
1

Zero Trust Architecture Approach for Developing

Mission Critical Embedded Systems

Michael Vai1, David Whelihan1, Eric Simpson1, Donato Kava1, Alice Lee1, Huy Nguyen1,

Jeffrey Hughes1, Gabriel Torres1, Jeffery Lim1, Ben Nahill1, Roger Khazan1, and Fred Schneider2

1MIT Lincoln Laboratory, 2Cornell University

PoC: mvai@ll.mit.edu

Abstract—This paper describes a Zero Trust Architecture
(ZTA) approach for the survivability development of
mission critical embedded systems. Designers could use
ZTA as a systems analysis tool to explore the design space.
The ZTA concept of “never trust, always verify” is being
leveraged in the design process to guide the selection of
security and resilience features for the codesign of
functionality, performance, and survivability. The design
example of a small drone for survivability is described
along with the explanation of the ZTA approach.

Keywords— Zero trust architecture; Security; Resilience;
Survivability; Mission Assurance; Embedded System; Systems
Analysis; Security by Design; Survivability by Design

I. MISSION CRITICAL EMBEDDED SYSTEMS

In the context of this paper, an embedded system would be
a high performance computing system with dedicated
functionality and well-defined behavior [1]. An embedded
computing system example is the mission control computer
for a drone. This is in contrast to an enterprise computer
system designed for general computing. Furthermore, an
embedded system is often optimized for its specific
functionality in terms of smaller form factor, lower power
consumption, and/or higher throughput. For survivability, a
mission (or safety) critical embedded system should be
defended against attacks with security (i.e., hardening)
technologies, and equipped with resilience properties for
mission assurance when an “eliminated” failure nevertheless
occurs. At the same time, the designer needs to minimize the
impact of enhanced survivability on size, weight, and power
(SWaP), usability, cost, and development schedule. We have
been developing cyber security and resilience design
methodologies and associated technologies for mission
critical platforms [2-5].

The current work has been motivated by the current
government-wide effort to migrate to Zero Trust Architecture
(ZTA) [6, 7]. The mandate is currently directed at enterprise
level computing systems, however, we have recognized that
ZTA offers a new persepective of designing survivability into
mission critical embedded systems. For clarity and
completeness, we present the ZTA approach by itself, but it is
most productive when applied together with the systems
analysis methodologies described in [2-5].

Historically, an embedded system (e.g., an airborne radar
signal processor) is often implicitly trusted after its installation
as it will remain unchanged for a long time, particularly when
it is deployed in a protected location such as inside an airplane.
This assumption no longer holds in today’s embedded
systems, which are increasingly more programmable,
configurable, and upgradable in order to keep up with new
technologies and defend against the latest threats. Future
missions would require even more agile flexibility,
sustainability, and upgradability.

Establishing effective survivability requirements for an
embedded system is notoriously difficult. Providing evidence
for meeting such requirements is harder yet, as it demands that
we prove a negative. An embedded system that is designed to
operate according to the zero trust tenet of “never trust, always
verify” has numerous benefits for mission assurance. We have
thus adapted a ZTA inspired survivability-by-design strategy
in the development of mission critical embedded systems.
Following this approach, the designer would incorporate
technologies to establish a trust to proper system functionality
and maintain that trust over its operation.

II. EMBEDDED SYSTEM EXAMPLE: A DRONE

Figure 1 provides an architectural overview of a small
drone as a mission critical embedded system, which was
previously discussed in [4] to demonstrate the designing of
agility and resilience into embedded systems. We have reused
the same design case in this paper to connect these design
approaches. The drone architecture, CONOPS (Concept of
Operations), its threats, and survivability features presented
here are for illustration purposes only.

The drone shown in Figure 1a represents a typical
embedded system, which can be viewed as a system of
embedded systems, as each element in Figure 1a is a self-
contained functional unit that includes its own microprocessor
(or microcontroller) with dedicated software application for
interfacing, control, and operation.

DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited. This material is based upon work supported by the
Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

© 2023 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in
DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any
copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work
other than as specifically authorized by the U.S. Government may violate
any copyrights that exist in this work.

One of the key objectives of designing systems with open
standards is interoperability. For example, by standardizing
electrical and physical properties of the backplane, OpenVPX
enables plug-in modules conforming with the standard to
readily work together within a system [1]. The possibility of
mixing and matching best-of-breed components enhances
system performance and upgradability. Defense acquisition
programs are now required to take a Modular Open Systems

2

 (a) (b)

Figure 1: Design example: (a) a drone with (b) a ground control station.

The drone contains a mission computer (CPU), which is
the management control of the drone and is the focus of
discussion in this paper. The payload of the system is a camera
(CAM), which captures video streams. The drone includes a
number of communications functions: a Global Positioning
System (GPS) receiver for geo-location, a radio to
communicate with the Ground Control Station (GCS) in
Figure 1b, and a modem for streaming video. The CPU
computes the flight dynamics using information from a few
sensors: a barometer (BARO) for altitude measurement, a
gyroscope (GYRO) for orientation and angular velocity
measurement, and an inertial measurement unit (IMU) for
acceleration measurement. The CPU, through an electronic
speed control (ESC), controls mechanical parts such as
motors, gears, etc.

III. SURVIABILITY-BY-DESIGN

Mission assurance requires all functions essential for
mission execution to be available when they are needed. These
mission essential functions must also be resilient to
disruptions caused by either intentional (e.g., adversarial
attacks) or unintentional (e.g., software bugs) causes. In the
context of our discussion, security refers to incorporating
technologies to harden a design against potential attacks.
Resilience features, on the other hand, are provided in
preparation for breakthroughs (i.e., when security has been
compromised). The system needs to detect a disruption when
it occurs, isolate it, and recover so that the mission could be
continued. As we will explain below, it is always a good idea
to bake in security and resilience features from the beginning
so that their overheads on SWaP and performance could be
accounted for.

A. Real Time Survivability Requirement

Figure 2 shows the dynamics of a mission critical
operation and defines its real time survivability requirements.
We have defined a few time parameters below to facilitate our
discussion:
ta: Time to cause failures by attack;

td: Time to detect and isolate attack;

tr: Time to react and recover from the attack;

ts: Mission dependent survivable time to react before

unavoidable failure (e.g., a crash).

The goal of a mission critical embedded system design is
to maximize attack time ta and survivable time ts and minimize
recovery time (td + tr). The best case scenario is that the system
has been hardened properly to the attack and ta is substantially
longer than the expected mission time. No degradation would
occur to the mission. However, the design may still need to
deal with long term impacts by, for example, applying moving

target technologies [9]. In contrast, the worst case happens
when td + tr > ts. In this situation, the system has learned about
the failure too late and taken too long to react. The system and
thus the mission have failed.

Figure 2: Mission assurance real-time operation.

Generally, the survivable condition is that td + tr is less than
ts. In this case while the mission will experience a disruption,
but the system has adequate capability and resource to detect
the failure, take a course of action in time, and return the
system to normal operation.

B. Zero Trust Architecture (ZTA)

Zero trust is a set of principles that treats every component,
service, and use of a system as continuously exposed to and
potentially compromised by a malicious adversary [8]. At a
high level, a ZTA depends on three attributes:
compartmentalized access, continuous monitoring and
adjustment, and applying security measures throughout the
overall system. A ZTA enterprise system can thus support its
intended mission by following the following zero trust
security principles [8]:

• Identity verification – strong multi-factor user and device
authentication;

• Access control – secure and approved access to resources;

• Resource protection – fine-grained control of approved
resource utilization based on identity;

• Policy and orchestration – dynamic management of
system use;

• Monitoring and analytics – analysis of system usage and
security functions;

• Continuous operations – process to manage risks while
supporting usability.

These principles are well associated with the need to
enforce minimization, isolation, least privilege, monitoring,
and recovery in the co-design of functionality, survivability,
and performance.

Table 1: Association of ZTA principles with embedded system survivability
design.

Table 1 associates the zero trust principles and
survivability features available for embedded systems. For
example, crypto is the technology for encryption,
authentication, and verification. Separation kernel [e.g., 10] is
for establishing software enclaves. Policy enforcement is for

3

the detection of abnormal behaviors. Monitoring service is to
provide system observability.

IV. ZTA EMBEDDED SYSTEM DESIGN FLOW

We now explain the use of a zero trust survivability-by-
design approach to codesign functionality and survivability so
that security and resilience features are integrated as first class
components into the system under design for mission
assurance. The zero trust concept, which has been succinctly
captured by the tenet of “never trust, always verify,” would be
used to assess the risks and vulnerabilities of all essential
functions and components. The zero trust principles listed in
Table 1 would then be used to guide the selection of security
and resilience features.

 Figure 3: ZTA survivability-by-design process.

Figure 3 describes the process of this ZTA embedded
system design flow. The explanation below has been
presented with the drone in Figure 1 as an illustrative
development example. The design activities and their products
could be readily documented with a systems analysis and
design diagram. Details of developing such diagrams were
described in [4]. Figure 4 presents a subset of the analysis
diagram generated for our drone development example, which
we will explain as we describe the design steps.

Figure 4: A systems analysis and design diagram showing the drone design
example. MEFs (Mission Essential Functions) discussed here are

highlighted.

A. Mission Objectives

The system design process begins with defining a mission
objective. For our drone design example, the mission
objective would be to perform remote video surveillance. This
high level description will lead into the next step of identifying
the concept of operations (CONOPS), threats, and constraints.

B. CONOPS, Threats, and Constraints

CONOPS refers to some details of the operational scenario
and adds more specifics to the objective. One of the best ways
to convey this is with usage vignettes. These are small stories
that capture how the system will be used in a mission and what
constitutes mission success. The vignettes should include

who/what the mission elements are, how they interact, and
what their responsibilities are during different mission phases.

In our development example, the GCS operator will send
waypoints and targets to the drone over the radio. The drone
will rely on autopilot to reach waypoints and perform video
surveillance on targets. The modem will stream the target
video to the GCS display.

The mission objective discussion with the stakeholder will
produce a high level understanding of the system features or
properties that are valuable to adversaries. These are useful
because they convey at a high level what the mission
stakeholders care about. The concerns usually relate to the loss
or corruption of critical program information. The process will
take such statements, explore potential threats, and derive how
the threats could manifest themselves to impact the system.

A high-level concern of our design example is that an
adversary may want to disrupt the video surveillance
operation. Potential attacks include compromising the CPU
through, for example, malware infection and interfering with
communications between the GCS and the drone by, for
example, radio jamming.

The constraints indicate how much design flexibility is
possible to integrate security and resilience technologies.
Constraints could be operational or technical, which are some
of the most important information in the process. For example,
an operational constraint could be the need to store classified
information, which determines the minimum requirement of
isolation and protection. Technical constraints could be the
system’s limited SWaP, or an inability to change legacy
hardware or software. In our example, we assume that the
drone has stringent SWaP and cost requirements. The
flexibility of replacing commercial-off-the-shelf (COTS)
components is also limited.

C. Mission Essential Functions

Mission essential functions (MEFs) are a set of high level
functionality required to meet the CONOPS. We typically
break down system mission objective into a few (3–5) high-
level goals that can be succinctly described and codified as
high-level MEFs. These will be decomposed hierarchically
until the system hardware/software component boundary (i.e.,
when mission goals cease to be abstract) is reached. As shown
in Figure 4, the mission objective of video surveillance will
require MEFs of flying, traveling to waypoints, and
performing surveillance. The MEFs are then developed with
hardware and software components and interconnections for
implementation. Figure 4 shows that flying has been
decomposed into a couple of sub-levels until its dependence
on system components becomes apparent.

The line between abstract, goal-oriented MEFs and system
components (or subsystems) that provide functionality was
fairly straightforward. What the system component row in
Figure 4 misses, however, is the topology of the system.
Topology, or the way subsystems are laid out and
interconnected, is extremely important in a survivable system
engineering effort because the connections between
subsystems are usually also vectors for attack.

4

The outcome of this step is a full set of hardware and
software elements, their interconnects, and components such
as storage devices. These system components are shown in
Figure 4 as a set of resources upon which the abstract MEFs
depend. For example, in our example, sensing flight dynamics
will depend on the CPU, IMU, GYRO, BATT, BARO, and
ESC. An interconnect such as a bus (not shown in Figure 4)
will also be needed. The full set of system components and
how they are shared or accessible is a critical aspect of the
design that is used in the next step to determine failure points
and how they affect the overall system survivability.

Now we determine and capture failure or disruption states
of the MEFs at the hardware/software level. In this step, the
identified system components are cross-referenced with
threats to identify how failures of those sub-systems can
impact mission goals. Figure 4 indicates that the CPU is
associated with potential malware attacks and the radio is
associated with jamming, eaves-dropping, and message
replay.

All system components are further annotated to include a
list of cyber-induced failures under the categories of
confidentiality, integrity, and availability. For example, if the
CPU is rendered unavailable by malware infection, it is
considered a single failure possibility of that resource. The fact
that the CPU serves multiple MEFs means that its failure will
be amplified. This is in contrast with a failure that only
impacts a single MEF it was directly relevant to and will
potentially have less impact on the overall survivability
design. This is useful because it helps to direct the efforts of
the design team to particularly impactful vulnerabilities.

D. Survivability Requirements

The survivability requirements need to clearly state what
must be protected (e.g., functionality, critical program
information, etc.). Ideally, all threat induced MEF failures and
disruptions shall be prevented. In general, we would want to
consider mitigating the impacts of failures instead of the
attacks themselves. For example, radio jamming attack causes
loss of radio service (availability impact) and malware causes
the CPU to produce erroneous results (integrity impact).
Instead of creating requirements to prevent/mitigate radio
jamming and computing errors, the system may be further
hardened into designing for radio availability and computing
integrity. This practice tends to create more demanding
requirements, but it could also lead to the design of stronger
systems.

In our design example, an example survivability
requirement could be that flight parameters shall be available
at all time, which implies that the system must ensure, among
other things, the integrity and availability of radio
communications and the correctness of computing. The
outcome of this process is a set of system survivability
requirements that addresses the needs of the program
stakeholders. It will be instrumental in the security technology
selection activity and will drive the formulation of test criteria.

Based on the requirements, MEFs are created with security
and resilience features incorporated and integrated into a
mission system design. The first cyber defense should always

be good cyber design practice, including open design,
minimization of interfaces and code, complete mediation of
access, and adherence to the Principle of Least Privilege [13].

Determining which technologies will decrease failures as
the requirements demand, but are still within the box drawn
by the system constraints, may require significant
compromise. For example, constraints may dictate that there
is not enough SWaP to encrypt the video downlink using
approved encryption modes. A solution may be to use a
lightweight cipher that will protect the data only up to its level
of importance. The key to justifying such a decision is to
provide evidence that the alternate cyber-technology is
adequate and that there was no other way to meet the
requirement. The backend of this process is designed to make
the designer justify their choices and leave a record of them.

E. Mission System

The goal is first to reduce the number of cyber induced
failures by buttressing security with techniques such as
cryptography and separation, and second to be resilient to any
failures that happen despite these efforts.

In our design example [2], the CPU was designed with
security and resilience features, including secure boot,
redundancy, separation kernel, monitoring service, policy
enforcement, and recovery service. Cryptography has also
been applied to protect communications over the radio [11].
Figure 5 shows the association of zero trust principles to the
CPU design.

Figure 5: A mission computer designed with the called out zero trust
principles.

F. Mission Assurance Assessment

The reduction of unmitigated failures is the key to increase
mission assurance. However, proof of elimination of cyber
induced failures is difficult or impossible to come by.
Therefore, a second metric of assessing mission assurance is
to label failures, regardless of whether they have been
eliminated, as either detectable, isolatable, or recoverable.
Recall from our discussion with respect to Figure 2, this
consideration acknowledges that, despite our best efforts, a
breakthrough can still be induced, and specifies whether it can
be detected and recovered from in a timeframe that is
acceptable with the demands of CONOPs. Increasing the
numbers of detectable, isolable, and recoverable failures
would increase the mission assurance of the system.

In our example, a zero-trust analysis of the “survivable”
mission computer is summarized as follows. For the hardware
foundation, the incorporation of a hardware security module
to implement secure boot provides a root-of-trust, but it is still

5

subject to zero-day hardware and firmware vulnerability.
Also, there is no provision to verify the security module’s
behavior at operation. For the software environment including
the separation kernel and virtual machine manager, both of
them are verified for authenticity and integrity at boot time.
The separation kernel is also formally verified at design time
[2]. However, similar to the hardware layer, the software layer
is subject to zero-day vulnerability and its behavior is not
verified at operation.

The design has focused on defending software
applications, which are verified for authenticity and integrity
at boot time. Inter-process communications are controlled and
monitored by the separation kernel. Communications are
protected by cryptography. The application behavior is also
monitored during operation. However, zero-day vulnerability
remains a risk. Also, recovery is limited to reloading and
restarting, which may not be sufficient to survive attacks
without additional measures.

Apparently, the system stakeholder needs to take into
account the significance of the system’s residual vulnerability,
and the return of investment of incorporating further features
to meet survivability requirements. In many cases, the goal of
a fully survivable system is non-feasible. The stakeholder, if
needed, may modify the original CONOPS and mission
success criteria to be “survivable.”

At this point the system under design could be prototyped
to measure its “real-time” performance with respect to its
survivability requirements. In addition, overhead on system
SWaP and performance should also be assessed. In general, a
few iterations will be needed to arrive at a final design.
Performance improvement is beyond the scope of this paper,
but has been the subject of numerous resources, e.g., [1].

V. SUMMARY AND ONGOING ACTIVITIES

The ZTA approach described in this paper has been
successfully applied to the survivability development of
mission-critical embedded systems including drones,
microelectronics, and space communications. Ongoing
research activities include integrating this ZTA approach with
a system modeling and engineering tool, for example,
MagicDraw [12].

VI. ACKNOWLEDGEMENT

Fred Schneider is supported in part by Air Force Office of
Scientific Research under award number FA9550-23-1-0435,
as well as by funding from MIT Lincoln Laboratory, Amazon,
and Google. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of these
organizations.

VII. REFERENCES

[1] D. Martinez, R. Bond, and M. Vai, Ed., High Performance Embedded
Computing Handbook, CRC Press, 2008.

[2] M. Vai, D. Whelihan, et al, Agile and Resilient Embedded Systems,
MILCOM, October 2021.

[3] H. Whitman, M. Vai, et al, “HARDEN: A High Assurance Design
Environment,” GOMACTech, March 2019.

[4] D. Whelihan, M. Vai, et al, “Designing agility and resilience into
embedded systems,” MILCOM, October 2017.

[5] M. Vai, D. Whelihan, et al, “Systems Design of Cybersecurity in
Embedded Systems,” IEEE High Performance Embedded Computing
Conference, September 2016.

[6] https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-
09.pdf, accessed June 27, 2023.

[7] Department of Defense (DoD) Zero Trust Reference Architecture,
Version 2.0, July, 2022, Defense Information Systems Agency (DISA)
and National Security Agency (NSA) Engineering Team,
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_
v2.0(U)_Sep22.pdf, accessed June 27, 2023

[8] https://www.ll.mit.edu/news/zero-trust-architecture-may-hold-
answer-cybersecurity-insider-threats, accessed June 27, 2023.

[9] https://www.ll.mit.edu/sites/default/files/page/doc/2018-
05/22_1_8_Okhravi.pdf, accessed June 20, 2023

[10] G. Klein et al., “seL4: Formal verification of an os kernel,” Proc. of the
ACM SIGOPS 22nd SOSP’09.

[11] D. Whelihan, M. Vai, et al, “SHAMROCK: AA
SynthesizableSynthesizable High Assurance Cryptography and Key
High Assurance Cryptography and Key Management Management
Coprocessor,” MILCOM, October 2016.

[12] https://www.3ds.com/products-services/catia/products/no-
magic/magicdraw/, accessed June 20, 2023.

[13] https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
12r1.pdf, accessed June 20, 2023.

