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Abstract—Field Programmable Gate Arrays are increasingly
used in cloud computing to increase the run time performance
of applications. For complex applications or applications that
operate over large amounts of data, users may want to use
more than one FPGA. The challenge is how to map and
parallelize applications to a multi-FPGA cloud computing
platform such that the problem is partitioned evenly over the
FPGAs, memory resources are used effectively, communication
is minimized, and speedup is maximized.

In this research, we build a framework to map Garbled
Circuit applications, an implementation of Secure Function
Evaluation, to the Open Cloud Testbed, which has FPGA
cards attached to computing nodes. The FPGAs are directly
connected to 100 GbE switches and can communicate directly
through the network; we use the Xilinx UDP stack for this.
Preprocessing generates efficient memory allocation and par-
titioning maps and schedules executions to different FPGAs
to minimize communication and maximize processing overlap.
This framework achieves close to perfect speedup on a two-
FPGA setup compared to a one-FPGA implementation, and
can handle large examples that cannot fit on a single FPGA.

1. Introduction

High-performance cloud acceleration architectures
should have certain characteristics, including high
throughput capacity to process large amounts of data,
low processing latency, and the flexibility to keep pace with
evolving algorithms and applications. FPGAs are a good
choice for the acceleration of cloud computing applications
compared with other architectures such as CPUs, GPUs,
and ASICs [1].

In this research, we implement Garbled Circuits (GC)
across two FPGA nodes in the Open Cloud Testbed, which
supports users programming FPGAs that communicate di-
rectly through the network. GC is a privacy protocol that is
an example of Secure Function Evaluation. It can be applied
to large problems to ensure the privacy of user data [2].
GC processes its data in a non-streaming manner which
makes partitioning across multiple FPGA designs particu-
larly challenging. We built, designed, and implemented an
FPGA overlay to implement Garbled Circuits, which can

be downloaded to an FPGA. The design is an extension
of our previous work [3], [4], [5] and uses AES cores for
encryption. we demonstrate the framework, which includes
preprocessing, overlay architecture and partitioning, across
several FPGAs on several large problems. The contributions
of this research are:

1) Mapping garbled circuits applied to several applications
to a cloud platform with network-attached FPGAs,
namely the Open Cloud Testbed. The FPGAs commu-
nicate directly with each other via a network switch.

2) Careful assignment of data to on-chip and off-chip
memory for both local and network data. Memory
allocation has a large impact on overall performance
for big data applications.

3) Partitioning the workload and minimizing the com-
munication between FPGAs such that both FPGAs
process data in parallel. Overlapping communication
and computation such that communication is not the
bottleneck.

4) Demonstrating near perfect parallelization on two FP-
GAs in OCT. To do so requires careful memory man-
agement and partitioning that is aware of FPGA pro-
cessing constraints.

5) Mapping large examples that cannot fit on a single
FPGA using our framework while improving through-
put and achieving acceleration over an optimized soft-
ware implementation.

The rest of this paper is organized as follows. In Sec. 2,
we present background on OCT and GC. Sec. 3 focuses
on the tools and techniques used in the project which
include partitioning and memory/network allocation. Sec. 4
describes experiments and results, and Sec. 5 concludes with
a summary of findings and future work. This paper is based
on the first author’s PhD dissertation, where more details
are available [6].

2. Background

Open Cloud Testbed (OCT). OCT [7], [8] is a
research platform that offers FPGA-enhanced nodes to users
via the CloudLab framework. It provides the ability for
users to develop cloud-based applications that can leverage



FPGAs. CloudLab nodes are bare metal, meaning they are
provided without an operating system or any pre-installed
software or tools [9].

OCT has AMD/Xilinx Alveo U280 accelerator cards
that are directly connected to a 100 GbE network using
a 100 GbE data center switch. These network ports are
exposed to FPGA users. This enables direct FPGA-to-FPGA
communication which results in faster processing times by
eliminating the need for processor involvement, thus signif-
icantly reducing the latency associated with data transfer
between FPGAs. In addition, the U280s are also PCIe-
connected to a host processor. This connection is used to
transfer initial designs and data from the host to the FPGA,
and to retrieve results.

Secure Function Evaluation and Garbled Cir-
cuits. Secure Function Evaluation (SFE) guarantees data
privacy while preserving data processing functionality. SFE
allows one party (the analyst) to evaluate any desirable
function over private data from multiple owners. Only the
final results are revealed and no relevant party including
the analyst obtains the original raw data or information
about any intermediate data. SFE can thus enable the data
analyst to conduct computations on encrypted data without
jeopardizing the privacy of the users. The challenge is that
SFE comes with a large amount of additional computational
cost. Thus, algorithms executed using SFE usually take
much longer than the same computation conducted without
security guarantees. Two popular approaches to SFE are
Homomorphic Encryption (HE) and Garbled Circuits. In this
paper, we focus on GC, which originates from Andrew Yao’s
paper [10]. Through Yao’s protocol, two parties can jointly
evaluate a function over private inputs, and learn only the
final outcome of this computation. Yao’s GC protocol can be
extended to multiple-party SFE and attain the above prop-
erties for the secure evaluation of any function that can be
represented as a Boolean circuit. Several improvements over
the original Yao’s protocol have been proposed, that lead
to both computational and communication cost reductions.
These include point-and-permute [11], row reduction [12],
and Free-XOR [13] optimizations, all of which we imple-
ment in our design. Free-XOR in particular significantly
reduces the computational cost of garbled XOR gates: XOR
gates do not need to be encrypted and decrypted, as the
XOR output wire key is computed through an XOR of the
corresponding input keys.

Due to their high computational costs, there have been
efforts to accelerate both HE [14], [15], [16] and GC with
FPGAs. Previous work on accelerating GC has focused
on embedded systems [17], or add-ons to processors [18].
Recently researchers have achieved significant speedup by
implementing garbled circuits in ASIC hardware [19]. Our
research addresses a different point in the design space;
namely accelerating big data problems on FPGAs in the
cloud.

Garbled Circuit Application Examples. Through-
out the paper we apply GC to two examples: Page Rank (PR)
and K-means clustering (K-means). Page Rank is a popular
algorithm and quickly generates very large GC problems.

PR examples are denoted pr x y where x is the number
of data points and y is the number of iterations. We also
use the K-means clustering algorithm [20], [21], [22] as
an example where the problem size can be easily scaled.
Multiple iterations make the computation longer but do not
change the data movement in the system. In the rest of
the paper, K-means problems are denoted as kmeans i jxk,
where i is the number of datapoints, j is the number of
classes, and k is the number of iterations. Problem sizes are
shown in Table 1.

3. Tools for Multi-FPGA Designs

Figure 1: The Garbled Circuits Framework Workflow.

Partitioning and Preprocessing Workflow. The
complete workflow is shown in Fig. 1. We use the EMP-
tools [23] to generate a netlist, preprocess to determine layer
and memory information, partition using the FM algorithm,
and then apply a memory allocation policy to generate the
final files for computing on multiple FPGAs. Each of these
steps is described in more detail below.

Preprocessing and Partitioning. Preprocessing is
needed to extract the workloads, generate the initial memory
layout and translate the data addresses. For a multi-FPGA
implementation, the workloads for different FPGAs need to
be separated. Additionally, an estimate for the memory size
needed for data communicated over the network is needed to
ensure that there is adequate space in BRAM to store these
data. A garbled circuit problem is expressed as a Boolean
function that needs to be evaluated. We generate the netlist
to evaluate the function from the EMP toolkit [23]. This
netlist is processed to extract the Garbled AND gate and free
XOR gate operations, which are then organized into layers
with no data dependency within each layer. We process the
gate list in breadth-first order. Then the execution is grouped
into batches where each batch can fit on the FPGA. The
number of gates in a layer depends on the problem being
garbled, while the number of gates in a batch depends on
the hardware implementation. Our implementation realizes
8 garbled AND and 8 XOR gates. Our FPGA architecture
implements as many AND and XOR operations in parallel
as can be kept busy such that the memory throughput is
large enough to saturate these gates. Note that the bottleneck



TABLE 1: K-means Garbled Circuit Problem Size

# data
points

#
classes

# itera-
tions

Total operations Total wires # ops in one itera-
tion

# inputs

100 2 2 2687637 2694037 1343036 6528
100 4 2 5342175 5348575 2671580 6656
100 8 2 10652805 10659205 5325844 6912
1000 2 2 26627497 26691497 13312372 64128
1000 4 2 52950871 53014871 26472584 64256
1000 8 2 105595545 105659545 52750862 64512

(a) Vertical Cut

(b) Horizontal Cut

Figure 2: Horizontal vs. Vertical Cut Partitioning

for the implementation is memory throughput. More gates
could be implemented in hardware but they do not improve
latency.

Fig. 2 shows the different layers and assignment or
operations to logic gates for a small problem. The x-axis
is the layer number, and the y-axis is the gate ID. Yellow
circles denote input wire IDs, red squares denote AND
operations; and blue triangles denote XOR operations. This
figure illustrates the dependency of layers in the DAG;

within each layer, there are no dependencies by definition.
Based on garbled circuit AND and XOR operations, we can
map the operation onto the overlay architecture we built on
the FPGA for any problem. While generating the netlist,
we record statistics to keep track of variable lifetimes and
frequency of use to aid in memory allocation. This is done
in the same pass as layer and batch extraction.

Memory Allocation Policy. The bottleneck in this
and many other designs is getting the data to the pro-
cessing. Thus, choosing the correct type of memory and
memory allocation is important when optimizing system
performance. The AMD Alveo U280 includes several types
of memory, including BRAM and ultra RAM (URAM) on
chip but with different read latencies. In garbled circuits,
the netlist is represented by a large amount of monolithic,
contiguous memory that gets mapped to either BRAM
or URAM modules, and these modules are cascaded. To
meet timing requirements, FPGA implementations add extra
pipeline stages. BRAM read latency can be 4 or 5 cycles
and URAM can reach 8 to 10 cycles. However, even taking
this into consideration, the memory throughput of on-chip
memory is much larger than that of off-chip memory. It is
always recommended to store data that is used frequently
in on-chip memory if possible. The problem is finding an
efficient way to split data between off-chip memory (HBM
or DDR) and on-chip memory (BRAM or URAM) for better
memory throughput and system performance. Our goal is
to implement a memory allocation policy that has a short
processing time, does not require many passes over the
data, and improves performance. We studied two different
memory allocation algorithms, traversal and threshold. The
traversal algorithm traverses the graph in the order that
nodes are visited during processing. During that traversal,
the type of memory where wires are stored is determined.
We explored several different policies during traversal, in-
cluding (1) a greedy algorithm that stores wires in on-chip
memory if space is available, (2) only storing wires used
in the next layer, (3) only storing wires used in the next x
layers, and (4) store wires used in the next x layers or used
over 4 times.

The threshold algorithm combines the lifetime and the
frequency of use of wires into a single score, and assigns
the wires to on-chip memory according to this score. We set
the score of a wire to be frequency/lifetime, although
other scores can also be applied. We sort these scores and
choose a threshold τ . When we traverse the netlist, wires
with scores higher than τ are placed in on-chip memory



if space is available, while low-score wires (lower than τ )
are placed in off-chip memory. The optimal threshold τ is
difficult to determine as it depends on the size of the on-chip
memory and the number of wires, as well as the overlaps
of lifetimes of wires assigned to on-chip memory. If we
set the threshold too high, we assign too few wires to on-
chip memory, and some memory space is never used. If the
threshold is too small, we may run out of on-chip memory
space for more frequently used wires.

We compare results from using the traversal and thresh-
old algorithms. As problem sizes grow and the amount
of data stored in off-chip memory increases, the policy
used to choose between what goes in on-chip memory
and what goes in off-chip memory has increasing impor-
tance regarding overall application speed. For large amounts
of data, keeping data with many accesses and data with
short lifetimes in on-chip memory gives the best results.
In some cases, traversal provides the best results, but in
more cases, the best result is achieved using thresholding.
In addition, thresholding has a shorter computation time.
The best thresholding results are from using the top 50%
score. Therefore, we adopt the threshold policy for all our
experiments.

Network Address Allocation. To support problems
across multiple FPGAs, data to be transferred over the
network is stored in a separate BRAM module. The required
memory size is small compared to that of intermediate
wire values and should fit in the available BRAM. For our
implementation, we assume that data packets arrive in the
order in which they are sent, so preprocessing generates the
network data addresses based on the order of data arrivals,
and the addresses need not be sent along with the data
packet. Preprocessing records the data that needs to be sent
to the other FPGA in a map that keeps track of the addresses
and distinguishes them from intermediate values received
from the same FPGA.

Memory Layout. Data is initially sent to HBM from
the host. This includes any global inputs, such as those
shown in yellow circles in Figure 2. Global inputs are set
to a random 128 bit string. Internal wires and outputs are
initialized to zeros and overwritten as processing progresses.
Initial netlist memory records the information of the netlist
and how the FPGA should process these gates, where to
fetch the inputs, and where to write the outputs. Each gate is
represented by 16 bytes. The first two 4 byte fields represent
the two inputs, the third set of 4 bytes is the output address,
and the last 4 bytes identify which type of memory each I/O
uses. We use 2 bits as address prefix to denote the address
type. ‘00’ represents HBM; ‘01’ represents BRAM; ‘10’
represents URAM; ‘11’ represents BRAM for the network.
These are encoded in the last 4 bytes of representation, as is
the ID of the Garbled gate that an operation is assigned to.
Each batch requires 16x16 bytes in the memory layout. The
first 8x16 identifies the Garbled AND gates, the remaining
8x16 bytes identify the XOR gates.

Partitioning. We need to partition the application
among the different FPGAs; here we consider two FPGAs.
We assume the problem is represented as a graph where

the gates, in our case garbled AND and XOR gates, are the
nodes and the wires are the edges. We represent the input
netlist as a hypergraph where wires are connected to sets of
nodes. The goal is to partition this hypergraph into two parts
that minimize the cuts between the two, hence minimizing
the communications between the FPGAs. Ideally we can
hide the communication by overlapping it with computation,
but this is not always possible. System performance, which
we define as the longest run time on either FPGA, is affected
by memory behavior, workload partitioning, communication
overhead and problem size. Minimizing communication is
one aspect of this optimization problem. It is beneficial to
optimize partitioning as a min-cut problem subject to the
constraint that the partitions are reasonably balanced.

We consider several algorithms for min-cut, including
Kernighan-Lin (KL) [24] and the Fiduccia-Mattheyses (FM)
[25], and chose to adopt the FM algorithm, which results
in less communications and shorter runtime compared to a
baseline algorithm.

Initialization for the FM algorithm plays an important
role in the final partitioning result. A general FM algorithm
takes a random initialization. In this case, the partitioning
algorithm generates a vertical cut, which results in the
second FPGA always needing to wait for the results of
the first FPGA. In Fig. 2 a, the x axis denotes the layer
number and the y axis represents the input/output wires.
The direction from left to right is the execution order of
the gates. Concerning system performance, this partitioning
has no benefit over the one-FPGA design, except to save
resources on a single FPGA and to provide a larger memory
footprint. Instead, we need the horizontal cut from figure
b, so that gates from each layer are assigned to different
FPGAs. We customized the initialization for the FM al-
gorithm such that each layer is equally assigned to create
two initial partitions. We observe that among each layer,
there are strongly connected components about the gates’
inputs and outputs. Thus, When we initialize, cross-layer
dependency is also taken into account. If the two inputs
of a gate come from the same partition, this gate will also
be assigned to that partition. If the two inputs of the gate
come from different partitions, this gate will be assigned to
either partition based on a seed. That leaves room for the
FM algorithm to improve the final partitioning results. The
first layer is equally partitioned into two parts.

4. Experiments and Results

We provisioned the AMD Alveo U280 FPGAs in OCT
through CloudLab. For OS we used Ubuntu 18.04, and the
Xilinx XRT version 2021.2 was used. This system setup was
used for all of the experiments.

4.1. One FPGA Experimental Results versus Soft-
ware Implementation

An important consideration in performance is how mem-
ory is allocated. In all our designs, the processors transfer



TABLE 2: Application latency for Different BRAM Sizes with the Same Design

K-Means HBM + 50k BRAM (ms) HBM + 100k BRAM (ms) HBM + 200k BRAM (ms)
100 2x2 103 125 109
100 4x2 198 244 218
100 8x2 389 575 462
1000 2x2 1382 1603 1468
1000 4x2 3199 3338 3138

TABLE 3: Clock speeds as BRAM size increases

HBM + 50k
BRAM (ms)

HBM + 100k
BRAM (ms)

HBM + 200k
BRAM (ms)

266MHz 214 MHz 167 MHz

the initial information regarding the netlist and input values
to HBM. Intermediate values may be stored in one of several
different types of memory Including BRAM, URAM, and
HBM. Table 2 shows the overall latency in milliseconds
for different Garbled Circuits experiments when the size of
the problem and the size of the BRAM is varied. Here the
application being garbled is K-means which was chosen
because it can easily be scaled in size. For the smaller
sizes of 100 2x2 and 100 4x2, the data fits completely
into BRAM. The largest problem we report on, 1000 4x2,
has 1000 data points, with four classes and runs for two
iterations. It generates more than 26 million intermediate
keys. Clock speeds for these designs are shown in Table 3.
The drop in performance for larger BRAMs is a result of the
clock speed drop and no other effect. When a combination
of BRAM and HBM are required, the performance is more
complicated. As expected, larger amounts of BRAM result
in better overall performance, even with a clock speed drop,
due to the shorter latency to access data present in the
BRAM. The clock speed drop for larger amounts of BRAM
in conjunction with HBM is due to routing congestion.
When 50K of BRAM is used, the FPGA design and BRAM
are placed close to the HBM. The design with 50K of
BRAM uses less than 10% of the available BRAM, while
the design with 400k uses 70%. The FPGA design remains
the same and consumes fewer than 10% of other resources.
The distribution of BRAM across the chip results in routing
congestion and a slower clock rate.

Table 4 compares performance among Garbled Circuits
Designs of K-means that use HBM alone, HBM plus BRAM
and HBM plus BRAM plus URAM. All results are given in
milliseconds of total latency. When BRAM and URAM are
included, 100 KBytes of URAM and 100 KBytes of BRAM
were used. Our experiments show that HBM plus BRAM
delivers the best results. Adding URAM did not improve
performance. While URAM is an excellent resource, it is not
effective to use in conjunction with both HBM and BRAM
for our garbled circuit hardware design. That is mainly due
to the fact that a large size of URAM leads to a significant
clock frequency drop.

For the one FPGA implementation, judicial choice of
memory has a big effect on performance. Using over 75%
or higher BRAM or using BRAM together with a big

chunk of URAM can cause a frequency drop to less than
100MHz. Larger BRAM benefits the system run time simply
by providing more memory throughput as shown in Ta-
ble 2. However, even with improving the memory layout,
the software implementation provided by the EMP-toolkit
(written in C++), performs better for large examples. There
are several reasons for this. The most important is that
AES encryption and decryption are supported in hardware
for microprocessors from Intel [26] and Advanced Micro
Devices. They provide AVX and AESNI instruction exten-
sions. The CPU generally runs at over 2.5 Ghz, compared to
the FPGA frequency running at 200 Mhz. It is impressive
that we are able to achieve speeds close to the software
speed given this divergence. However, it is difficult for the
FPGA to exceed the CPU processing speed unless we can
improve the memory bandwidth for off-chip memory to
keep more gates busy. Without improved bandwidth, the
parallelism available on the FPGA cannot compensate for
the disadvantage of the clock frequency. When the problem
size gets large, the number of wires can reach tens of
millions. Even with reuse, the number of wires stored in
BRAM is much smaller than the total number of wires. For
a typical garbled circuit problem, the first several layers are
extremely large compared to later layers, and the BRAM
can store only a portion of wires even if those wires will
be used in the next layer. A large number of wires still get
assigned to off-chip memory. The system performance will
thus be affected by off-chip memory behavior. To improve
performance, we looked at more than one FPGA which both
increases parallel processing and allows us to access more
memory in parallel.

4.2. Mapping to Two FPGAs

For the experiments that make use of two FPGAs, the
page rank and k-means applications that were tested are
listed in Table 5. The applications are different implementa-
tions secured by Garbled Circuits and the size of the problem
is varied. We record the total number of gates and the
communication requests from each FPGA. Since each input
wire is 128 bits, the request here denotes how many pieces
of 128 bit data need to be transferred between FPGAs.

We run the applications on two nodes of OCT, each
node equipped with one FPGA. We run host python
code to move data to FPGA off-chip memory, set up
the IP address port number, and populate the hardware
socket tables. We pass the top-level kernel parameters to
the FPGA including the hardware mode, destination id,
time between packets to send, etc. Finally, we pass the



TABLE 4: Latency of Designs with different types of memory

K-Means EMP-toolkit(ms) HBM,BRAM,URAM(ms) HBM(ms) HBM,BRAM(ms)
100 2x2 189 178 181 109
100 4x2 351 356 361 218
100 8x2 651 706 724 462
1000 2x2 1512 2053 1806 1468
1000 4x2 2900 4184 3543 3138

TABLE 5: Amount of Communication Between FPGAs

Application Total operations Requests from
FPGA1

Requests from
FPGA0

pr 10 1 65528 0 0
pr 10 5 327640 0 0
pr 100 1 1209825 0 0
kmeans 20 4 555,036 34 37
kmeans 50 4 1,347,370 34 37
kmeans 100 4 2,671,580 34 37
kmeans 100 8 5,235,844 128 126
kmeans 1000 2 13,312,374 1 16
kmeans 1000 4 26,472,584 34 37

start signals to two FPGAs with the Dask [27] scheduler and
workers. The hardware will launch the hardware handshak-
ing first then start to process the netlist. All data transfer
during runtime between FPGAs makes use of the direct
connection. When the entire netlist has been processed, the
total number of clock cycles is recorded for each FPGA and
returned to the host. We rely on python support from the
Xilinx network examples to set up the UDP network stack
parameters, and we directly record the hardware timing. The
hardware timingrecords the time from the moment that the
two FPGAs start to execute the netlist instructions until the
end of the computation.

pr_10_1

pr_10_5
pr_100_1

kmeans_20_4

kmeans_50_4

kmeans_100_4

kmeans_100_8

kmeans_1000_2

kmeans_1000_4

1.8

1.84

1.88

1.92

1.96

2

Sp
ee
d-
up

page rank

k-means

Figure 3: Two-FPGA system speed up over one FPGA
implementation

Table 6 shows the run time for two FPGAs, and Fig. 3
shows the speedup of two FPGAs over one FPGA running
the same design. This was calculated by dividing the runtime
of a single FPGA by the slowest runtime for the two FPGAs.
Table 7 compares the two FPGA results to the software
implementation, with FPGA frequency at 200 Mhz. With the
two FPGA system, we achieve at least 1.8x speedup over
the single FPGA system, and acceleration of around 1.4
times over software. To achieve these results, we ensured
that partitions were balanced by constraining the size of
each partition to be larger than 40% and smaller than 60%
of the total operations. As the problem size gets larger, the

partitioner nearly equally assigns the operations to each of
the two FPGAs. The page rank examples can be perfectly
assigned to two FPGAs without any network overhead, thus
the speedup is approximately 2. If we examine the kmeans
examples with network costs, the speedup is around 1.9x to
2x compared to the one FPGA implementation.

For larger examples, the partitioning algorithm optimizes
and minimizes the network cost. Also, the communication
cost is overlapped with computations, which enables us to
achieve near perfect speedup with a two-FPGA system in a
cloud computing environment.

We also explored one extremely large example that does
not fit on a single FPGA because the netlist information does
not fit in off-chip memory if we allow space for intermediate
data as well. The largest example netlist is roughly 3.5 GB,
so we have to split it across two FPGAs. After partitioning,
the netlist in FPGA0 takes a total of 7 banks of memory
and the netlist in FPGA1 takes 6 banks, where the size of
each bank is 256 MB. We are able to run the example suc-
cessfully on this two-FPGA system with approximately 1.7x
speedup over the software implementation. Multiple FPGA
implementations are promising approaches to garbling large
problems; we intend to continue to expand on this area of
research by considering more than two FPGAs.

5. Conclusions and Future Work

We have presented a heterogeneous reconfigurable com-
puting framework using an FPGA overlay architecture for a
non-streaming application, specifically the garbled circuits
problem. The complete workflow presented here ensures the
user can implement and accelerate their application without
knowledge of either hardware development or the secure
function evaluation protocol. Once the base processing el-
ements are available in the overlay, new problems can be
mapped to the same overlay without reprogramming. The



TABLE 6: Comparison of runtime (in clock cycles) between one-FPGA and two-FPGA runs, with achieved speedup.

Application One FPGA run time FPGA0 run time FPGA1 run time Speed-up
pr 10 1 1,138,453 588,303 589,453 1.93
pr 10 5 5,589,602 2,823,857 2,823,026 1.98
pr 100 1 21,335,125 10,688,206 10,673,430 1.99
kmeans 20 4 9,513,658 5,204,968 4,665,416 1.83
kmeans 50 4 23,360,348 12,354,741 11,664,804 1.89
kmeans 100 4 47,604,557 24,284,454 23,295,225 1.96
kmeans 100 8 94,796,337 48,100,878 46,687,401 1.97
kmeans 1000 2 238,735,325 122,240,085 116,439,651 1.95
kmeans 1000 4 469,211,537 238,795,607 232,218,775 1.96
kmeans 10000 2 N/A 1,204,340,391 1,150,350,240 N/A

TABLE 7: Run time of two-FPGA Design vs Software(s)

Application Software run time 2-FPGA run time Speed-up
pr 10 1 0.016 0.0023 6.90
pr 10 5 0.070 0.011 6.10
kmeans 20 4 0.039 0.021 1.86
kmeans 50 4 0.091 0.050 1.83
kmeans 100 4 0.18 0.097 1.86
kmeans 100 8 0.37 0.193 1.92
kmeans 1000 2 0.80 0.49 1.63
kmeans 1000 4 1.75 0.95 1.84
kmeans 10000 2 8.13 4.82 1.69

preprocessing workflow includes a problem parser, layer
and batch generation, memory allocation policy, and initial
memory layout generation tools. The framework is con-
figurable for different garbled circuit problems and only
the initial memory content, consisting of wire addresses
and hardware gate mapping, needs to be regenerated for a
different problem. These tools help explore the parallelism
for any Garbled Circuit problem. Assuming an overlay-
based architecture, the same tools and approaches presented
here can be applied to other problems. This includes layer
and batch extraction as well as partitioning. We applied FM
with customized initialization to our problem to optimize
partitioning to more than one FPGA.

Our framework is implemented in OCT, which allows
users to program FPGAs that are directly connected to the
network. We integrate our design with the Xilinx UDP
network stack to support direct FPGA-to-FPGA communi-
cation through the network while bypassing the processor.
We are able to achieve near-perfect acceleration on two
FPGAs for the GC example. In addition, we are able to
run examples that are too large to be mapped to a single
FPGA.

In the future, we plan to investigate mapping garbled
circuits to more than two FPGAs. This will involve parti-
tioning into an arbitrary number of partitions. We also plan
to continue to investigate the different types of memories
available and how to best make use of them. In this and
many other big data applications, the challenge is getting
the data to the processing. We have space for many more
garbling gates in our overlay, but we are not able to keep
them supplied with data, so they would remain idle if they
were instantiated. We specifically plan to investigate how to

improve the memory read bandwidth to increase parallelism.
Network efficiency could also be improved. We use 128

bits for each piece of intermediate data, and the network
state machine sends 128 bits as soon as the bits are gen-
erated. However, it is preferable to concatenate data from
several memory addresses. This saves network overhead by
removing unnecessary padding and headers, so as to increase
the network throughput. The disadvantage is that the con-
catenation makes the hardware design more complicated.
Additionally, if the problem size is not large, concatenation
may make the system run slower. Nevertheless, the effi-
ciency of packing multiple intermediate values should be
important for scenarios where the communication workload
is heavy.
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