualization, we write its output as b1, b2 = sϕ(a1, a2)
where b1 is the attended version of a1 and likewise for b2 and
a2. If we discard an output, we write it as b1, = sϕ(a1, a2)
where is the discarded output.

B. Contextualization of features

Previous work has theorized that the fθ trained by MAML
produces highly generalizable features [45]. While this is
an appealing property, we believe that performance can be
boosted by adapting these generalized features to be specific to
the task at hand. We do this in conjunction with initialization of
the head, producing a highly task-specific model even before
updates through gradient descent.

We present the general mechanism of contextualization for
a model’s features in Figure 1. Samples go through fθ. We
concatenate the extracted features with a set of contextualizers
in the same feature space and feed them through sϕ. This
mechanism provides updates to the features, creating a task-
dependent feature space. We add these updates to our feature
representations via a skip-connection. Finally hw,b produces
a classification using the updated representations. In the fol-
lowing section we specify further details.

IV. HEAD INITIALIZATIONS

In this section, we (i) conduct a simple study to demonstrate
the importance of intitializing the head properly for each task,
(ii) introduce the use of prototypical representations for head
initialization, and (iii) in light of (i, ii) we marry our concept
of contextualization with that of prototypes.

A. Head initialization is important

In Table I we present the meta test results for a simple
study that aims to understand how important the initialization
for the head is. The regular experiment is MAML. In the
second experiment, we train with MAML and randomize the
head before the inner loop during meta testing. In the last
experiment, during both meta training and testing we start the
inner loop with a random initialization for the head to see if
the network can learn to overcome the random initialization.

TABLE I
MAML WITH DIFFERENT INITIALIZATION SCHEMES FOR THE HEAD OF

THE NETWORK. ACCURACY IN %. EXPERIMENTS PERFORMED WITH FIVE
INNER LOOP STEPS. MEAN AND STANDARD DEVIATION FROM THREE

TRIALS ON THE FULL TEST SET. THE DATASET IS MINI-IMAGENET. ALL
EXPERIMENTS ARE 5-WAY.

Initialization 1-shot 5-shot

Regular 49.16± 0.27 66.61± 0.55
Random Head (test only) 34.89± 1.00 45.13± 0.65
Random Head (train & test) 34.96± 0.95 59.60± 0.34

We observe significant degradation in accuracy as the meta
initialization is lost via randomization. This suggests that fine-
tuning through the inner loop is not enough to produce a
strong task-specific head, and thus that initialization matters.
We use these insights to motivate our exploration of new ways
to initialize the head for each task.

B. Prototypes as initializations

ProtoMAML [63] builds on MAML by bringing the concept
of prototypes into the MAML training process. Prototypes are
vectors meant to be representative of a particular class, and are
computed by averaging together the feature representations of
support samples for a given class a

X(a) =
{
x
(a)
j |1 ≤ j ≤ k, yj = a

}
⊆ S (1)

p(a) =
1

k

∑
x∈X(a)

fθ(x). (2)

ProtoMAML then initializes the head of the network with
weights equal to 2p(a) and biases equal to −

∥∥p(a)
∥∥2
2

for
a = 1, . . . n as follows [63, 52]:

hw =
[
2p(1), . . . , 2p(n)

]⊤
, (3)

hb =

[
−
∥∥∥p(1)

∥∥∥2
2
, . . . ,−

∥∥∥p(n)
∥∥∥2
2

]⊤
. (4)

C. ProtoContext

In Figure 2 we introduce ProtoContext: our method of gen-
eralizing prototypes which can leverage ProtoMAML’s initial-
ization to produce even stronger, task-specific head initializa-
tions. ProtoContext collects prototypes through Equation (1)
and Equation (2), contextualizing them via self-attention using
the support examples as follows:

C, = sϕ (P, fθ (S)) ,

where C is a matrix with the contextualized prototypes for
each class c(a) and P is a matrix of the prototypes p(a).
Feeding the prototypes through the contextualization mecha-
nism before initialization ensures that the head is initialized
with information about the task at large, and not just one
particular class. We initialize the head h in the manner detailed
in Equation (4), using c(a) instead of p(a).
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Fig. 1. Rough sketch of our ProtoContext method. Increased size of the shapes indicates updated representations. Dotted horizontal lines in the Representation
Space indicate a parametrized transformation of the prototypes. Darker shades of yellow color indicates stronger attention connection for a particular
representation. The predictor compares the contextualized input representations to the contextualized prototypes to make a prediction. Bias in the predictor is
ignored for simplicity. By making the forward pass of the network task specific we can distinguish between Planes A and B.

With this head initialization we then initalize our contex-
tualization vectors C using one of two methods we desctibe
below.

Algorithm 1 (in the appendix) presents the first method that
uses the weights of the head of the network as contextualiza-
tion, with the understanding that samples whose features are
similar to a particular layer of the head are likely to belong
to the class that layer of the head connects to. In this case,
changes in the contextualization are due to gradient updates
applied to the head.

Algorithm 2 (in the appendix) is as an alternative method of
contextualization that allows for the context to be updated in a
non-gradient manner completely independent of the head. This
contextualization begins with a set of contextualized proto-
types and continuously updates them through self-attention by
setting them equal to the output of a self-attention mechanism
during each forward pass. Our hypothesis is that in this form
of contextualization, the context will become a non-gradient
method of transferring information useful for inference on the
task at hand from the support set to the query set.

D. Xavier Initialization

Although it is not proposed in [63], we find empirically
that scaling the last layer initialization used in ProtoMAML,
ProtoContext, and PCABaseline to the magnitudes of Xavier
initialization proposed in Glorot and Bengio [22] bolstered
convergence and in some cases made convergence possible for
our models. Specifically, if the initializations for the weights
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Fig. 2. Contextualized prototypes form the predictor hw,b’s initialization.

and bias are respectively hw and hb, the feature size is dfeature
and the output classes are n, we compute as follows

f =
1

max(hb)

√
6

dfeature + n

and then rescale elementwise the intializations as f · hw and
f · hb respectively.

E. Why marry contextualization and the head?

This last fact, that our initial contextualizers are proportional
to the contextualized prototypes, is very useful as it provides a
mechanism by which our model can leverage self-attention to
boost prediction. In the beginning of the inner loop we obtain
X̃, = sϕ(fθ (X),C) where X̃ = {x̃j} is the collection
of contextualized features. The contextualization by the self-
attention constructs any contextualized feature x̃ (we removed
the indexing here) as a linear combination of features and
contextualized prototypes:

x̃ ∝
∑
j

ujfθ(xj) +
∑
a

vac
(a) + fθ(x),

where uj and va are the weights given by the self-attention.
Using Equation (4) for our head initialization the predicted
logit for class a′ is given by the a′-th component of the output
logits as follows:

(hwx̃+ hb)a′ ∝fθ(x) · 2c(a
′) +

∑
j

2ujc
(a′) · fθ(xj)

+
∑
a

2vac
(a′) · c(a) −

∥∥∥c(a′)
∥∥∥2
2
.

(5)

The boxed term demonstrates why contextualization through
self attention can be effective when combined with Equa-
tion (4). Each coefficient va is determined by the self-attention
key of x and the self-attention query of c(a

′). Thus, if x is of
class a′, the activation for class a′ can be strengthed by our
model learning a self-attention key that activates very highly
with the self-attention query of the context vector for class



a′. In Section VIII we demonstrate empirical validation of
this technique in action by analysing the attention patterns
produced by our experiments.

We also believe contextualization may have positive effects
on the updates to the network during the inner loop. We present
a step towards theoretical analysis of the network’s updates
with details of this theory in Section A.

V. DATASETS

We experiment on four standard few shot classifica-
tion datasets: Omniglot, Mini-Imagenet, Tiered-Imagenet, and
FGCV Aircraft (Airplanes).

A. Omniglot

The Omniglot dataset [32] consists of 1623 handwritten
characters from 50 different alphabets. Within each alphabet,
every character of the alphabet corresponds to a unique class
and has several examples. In some uses of the Omniglot
dataset [3, 16], a task is created by sampling classes across
alphabets with no regard to the structure of the dataset. This
makes examples from different classes fairly distinct, allowing
for simple use of prototypical representations for classification.
We use a version more similar to that presented by Lake
et al. [32] which increases the similarity between classes in
tasks sampled from the dataset, creating harder classification
problems that requires more complex class representations,
such as contextualizers. To realize this form of the dataset,
we construct a sampling regime that incorporates the structure
of the Omniglot dataset. Instead of sampling classes across
all alphabets, we first select an alphabet uniformly at random
and then select classes from that alphabet. If we assume that
classes from the same alphabet will be more similar to each
other than those from different alphabets, this regime increases
the difficulty of the tasks drawn. We analyze results on 20-way
classification, as with fewer ways all models solve the dataset
nearly perfectly and there are no meaningful differences to be
seen.

B. Mini-Imagenet

Mini-Imagenet [66] is a frequently used benchmark for meta
learning. It is a subset of the Imagenet dataset containing 100
classes from the Imagenet dataset with 600 samples per class.
We use the same splits as Antoniou et al. [3].

C. Tiered-Imagenet

Tiered Imagenet [48] is also a classic benchmark in meta
learning. It is made of 608 classes grouped into 34 high level
sets based on the Imagenet hierarchy, 28 for training, 6 for val-
idation, and 6 for testing. We believe that by grouping similar
classes together, harder tasks are produced. We note that this
is an environment particularly apt for our contextualizer-based
model, as the model is able to incorporate relations between
the contextualizer and the samples to evaluate samples that are
highly similar.

D. Aircraft

The FGVC Airplanes benchmark [38] is, like Tiered Ima-
genet, a more fine-grained classification benchmark. It consists
of 102 different aircraft model variants with 100 images of
each. The dataset also has two coarser groupings of airplanes
into “Families” and “Manufacturers,” however we disregard
these in favor of the more challenging fine-grain task that uses
variants as classes.

VI. EXPERIMENTS

In our experiments we probe the extreme scenario of allow-
ing only one gradient step to adapt to S before classifying Q.
We test on four few shot learning datasets and compare our
models to the gradient methods of MAML and ProtoMAML
as well as a non-gradient based method in Prototypical Net-
works [52].

We make special note that we used a harder split of the
classic ”Omniglot” dataset in our experiments.

We report results for both forms of contextualization de-
scribed in Algorithms 1 and 2.

On all datasets, we measure performance for 1-shot and 5-
shot learning. With the exception of Omniglot, we perform all
experiments with 5 ways. At test time, we evaluate our model
on 600 tasks constructed from unseen classes and compute the
average accuracy across all test tasks. We use 750 warmup
steps for the learning rate scheduler. We use a single self-
attention with a single head. The inner loop learning rate
is 0.1 for Omniglot, Quickdraw and Aircraft and 0.001 for
Mini-ImageNet and Tiered-ImageNet. We use 8 tasks for the
MAML inner loop for Omniglot, and 2 tasks for the rest of the
datasets. The initial outer loop learning rate is 0.0001. We use
Adam [30] for the outer loop (for simplicity of exposition, in
Algorithm 1 we have replaced the Adam update rule with the
standard gradient descent rule). Following [3], all experiments
are performed on three separate seeds on the full test set with
the average result across seeds reported.

A. Baselines

In addition to ProtoMAML, MAML and Prototypical Net-
works, we also compare our model to two baselines each of
which contains one aspect of the improvements we implement
in ProtoContext, but neither contains both. The first is a
PCA baseline, which performs PCA on the prototypes and
only keeps the principal components with singular values
greater than 30% of the highest singular value (threshold found
through grid search). Prototypes are replaced with the sum
of their projections onto these components and the head is
then intialized through Equation (4). This produces prototypes
more specific to the task at hand, thresholding out noise, and
is used as a comparison to our model’s process of producing
task-specific prototypes before initialization.

We also test a Context Only model which uses our contex-
tualization scheme but does not re-initialize the head at every
task, instead updating it in the same manner as MAML. This is
meant to evaluate the importance of the task-specific feature-
adaptation of our contextualizer.



In all models, our feature extractor is the same VGG [51]
architecture used in MAML++. In the case of ProtoMAML,
ProtoContext, and PCA Baseline the head of the architecture
is initialized in the manner detailed in the main paper. This
means the head is not meta trained, as it is re-initialized at
the beginning of each task. For our ProtoContext and Context
Only models, we make use of the Transformer architecture
and learning rate scheduler introduced in [65] for our attention
mechanism. Although we experimented with implementation
of a full multi-head attention mechanism, we found that
dropping some pieces of it improved performance. Our final
results are reported using dot-product self-attention, and then
feeding the results of that self-attention through a layernorm
layer [4] and a feedforward layer with a skip connection
around our attention mechanism and around our feedforward
layer. We do not make use of multiple attention heads or stack
several sub-layers instead opting for a single attention head
that attends to samples and contextualizers. In all experiments,
the key dimension is 64. The value dimension (equal to the
feature size) is 64 for Omnliglot and 1200 for the remaining
datasets.

B. Varying inner loop steps

Although our primary focus is on task adaptation with a
single inner loop step, we also test our models with more
inner loop steps to see how they make use of the additional
gradient updates. This is a useful domain to explore, as the
fine-tuning time scales linearly with the number of inner loop
steps. When fewer gradient steps are allowed, it is likely that
the contextualizer is more involved in the classification of
query samples, as the model weights are less adapted to the
task. With more inner loop steps, there is risk of overfitting
to S, and we seek to understand if our ProtoContext models
suffer from this issue. We experimented with as many as 10
inner loop steps on all datasets, while all of our main results
are with 1 step.

C. Intra-class similarity

The success of any method that relies on class representa-
tion, whether prototypes or contextualizers, is dependent on
the ability of fθ(·) to produce prototypes for each class that
align closely to the samples of that class in the latent space. If
this is not the case, then it will be difficult to classify new
samples based off of the prototype alone. To measure the
quality of this clustering, we propose a new metric as follows

intra-class(a) :=
1

k

k∑
j=1

cos−1

 fθ

(
x
(a)
j

)
∥∥∥fθ (x(a)

j

)∥∥∥
2

· p(a)∥∥p(a)
∥∥
2

 .

We use the measure of angular similarity rather than
Euclidean distance as in [52] because logits are calculated
through dot product with a head initialized to the prototypes,
not through distance in Euclidean space. We also prefer this
metric to cosine similarity since it has a more interpretable
result (the angle between two feature vectors), although it is
clear that the two metrics are directly related. We measure

the intra-class similarity for the features produced by our
ProtoContext model and ProtoMAML before fine-tuning on S.
For fair comparison, we only measure the features produced by
fθ and do NOT measure the features modified by the context in
ProtoContext. Evaluating this measure allows us to understand
if the addition of a contextualizer produces feature extractors
that create stronger latent representations.

VII. RESULTS

A. 1-shot and 5-shot classification

In Table II we present our results on 1-shot and 5-shot
classifications. In 1-shot classification, we outperform the
baselines across all datasets. The 1-shot setting is challenging
for gradient-based meta learners as there are not many data
samples to use for adaptation and overfitting is a high risk.
It becomes very useful in such a setting to have a task-
specifc method of augmenting prediction such as the one we
introduce through contextualization. In the 5-shot setting, we
outperform on Omniglot, Tiered-ImageNet, and Airplanes. On
Mini-ImageNet all gradient based models are outperformed
by Prototypical Networks. In order to understand the limited
performance of our model on this dataset, we present figures
of the additional inner loop steps in the Supplemental Ma-
terials which suggest that ProtoContext is unable to develop
a sufficiently strong initialization in this setting. We should
note that our models outperform ProtoMAML and the PCA
baseline, which also rely on the head initialization.

The two forms of contextualization we explore perform
roughly similarly on Omniglot and Mini-ImageNet. On Tiered-
ImageNet, using the head as contextualization leads to con-
siderable benefits, while on Airplanes, using contextualized
prototypes produces better results. We also see that in general,
the Context Only baseline is more successful when given the
head as contextualization. This makes sense, since although
there is no explicit initialization of the head in this model,
contextualization allows us to augment features with informa-
tion about the head. Thus, features of samples in a given class
can be made to align strongly with the weights in the head for
that class. A surprising benefit of our contextualization method
is the low variance across runs. Many methods have large
standard deviations in the 1 and 5 shot settings (up to 9.73%
for MAML). In contrast, across all datasets our ProtoContext
model has low variance in its test accuracy.

B. Inner loop steps

In Figure 3 we demonstrate our results from varying the
number of inner loop steps the model is allowed before testing
on the query set on Tiered-ImageNet. We see that in both
the 1-shot and the 5-shot settings, our model both begins at
and stays at a high level of accuracy. These results indicate
that ProtoContext is able to effectively develop a very strong
initialization for the head that requires little task-specific fine-
tuning. In the 1-shot setting the accuracy of MAML and
ProtoMAML decreases as we add more inner loop steps,
which may be due to overfitting. While both versions of
ProtoContext do suffer from this to a degree, the losses in



TABLE II
ACCURACY FOR 1- AND 5-SHOT EXPERIMENTS. OMNIGLOT IS 20-WAY AND THE REST ARE 5-WAY. MEDIAN AND STANDARD DEVIATION FROM THREE
TRIALS ON THE FULL TEST SET (FIVE TRIALS FOR EXPERIMENTS WITH LARGE DEVIATION). BELOW THE PENULTIMATE LINES FOR EACH EXPERIMENT
ARE OUR MODELS: PROTOCONTEXT WITH CONTEXTUALIZED PROTOTYPES AND HEAD. GREEN INDICATES IMPROVEMENTS FROM PROTOMAML++,

OUR MOST DIRECT BASELINE.

Accuracy for 1-shot (%)

Experiment type Model Omniglot Mini-ImageNet Tiered-ImageNet Airplanes

Our implementation Prototypical Networks 80.9± 4.00 49.9± 0.25 50.3± 0.38 42.8± 2.76
Our implementation MAML++ 75.3± 2.19 48.5± 2.95 49.2± 0.66 39.8± 8.50
Our implementation ProtoMAML++ 70.2± 5.08 47.8± 0.25 49.7± 0.61 53.1± 0.96

Our ablation PCA baseline 69.4± 4.27 48.5± 0.30 50.0± 0.38 39.5± 1.54
Our contrib. (abl.) Context Only (Contex. Proto.) 94.9± 0.65 45.4± 2.19 47.4± 5.05 41.3± 2.56
Our contrib. (abl.) Context Only (Head) 94.9± 0.12 49.1± 0.77 50.3± 0.36 52.6± 0.15

Our contrib. (main) ProtoContext (Contex. Proto.) 96.0± 0.40 (+25.8) 50.1 ± 1.13 (+2.3) 52.1± 1.07 (+2.4) 58.3 ± 0.14 (+5.2)
Our contrib. (main) ProtoContext (Head) 96.7 ± 0.22 (+26.5) 50.1 ± 0.21 (+2.3) 54.3 ± 0.32 (+4.6) 56.6± 0.19 (+3.5)

Accuracy for 5-shot (%)

Experiment type Model Omniglot Mini-ImageNet Tiered-ImageNet Airplanes

Our implementation Prototypical Networks 91.5± 2.89 66.4 ± 0.40 70.1± 0.40 63.0± 0.86
Our implementation MAML++ 84.6± 2.40 65.6± 0.39 57.3± 6.87 58.2± 9.73
Our implementation ProtoMAML++ 77.5± 4.78 60.7± 0.99 65.0± 0.31 63.3± 0.57

Our ablation PCA baseline 79.1± 4.06 61.5± 0.13 65.8± 0.25 62.2± 2.06
Our contrib. (abl.) Context Only (Context. Proto.) 98.1± 0.22 60.0± 0.30 59.8± 0.21 62.7± 4.39
Our contrib. (abl.) Context Only (Head) 98.3± 0.08 63.0± 0.12 66.8± 0.28 63.0± 3.07

Our contrib. (main) ProtoContext (Contex. Proto.) 98.4 ± 0.15 (+20.9) 63.9± 0.17 (+3.2) 70.0± 0.19 (+5.0) 70.1 ± 0.61 (+6.8)
Our contrib. (main) ProtoContext (Head) 98.4 ± 0.04 (+20.9) 64.5± 0.39 (+3.8) 71.4 ± 0.32 (+6.4) 69.3± 0.32 (+6.0)

accuracy are not nearly as dramatic. This suggests that the
use of contextualizers may provide a method of augmenting
prediction that is not as prone to overfitting as fine-tuning
parameters through gradient descent, or that the ProtoContext
head initializations are more general than those produced by
ProtoMAML and MAML.

VIII. EMPIRICAL ANALYSIS

In this section our goal is to understand the role of contex-
tualizers in conjuction with (i) the feature extactor and (ii) the
self-attention mechanism. The former we study through our
intra-class metric, while the latter we observe via attention
heatmaps. We describe both below.

A. Intra-class Metric

Table III shows the results of measuring the intra-class
metric of the features extracted by our ProtoContext model
as well as ProtoMAML. Across every dataset, we see that
ProtoContext consistently produces features with a lower intra-
class metric (better), indicating that it has learned a feature
extractor that is discriminative. These numbers suggest that
the use of our contextualization mechanism may have some
upstream benefit to the feature extractor. We can understand
this by realizing that, because our contextualizers are initial-
ized with versions of the prototypes, properly making use of
the contextualization mechanism requires prototypes that well
represent the samples given.

B. Use of contextualizers in self-attention

Figure 4 shows heatmaps of the attention weights in the self-
attention mechanism of our ProtoContext model. The diagonal

TABLE III
INTRA-CLASS METRIC IS NOTICEABLY SMALLER (BETTER) FOR

PROTOCONTEXT THAN PROTOMAML. EXPERIMENTS ARE 5-SHOT. PC IS
SHORT FOR PROTOCONTEXT, CP IS SHORT FOR Contextualized Prototypes

AND H IS SHORT FOR Head. ALL MEASURES IN RADIANS. MEAN AND
STANDARD DEVIATION FROM THREE TRIALS ON THE FULL TEST SET.

Dataset PC (CP) PC (H) ProtoMAML

Omniglot 0.37± 0.006 0.28± 0.001 0.84± 0.011
Mini-ImageNet 0.99± 0.001 0.82± 0.003 1.24± 0.006
Tiered-ImageNet 0.98± 0.007 0.83± 0.002 1.22± 0.003
Airplanes 0.93± 0.128 0.70± 0.005 1.15± 0.019

patterns of attention indicate high weight is given to the
contextualizers that correspond to the class of a given sample.
The context is also highly updated by the samples in its class,
although this is more prominent in the 1-shot than the 5-shot
setting. We present additional heatmaps in the Supplemental
Materials that show a range of patterns can emerge, and
show how applying regularization on the heatmaps can lead to
improvements. We also find that the query almost never attends
the query during self-attention. This is especially important as
this is a fully learned behavior, not one we code into the model.
We believe this demonstrates that the self-attention mechanism
is learning what we expect: that context is a much more useful
tool than other samples for making classification decisions.

C. Lessons learned from HPC experimentation

In our work we considered a large variety of datasets
and baselines. Running and keeping track of a full cross
product of all variants required careful SLURM scripting on
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Fig. 3. Test Accuracy versus the number of inner loop steps for 1-shot (left)
and 5-shot (right) on Tiered-ImageNet. ProtoContext shows strong results
with just one adaptation step. In addition, ProtoContext seems to suffer from
significantly less overfitting and shower lower variance across inner loop steps
than ProtoMAML and MAML.

MIT SuperCloud, which we have highighted in our publicly
available code on GitHub.

We also benchmark the latency of our experiments on MIT
SuperCloud. We use a single Nvidia V100 32G GPU and
20 workers for our experiments. We work with the hard-
erOmniglot dataset with 5 inner loop steps and 20-way 5-shot
classification setting. Every other hyperparameter follows the
training setting from Figure 3. We run 100 steps of minibatch
training and report mean and standard deviations of iterations
per second.

In Figure 5 we present the results of our experiment and
observe that our methods are a factor of 0.7 slower than
the baseline. We believe that this slowdown is justified given
the significant improvements we obtain over MAML and
ProtoMAML across our experiments in this paper.

IX. CONCLUSION AND FUTURE WORK

We have presented a novel framework, Contextualization,
for approaching few shot classification which allows for task-
specific initialization and feature modification. We tested two
forms of contextualization and showed that both outperform
strong baselines. In addition, we presented other benefits of
contextualization including resilience to overfitting, potential
upstream benefits for feature extractors, and use of context
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query
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context
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Fig. 4. Heatmaps of the attention weights for Omniglot provide evidence
to support our conjecture in Equation (5): significant weight is given to the
contextualizer corresponding to each example’s class when contextualizing
the features. This is seen in the strong diagonals in the heatmaps, which are
a result of samples being presented in the order of class number.
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Fig. 5. Benchmarking the number of iterations per second for our
ProtoContext-based and the MAML-based methods. Error bars denote the
standard deviation of iterations per second.

to boost classification decisions. We believe that with proper
contextualizers, contextualization can be extended to other
problems such as regression, reinforcement learning and self-
supervised learning, which we hope to explore in future work.
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Algorithm 1 ProtoContext: Head Contextualization’s Training
Step for one Inner Loop Step. PyTorch-like Pseudocode.

# theta: feature extractor f’s parameters

# phi: self-attention s’s parameters

# w, b: head h’s weights & biases parameters

# tasks: few shot tasks, N: ways

# D: features dimension

# K: support shots, Kq: query shots

# alpha: inner lr, beta: outer lr

# loss: cross-entropy

mgrads = [] # collect meta gradients

for t in tasks: # loops over tasks

# extract support & query

s, q = t.support, t.query

# inner loop

fs = f(theta)(s.inputs) # features: NxKxD

p = mean(fs, dim=1) # prototypes: NxD

fs = fs.view(N * K, D) # NKxD

# context: NxD

c = s(phi)(cat([p, fs], dim=0))[:N,:]

# weights: NxD, biases: N

w, b = proto_maml_init(c)

# contextualized support: NKxD

cs = s(phi)(cat([fs, w], dim=0))[:NK,:]

ls = loss(h(w,b)(cs), s.labels)

params_q = [theta, phi, w, b]

params_q -= alpha * ls.grad(params)

theta_q, phi_q, w_q, b_q = params_q

# outer loop

Nq = N * Kq

fq = f(theta_q)(q.inputs).view(Nq,D)

s_input = cat([fq, w_q], dim=0)

cq = s(phi_q)(s_input)[:Nq,:]

lq = loss(h(w_q,b_q)(cq), q.labels)

mgrads.append(lq.grad(params_q))

[theta, phi, w, b] -= beta * mean(mgrads)

cat: concatenation, proto_maml_init: Algorithm 3, mean: mean of
tensor (and list), append: append to list

agnostic meta-learning. In NeurIPS. 2018.
[75] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja

Hofmann, and Shimon Whiteson. Fast context adaptation
via meta-learning. In ICML, 2019.

APPENDIX

A. Algorithms

In this section, we show through analysis of our gradient
the impact the addition of a self attention mechanism can have
on our parameter updates. Our analysis is focused on the 1-
shot setting for the sake of simplicity of notation. All of the
calculations extend to the 5-shot case naturally.



Algorithm 2 ProtoContext: Prototype Contextualization’s
Training Step for an Inner Loop Step. Py-Torch-like.

# replace red code in Algorithm 1

# follow the rest of Algorithm 1 exactly

# first red line in Algorithm 1 becomes

cs = s(phi)(cat([fs, c], dim=0))[:NK,:]

c_new = s(phi)(cat([fs, c], dim=0))[NK:,:]

# second red line in Algorithm 1 becomes

s_input = cat([fq, c_new], dim=0)

Algorithm 3 ProtoMAML Initialization. PyTorch-like.

# c: contextualized weights (NxD)

w = 2 * c # weights: NxD

b = -norm(c, dim=1, p=2) ** 2 # biases: N

return w, b

norm: Lp norm, p is given by p

B. Notation for the 1-shot setting

Note that the inner loop updates depend only on the support
set S, and since in the 1-shot setting we have a single example
from each class a, we can write the support set as follows
S = (X,y) ≡

{(
x(a), a

)}n
a=1

, where a = y(a) without loss
of generality, i.e. the target for the input x(a) is the index
of its class, which is a. Likewise, we denote the context as
C ≡

{
c(a)

}n
a=1

. Finally, let C(a) be the contextualization
of input example x(a), i.e. C(a) = sϕ

(
fθ
(
x(a)

)
,C
)

for the
contextualization algorithm and C(a) = fθ

(
x(a)

)
for any other

gradient based algorithm (MAML, ProtoMAML).

C. General form of the loss and the gradient updates

Our approach is to impose the structure of the classification
head in order to obtain an explicit form of the loss function,
which will consequentially yield the gradient updates for the
parameters of our model. We proceed with our analysis below.

Let the weights of the head be
{
w(a′′)

}n

a′′=1
and their

corresponding biases be
{
b(a

′′)
}n

a′′=1
. Then, we have that

for a single sample

pw,b

(
sϕ

(
fθ

(
x(a)

)))
= softmax


w

(1) · C(a) + b(1)

...
w(n) · C(a) + b(n)


 .

Note that in our setting the cross entropy loss takes the form

−
n∑

a′′=1

log
[
pw,b

(
sϕ

(
fθ

(
x(a

′′)
)))]

a′′
, (6)

where [z]a′′ means that we take the a′′-th component of the
vector z, and pw,b, sϕ, and fθ are the predictor (head), con-
textualization mechanism, and feature extractor respectively as
defined above. Now, using Equation (C) in Equation (6), then

using the form of the softmax and simplifying the expression
we obtain the following loss function L viewed as a function
of the support set S as follows

L(S) = −
n∑

a′′=1

w(a′′) · C(a
′′) + b(a

′′)

+

n∑
a′′=1

log

(
n∑

ã=1

exp
(
w(ã) · C(a

′′) + b(ã)
))

.

(7)

Hence, the form of this loss in Equation (7) is amenable to
analysis for the predictor and feature extractor of our model.

D. Gradient Updates for the Predictor

Differentiating Equation (7) with respect to the head weights
w(a), corresponding to class a, we obtain the following

∇w(a)L(S) = −C(a) +D(a), (8)

where we introduced the following notation

D(a) =

n∑
a′′=1

exp
(
w(a) · C(a

′′) + b(a)
)

∑n
ã=1 exp

(
w(ã) · C(a′′) + b(ã)

)C(a′′)

≡
n∑

a′′=1

exp
(
w(a) · C(a

′′) + b(a)
)

Z
C(a

′′),

where Z is the partition function. Equation (8) is significant
since it tells us that the contextualization algorithm can control
the gradient updates through the self-attention mechanism,
because the contextualization C(a) depends on the parameters
ϕ of the self-attention mechanism. Under some assumptions,
this behavior might yield simplifications, amenable to analysis.
In that spirit, we proceed with the following

Proposition 1. Assume our contextualizations are orthogonal.
In the 1-shot setting, the inner loop updates for the weights in
the head for class a move in a direction of positive correlation
with the contextualization of its support example x(a).

Proof. Note that 0 < exp
(
w(a) · C(a) + b(a)

)
/Z < 1. Com-

bined with our assumption of orthogonality of contextualiza-
tions, we then get that the correlation

C := C(a) · (−∇w(a)L(S))

with the gradient update (ignoring the learning rate) is

C = C(a) ·
(
C(a) −D(a)

)
= C(a) · C(a) − C(a) · D(a)

=
∥∥∥C(a)

∥∥∥2
2
− C(a) · D(a)

=
∥∥∥C(a)

∥∥∥2
2
−

exp
(
w(a) · C(a) + b(a)

)∑n
ã=1 exp

(
w(ã) · C(a) + b(ã)

) ∥∥∥C(a)
∥∥∥2
2

=

(
1−

exp
(
w(a) · C(a) + b(a)

)∑n
ã=1 exp

(
w(ã) · C(a) + b(ã)

))∥∥∥C(a)
∥∥∥2
2

> 0,



where going from the third to the fourth line we use the fact
that C(a) · C(a

′) = 0 if and only if a is different from a′. From
here, since the learning rate scales each line above by α > 0,
the proof follows, as desired.

E. Gradient Updates for the Feature Extractor

For this analysis we would like to underline the dependence
of the contextualizations C(a

′′) on the parameters θ of our
feature extractor, by explicitly writing the dependence as

follows C(a
′′)

θ . Hence, differentiating Equation (7) with respect
to θ and using notation from the previous section we obtain
the following expression for the gradient update

∇θL(S) = −
n∑

a′′=1

∇θC
(a′′)
θ w(a′′)

+

n∑
a′′=1

n∑
a′=1

exp

(
w(a′) · C(a

′′)
θ + b(a)

)
Z

∇θC
(a′′)
θ w(a′).

We proceed with the following

Proposition 2. With the contextualization algorithm, the gra-
dient updates for the feature extractor share gradient infor-
mation from each example in the support set.

Proof. It suffices to analyse ∇θC
(a′′)
θ in the above equation.

Our self-attention mechanism consists of a scaled dot product
attention which yields a linear combination across the trans-
formed (by value weights Wvalue) inputs to the mechanism,
followed by a layer normalization with mean µ and standard
deivation σ, and then a linear layer with weights W and bias
b. Therefore, since the initalization of our context consists of
self-attention over the extracted features of the support set,
without loss of generality we have that

C(a
′′)

θ = W

(
n∑

γ=1

v
(a′′)
γ

Wvaluefθ
(
x(γ)

)
− µ1

σ

)
+ b,

where the coefficients v(
a′′)

γ ≡ v
(a′′)
γ (θ,ϕ) depend both on the

feature extractor and the key and query matrices. Now, after
taking the gradient with respect to θ we obtain the following
expression

∇θC
(a′′)
θ = W

(
n∑

γ=1

∇θv
(a′′)
γ

Wvaluefθ
(
x(γ)

)
− µ1

σ

+

n∑
γ=1

v
(a′′)
γ

σ
Wvalue∇θfθ

(
x(γ)

) )
,

where we have boxed the contribution from the gradient in-
formation coming from all support inputs. Thus, the statement
follows.

This proposition is significant since it can explain why
the feature extractor yields better intra-class similarity, as we
presented in the main text. We conjecture that this is true

since gradient information flows from all support exmples in

a controlled manner, manifested by the coefficients v
(a′′)
γ /σ,

which are learned by the self-attention mechanism.
Contrast this with C(a

′′) = fθ

(
x(a

′′)
)

for MAML and
ProtoMAML in the absence of batchnorm [26], which yields
gradient information only for the support example a′′. In
practice, ProtoMAML and MAML use batchnorm, which may
be seen as an alternative way to contextualize features, but also
as an inferior way as it is demonstrated in our experiments.

F. Results in the Broader Context of Meta Learning

We should note that in this section we have described how
the self-attention controls the gradient updates during fine-
tuning. This emphasizes the role of the self-attention as a meta
learner in a similar fashion to how LSTMs can be used as meta
learners [47].


