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Abstract—This paper describes a Zero Trust Architecture 
(ZTA) approach for the survivability development of 
mission critical embedded systems. Designers could use 
ZTA as a systems analysis tool to explore the design space. 
The ZTA concept of “never trust, always verify” is being 
leveraged in the design process to guide the selection of 
security and resilience features for the codesign of 
functionality, performance, and survivability. The design 
example of a small drone for survivability is described 
along with the explanation of the ZTA approach.  
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I. MISSION CRITICAL EMBEDDED SYSTEMS 

In the context of this paper, an embedded system would be 
a high performance computing system with dedicated 
functionality and well-defined behavior [1]. An embedded 
computing system example is the mission control computer 
for a drone. This is in contrast to an enterprise computer 
system designed for general computing. Furthermore, an 
embedded system is often optimized for its specific 
functionality in terms of smaller form factor, lower power 
consumption, and/or higher throughput. For survivability,  a 
mission (or safety) critical embedded system should be 
defended against attacks with security (i.e., hardening) 
technologies, and equipped with resilience properties for 
mission assurance when an “eliminated” failure nevertheless 
occurs. At the same time, the designer needs to minimize the 
impact of enhanced survivability on size, weight, and power 
(SWaP), usability, cost, and development schedule. We have 
been developing cyber security and resilience design 
methodologies and associated technologies for mission 
critical platforms [2-5].  

The current work has been motivated by the current 
government-wide effort to migrate to Zero Trust Architecture 
(ZTA) [6, 7]. The mandate is currently directed at enterprise 
level computing systems, however, we have recognized that 
ZTA offers a new persepective of designing survivability into 
mission critical embedded systems. For clarity and 
completeness, we present the ZTA approach by itself, but it is 
most productive when applied together with the systems 
analysis methodologies described in [2-5].  

Historically, an embedded system (e.g., an airborne radar 
signal processor) is often implicitly trusted after its installation 
as it will remain unchanged for a long time, particularly when 
it is deployed in a protected location such as inside an airplane. 
This assumption no longer holds in today’s embedded 
systems, which are increasingly more programmable, 
configurable, and upgradable in order to keep up with new 
technologies and defend against the latest threats. Future 
missions would require even more agile flexibility, 
sustainability, and upgradability.  

Establishing effective survivability requirements for an 
embedded system is notoriously difficult. Providing evidence 
for meeting such requirements is harder yet, as it demands that 
we prove a negative. An embedded system that is designed to 
operate according to the zero trust tenet of “never trust, always 
verify” has numerous benefits for mission assurance. We have 
thus adapted a ZTA inspired survivability-by-design strategy 
in the development of mission critical embedded systems. 
Following this approach, the designer would incorporate 
technologies to establish a trust to proper system functionality 
and maintain that trust over its operation. 

II. EMBEDDED SYSTEM EXAMPLE: A DRONE 

Figure 1 provides an architectural overview of a small 
drone as a mission critical embedded system, which was 
previously discussed in [4] to demonstrate the designing of 
agility and resilience into embedded systems. We have reused 
the same design case in this paper to connect these design 
approaches. The drone architecture, CONOPS (Concept of 
Operations), its threats, and survivability features presented 
here are for illustration purposes only.  

The drone shown in Figure 1a represents a typical 
embedded system, which can be viewed as a system of 
embedded systems, as each element in Figure 1a is a self-
contained functional unit that includes its own microprocessor 
(or microcontroller) with dedicated software application for 
interfacing, control, and operation.  
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One of the key objectives of designing systems with open 
standards is interoperability. For example, by standardizing 
electrical and physical properties of the backplane, OpenVPX 
enables plug-in modules conforming with the standard to 
readily work together within a system [1]. The possibility of 
mixing and matching best-of-breed components enhances 
system performance and upgradability. Defense acquisition 
programs are now required to take a Modular Open Systems 



2 

 

  

  (a) (b) 

Figure 1: Design example: (a) a drone with (b) a ground control station. 

The drone contains a mission computer (CPU), which is 
the management control of the drone and is the focus of 
discussion in this paper. The payload of the system is a camera 
(CAM), which captures video streams. The drone includes a 
number of communications functions: a Global Positioning 
System (GPS) receiver for geo-location, a radio to 
communicate with the Ground Control Station (GCS) in 
Figure 1b, and a modem for streaming video. The CPU 
computes the flight dynamics using information from a few 
sensors: a barometer (BARO) for altitude measurement, a 
gyroscope (GYRO) for orientation and angular velocity 
measurement, and an inertial measurement unit (IMU) for 
acceleration measurement. The CPU, through an electronic 
speed control (ESC), controls mechanical parts such as 
motors, gears, etc.  

III. SURVIABILITY-BY-DESIGN  

Mission assurance requires all functions essential for 
mission execution to be available when they are needed. These 
mission essential functions must also be resilient to 
disruptions caused by either intentional (e.g., adversarial 
attacks) or unintentional (e.g., software bugs) causes. In the 
context of our discussion, security refers to incorporating 
technologies to harden a design against potential attacks. 
Resilience features, on the other hand, are provided in 
preparation for breakthroughs (i.e., when security has been 
compromised). The system needs to detect a disruption when 
it occurs, isolate it, and recover so that the mission could be 
continued. As we will explain below, it is always a good idea 
to bake in security and resilience features from the beginning 
so that their overheads on SWaP and performance could be 
accounted for. 

A. Real Time Survivability Requirement 

Figure 2 shows the dynamics of a mission critical 
operation and defines its real time survivability requirements. 
We have defined a few time parameters below to facilitate our 
discussion: 
ta:  Time to cause failures by attack;  

td:  Time to detect and isolate attack; 

tr:  Time to react and recover from the attack; 

ts: Mission dependent survivable time to react before 

unavoidable failure (e.g., a crash). 

The goal of a mission critical embedded system design is 
to maximize attack time ta and survivable time ts and minimize 
recovery time (td + tr). The best case scenario is that the system 
has been hardened properly to the attack and ta is substantially 
longer than the expected mission time. No degradation would 
occur to the mission. However, the design may still need to 
deal with long term impacts by, for example, applying moving 

target technologies [9]. In contrast, the worst case happens 
when td + tr > ts. In this situation, the system has learned about 
the failure too late and taken too long to react. The system and 
thus the mission have failed. 

 

Figure 2: Mission assurance real-time operation. 

Generally, the survivable condition is that td + tr is less than 
ts. In this case while the mission will experience a disruption, 
but the system has adequate capability and resource to detect 
the failure, take a course of action in time, and return the 
system to normal operation.  

B. Zero Trust Architecture (ZTA) 

Zero trust is a set of principles that treats every component, 
service, and use of a system as continuously exposed to and 
potentially compromised by a malicious adversary [8]. At a 
high level, a ZTA depends on three attributes: 
compartmentalized access, continuous monitoring and 
adjustment, and applying security measures throughout the 
overall system. A ZTA enterprise system can thus support its 
intended mission by following the following zero trust 
security principles [8]: 

• Identity verification – strong multi-factor user and device 
authentication; 

• Access control – secure and approved access to resources; 

• Resource protection – fine-grained control of approved 
resource utilization based on identity; 

• Policy and orchestration – dynamic management of 
system use; 

• Monitoring and analytics – analysis of system usage and 
security functions; 

• Continuous operations – process to manage risks while 
supporting usability. 

These principles are well associated with the need to 
enforce minimization, isolation, least privilege, monitoring, 
and recovery in the co-design of functionality, survivability, 
and performance. 

Table 1: Association of ZTA principles with embedded system survivability 
design. 

 

Table 1 associates the zero trust principles and 
survivability features available for embedded systems. For 
example, crypto is the technology for encryption, 
authentication, and verification. Separation kernel [e.g., 10] is 
for establishing software enclaves. Policy enforcement is for 
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the detection of abnormal behaviors. Monitoring service is to 
provide system observability. 

IV. ZTA EMBEDDED SYSTEM DESIGN FLOW 

We now explain the use of a zero trust survivability-by-
design approach to codesign functionality and survivability so 
that security and resilience features are integrated as first class 
components into the system under design for mission 
assurance. The zero trust concept, which has been succinctly 
captured by the tenet of “never trust, always verify,” would be 
used to assess the risks and vulnerabilities of all essential 
functions and components. The zero trust principles listed in 
Table 1 would then be used to guide the selection of security 
and resilience features.  

 

 Figure 3: ZTA survivability-by-design process. 

Figure 3 describes the process of this ZTA embedded 
system design flow. The explanation below has been 
presented with the drone in Figure 1 as an illustrative 
development example. The design activities and their products 
could be readily documented with a systems analysis and 
design diagram. Details of developing such diagrams were 
described in [4]. Figure 4 presents a subset of the analysis 
diagram generated for our drone development example, which 
we will explain as we describe the design steps.  

 

Figure 4: A systems analysis and design diagram showing the drone design 
example. MEFs (Mission Essential Functions) discussed here are 

highlighted. 

A. Mission Objectives 

The system design process begins with defining a mission 
objective. For our drone design example, the mission 
objective would be to perform remote video surveillance. This 
high level description will lead into the next step of identifying 
the concept of operations (CONOPS), threats, and constraints. 

B. CONOPS, Threats, and Constraints 

CONOPS refers to some details of the operational scenario 
and adds more specifics to the objective. One of the best ways 
to convey this is with usage vignettes. These are small stories 
that capture how the system will be used in a mission and what 
constitutes mission success. The vignettes should include 

who/what the mission elements are, how they interact, and 
what their responsibilities are during different mission phases.  

In our development example, the GCS operator will send 
waypoints and targets to the drone over the radio. The drone 
will rely on autopilot to reach waypoints and perform video 
surveillance on targets. The modem will stream the target 
video to the GCS display.  

The mission objective discussion with the stakeholder will 
produce a high level understanding of the system features or 
properties that are valuable to adversaries. These are useful 
because they convey at a high level what the mission 
stakeholders care about. The concerns usually relate to the loss 
or corruption of critical program information. The process will 
take such statements, explore potential threats, and derive how 
the threats could manifest themselves to impact the system.  

A high-level concern of our design example is that an 
adversary may want to disrupt the video surveillance 
operation. Potential attacks include compromising the CPU 
through, for example, malware infection and interfering with 
communications between the GCS and the drone by, for 
example, radio jamming.  

The constraints indicate how much design flexibility is 
possible to integrate security and resilience technologies. 
Constraints could be operational or technical, which are some 
of the most important information in the process. For example, 
an operational constraint could be the need to store classified 
information, which determines the minimum requirement of 
isolation and protection. Technical constraints could be the 
system’s limited SWaP, or an inability to change legacy 
hardware or software. In our example, we assume that the 
drone has stringent SWaP and cost requirements. The 
flexibility of replacing commercial-off-the-shelf (COTS) 
components is also limited. 

C. Mission Essential Functions 

Mission essential functions (MEFs) are a set of high level 
functionality required to meet the CONOPS. We typically 
break down system mission objective into a few (3–5) high-
level goals that can be succinctly described and codified as 
high-level MEFs. These will be decomposed hierarchically 
until the system hardware/software component boundary (i.e., 
when mission goals cease to be abstract) is reached. As shown 
in Figure 4, the mission objective of video surveillance will 
require MEFs of flying, traveling to waypoints, and 
performing surveillance. The MEFs are then developed with 
hardware and software components and interconnections for 
implementation. Figure 4 shows that flying has been 
decomposed into a couple of sub-levels until its dependence 
on system components becomes apparent. 

The line between abstract, goal-oriented MEFs and system 
components (or subsystems) that provide functionality was 
fairly straightforward. What the system component row in 
Figure 4 misses, however, is the topology of the system. 
Topology, or the way subsystems are laid out and 
interconnected, is extremely important in a survivable system 
engineering effort because the connections between 
subsystems are usually also vectors for attack.  
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The outcome of this step is a full set of hardware and 
software elements, their interconnects, and components such 
as storage devices. These system components are shown in 
Figure 4 as a set of resources upon which the abstract MEFs 
depend. For example, in our example, sensing flight dynamics 
will depend on the CPU, IMU, GYRO, BATT, BARO, and 
ESC. An interconnect such as a bus (not shown in Figure 4) 
will also be needed. The full set of system components and 
how they are shared or accessible is a critical aspect of the 
design that is used in the next step to determine failure points 
and how they affect the overall system survivability. 

Now we determine and capture failure or disruption states 
of the MEFs at the hardware/software level. In this step, the 
identified system components are cross-referenced with 
threats to identify how failures of those sub-systems can 
impact mission goals. Figure 4 indicates that the CPU is 
associated with potential malware attacks and the radio is 
associated with jamming, eaves-dropping, and message 
replay.  

All system components are further annotated to include a 
list of cyber-induced failures under the categories of 
confidentiality, integrity, and availability. For example, if the 
CPU is rendered unavailable by malware infection, it is 
considered a single failure possibility of that resource. The fact 
that the CPU serves multiple MEFs means that its failure will 
be amplified. This is in contrast with a failure that only 
impacts a single MEF it was directly relevant to and will 
potentially have less impact on the overall survivability 
design. This is useful because it helps to direct the efforts of 
the design team to particularly impactful vulnerabilities. 

D. Survivability Requirements 

The survivability requirements need to clearly state what 
must be protected (e.g., functionality, critical program 
information, etc.). Ideally, all threat induced MEF failures and 
disruptions shall be prevented. In general, we would want to 
consider mitigating the impacts of failures instead of the 
attacks themselves. For example, radio jamming attack causes 
loss of radio service (availability impact) and malware causes 
the CPU to produce erroneous results (integrity impact). 
Instead of creating requirements to prevent/mitigate radio 
jamming and computing errors, the system may be further 
hardened into designing for radio availability and computing 
integrity. This practice tends to create more demanding 
requirements, but it could also lead to the design of stronger 
systems. 

In our design example, an example survivability 
requirement could be that flight parameters shall be available 
at all time, which implies that the system must ensure, among 
other things, the integrity and availability of radio 
communications and the correctness of computing. The 
outcome of this process is a set of system survivability 
requirements that addresses the needs of the program 
stakeholders. It will be instrumental in the security technology 
selection activity and will drive the formulation of test criteria.  

Based on the requirements, MEFs are created with security 
and resilience features incorporated and integrated into a 
mission system design. The first cyber defense should always 

be good cyber design practice, including open design, 
minimization of interfaces and code, complete mediation of 
access, and adherence to the Principle of Least Privilege [13].  

Determining which technologies will decrease failures as 
the requirements demand, but are still within the box drawn 
by the system constraints, may require significant 
compromise. For example, constraints may dictate that there 
is not enough SWaP to encrypt the video downlink using 
approved encryption modes. A solution may be to use a 
lightweight cipher that will protect the data only up to its level 
of importance. The key to justifying such a decision is to 
provide evidence that the alternate cyber-technology is 
adequate and that there was no other way to meet the 
requirement. The backend of this process is designed to make 
the designer justify their choices and leave a record of them.  

E. Mission System 

The goal is first to reduce the number of cyber induced 
failures by buttressing security with techniques such as 
cryptography and separation, and second to be resilient to any 
failures that happen despite these efforts.  

In our design example [2], the CPU was designed with 
security and resilience features, including secure boot, 
redundancy, separation kernel, monitoring service, policy 
enforcement, and recovery service. Cryptography has also 
been applied to protect communications over the radio [11]. 
Figure 5 shows the association of zero trust principles to the 
CPU design.  

 

Figure 5: A mission computer designed with the called out zero trust 
principles. 

F. Mission Assurance Assessment 

The reduction of unmitigated failures is the key to increase 
mission assurance. However, proof of elimination of cyber 
induced failures is difficult or impossible to come by. 
Therefore, a second metric of assessing mission assurance is 
to label failures, regardless of whether they have been 
eliminated, as either detectable, isolatable, or recoverable. 
Recall from our discussion with respect to Figure 2, this 
consideration acknowledges that, despite our best efforts, a 
breakthrough can still be induced, and specifies whether it can 
be detected and recovered from in a timeframe that is 
acceptable with the demands of CONOPs. Increasing the 
numbers of detectable, isolable, and recoverable failures 
would increase the mission assurance of the system. 

In our example, a zero-trust analysis of the “survivable” 
mission computer is summarized as follows. For the hardware 
foundation, the incorporation of a hardware security module 
to implement secure boot provides a root-of-trust, but it is still 
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subject to zero-day hardware and firmware vulnerability. 
Also, there is no provision to verify the security module’s 
behavior at operation. For the software environment including 
the separation kernel and virtual machine manager, both of 
them are verified for authenticity and integrity at boot time. 
The separation kernel is also formally verified at design time 
[2]. However, similar to the hardware layer, the software layer 
is subject to zero-day vulnerability and its behavior is not 
verified at operation.  

The design has focused on defending software 
applications, which are verified for authenticity and integrity 
at boot time. Inter-process communications are controlled and 
monitored by the separation kernel. Communications are 
protected by cryptography. The application behavior is also 
monitored during operation. However, zero-day vulnerability 
remains a risk. Also, recovery is limited to reloading and 
restarting, which may not be sufficient to survive attacks 
without additional measures. 

Apparently, the system stakeholder needs to take into 
account the significance of the system’s residual vulnerability, 
and the return of investment of incorporating further features 
to meet survivability requirements. In many cases, the goal of 
a fully survivable system is non-feasible. The stakeholder, if 
needed, may modify the original CONOPS and mission 
success criteria to be “survivable.”  

At this point the system under design could be prototyped 
to measure its “real-time” performance with respect to its 
survivability requirements. In addition, overhead on system 
SWaP and performance should also be assessed. In general, a 
few iterations will be needed to arrive at a final design. 
Performance improvement is beyond the scope of this paper, 
but has been the subject of numerous resources, e.g., [1].  

V. SUMMARY AND ONGOING ACTIVITIES 

The ZTA approach described in this paper has been 
successfully applied to the survivability development of 
mission-critical embedded systems including drones, 
microelectronics, and space communications. Ongoing 
research activities include integrating this ZTA approach with 
a system modeling and engineering tool, for example, 
MagicDraw [12]. 
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