Computer Science, NDSU
North Dakota State University

minakshi.arya@ndsu.edu

Assessing Generative Adversarial Networks for

Advanced Deepfake Creation Using Network
Analysis

Minakshi Arya Shubhavi Arya
Indiana University
Bloomington, USA

Fargo, USA :
aryas@iu.edu

Abstract— GAN architecture is comprised of a
generator model for outputting new plausible
synthetic images and a discriminator model that
classifies images as authentic (from the dataset) or
fake (generated). First, the generator model fools the
discriminator model and updates itself via the
discriminator model. Then, the discriminator model
updates itself directly. Deepfake GAN is applied to
image generation, high-resolution image generation,
3D object generation, age estimation, cartoon
character / animation / sketches generation, natural
language processing, video generation, data
augmentation, and detection. However, there are
different models to do different tasks. Therefore, we
want a combination of the Deepfake GAN models
which can carry out the tasks of all the categories.
After analysis of the different studies, we concluded
that AttGAN and Pix2Pix models are the top models
with highest degree centrality and this combination
can generate deepfakes in all the categories.

Keywords— Deepfake, GAN, Image Generation,
High-Resolution image generation, 3D object
generation, Age Estimation, Cartoon
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I. INTRODUCTION

Fake content has a harmful impact on its target
audience by spreading misinformation and
manipulation through various mediums, such as
videos, photos, news, reviews, and social media
likes [1]. Deepfake-based multimedia content can
cause distress, spread hatred, damage reputations,
and erode trust in digital content. It can also lead to
financial fraud, false allegations, and manipulation
of democratic discourse, elections, and public
opinion, posing a threat to national security and
discouraging international ~ relations and
journalism..

Generative Adversarial Networks (GANSs),
introduced in 2014 [2], are a type of deep neural
network that can generate and synthesize deepfake
images [3], audio, video, and time series data for
medical data and stock market forecasting, visual
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similarity recommendation [4] and statistical
inference in designing clothes and shoes by
analyzing photos of specific classes, text-to-image
synthesis, and image super-resolution applications

[5].

GAN models consist of two neural networks: a
generator that produces solutions from a random
dataset and a discriminator that distinguishes
between real and fake data. While the generator
network generates new data samples, the
discriminator network acts as a classifier that
distinguishes whether the data given as input is real
or fake.

Deepfakes via GANs have gained importance
due to their synthetic data generation capabilities
and the benefits of representations in various
applications. GANs have been used in a variety of
applications as a tool for generating deepfakes,
including image and video generation, natural
language processing, data augmentation, and
detection, and have proven to be a powerful tool for
producing and distinguishing real data from
synthetic data.

Multimedia  creation and  manipulation
techniques have a high degree of realism [6].
Generative deep learning algorithms have
progressed to a point where it is difficult to
distinguish between real and fake [7]. This opens
the door to applications in different fields such as
creative arts, advertising, film production, and
video games. It also poses enormous security
threats. Software packages like Zao, Deepfakes
web, RefaceAl, MyHeritage, DeepFaceLab, Deep
Art, FaceSwap, and FaceApp are freely available
on the web, allowing any individual without special
skills to create very realistic fake images and videos
[7]. These can be used for various malicious
purposes, such as committing fraud, discrediting,
blackmailing, and manipulating public opinion
during elections [7].



II. METHODOLOGY

A systematic review was conducted to explore the various ways
in which Generative Adversarial Networks (GANs) have been
utilized to generate deepfakes. This involved surveying
published research papers indexed in Academic Search Premier
(EBSCO), Web of Science Core Collection, IEEE Xplore, and
Scopus databases for Computer Science, with the inclusion
criteria being papers published between 2017 and 2022, in
English language, and focused on academic journals. The search
yielded 318 papers from EBSCOhost Academic Search Premier
(EBSCO), 109 papers from Scopus, 54 papers from Science
direct, 739 papers from IEEE Xplore, and 242 papers from Web
of Science. After removing duplicates and applying article
inclusion and exclusion criteria, 189 papers were left. The study
included papers on deepfakes involving text, images, audio, and
videos but excluded medical-related deepfake papers. This study
is the first of its kind to use network analysis to gain a deeper
understanding of the use of GANSs in generating deepfakes. The
study provides an overview of deepfakes via Generative
Adversarial Network (GAN), reviews the applications of
deepfakes in specific categories, calculates the degree
centralities of each model, and provides a network for each
category. Different GAN models were found to have been
developed for various categories of applications. Finally, a
combination model of GAN based on degree centralities was

presented, which meets the functionality requirements of all
categories. This analysis gives an overview of the distribution of
GAN models across different categories and highlights the most
versatile models that can be used across a wide range of
applications. The networks were carried on Mac computer
running macOS Catalina equipped with 2.9 GHz dual-core Intel
Core i7 processor, the 16 GB 1600MHz of DDR3 RAM, 750
GB SATA disk and the Intel HD Graphics 4000 with 1336 MG
graphics memory.

III. RESULTS AND DISCUSSIONS

Generative Adversarial Networks (GANSs) used for deep fakes
have achieved unprecedented success in image generation, high-
resolution image generation, 3D object generation, age
estimation, cartoon character /animation/sketches generation,
natural language processing, video generation, data
augmentation, and detection. So, the papers are divided into
various categories: Image generation, High-resolution image
generation, 3D object generation, Age estimation, Cartoon
character/ animation/ sketches generation, Natural language
processing, Video generation, Data augmentation, Detection.
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Fig. 1. Degree Centralities

Figure 1. shows the degree centralities of top models. AttGAN,
Pix2pix and StarGAN has the highest degree centralities
followed by CycleGAN, CGAN, SRGAN. CNN, DCGAN,
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WGAN-GP, LSTM, and ResNet have lower degree centralities,
with ResNet having the lowest value.



The Table 1 provides information on the frequency of GAN
models used in different categories of deepfakes and their degree
centrality. To perform a network analysis, we can represent each
GAN model as a node and draw edges between nodes that are
used in the same category of deepfakes. Using this approach, we
can identify the GAN models that are most central to the
network, as they have the highest number of connections to other
models. In this table, AttGAN, Pix2pix, and Star GAN have the
highest degree centrality, indicating that they are the most
connected GAN models in the network. This suggests that these
models are highly versatile and can be used across multiple

categories of deepfakes. Furthermore, the table shows that
AttGAN and Pix2pix have the highest degree centrality among
all the GAN models, which suggests that a combination of these
two models can be used to generate deepfakes across all the
specified categories. This combination model would likely
produce high-quality deepfakes and meet the specific
requirements of a wide range of tasks. However, it is important
to note that the effectiveness of any approach will depend on the
specific requirements of the task at hand and may vary based on
the dataset, the quality of the input data, and other factor.

TABLE 1. THE MODELS WHICH ARE USED IN MORE THAN THREE DIFFERENT CATEGORIES AND THEIR DEGREE CENTRALITIES
Model Categories Frequency of categories Degree Centrality
AttGAN 1,4,6,7,8,9 6 0.01056338
Pix2pix 1,2,3,5,8,9 6 0.01056338
Star GAN 1,3,5,6,8,9 6 0.01056338
Cycle GAN 1,3,4,5,7.8 6 0.00880282
CGAN 1,3,5,8,9 5 0.00880282
SRGAN 1,2,4,8,9 5 0.00880282
CNN 1,4,8,9 4 0.00704225
DCGAN 1,5,8,9 4 0.00704225
Wasserstein GAN (WGAN) 2,5,8,9 4 0.00704225
LSTM 4,5,6,9 4 0.00704225
ResNet 4,6,7,8 4 0.00352113
Bicubic 2,79 3 0.00528169
LR 2,49 3 0.00528169
VDSR 2,8,9 3 0.00528169
LapSRN 2,89 3 0.00528169
ICGAN 1,5,8 3 0.00528169
VAE 1,8,9 3 0.00528169
SeqGAN 4,6,9 3 0.00528169
SVM 48,9 3 0.00528169
PCA 3,8,9 3 0.00352113
BEGAN 1,8,9 3 0.00352113




Fig. 2. The Models which are used in more than three different categories

Figure 2 is a network graph that displays the top models used
in more than two categories. The graph consists of nodes
(represented by circles) and edges (represented by lines
connecting the nodes). The nodes represent the models and are
labeled accordingly. The size of the nodes varies based on the
number of categories the model is used in. Models used in more
categories have larger nodes. The edges represent the
connections between the models based on their co-occurrence in
categories. The thickness of the edges varies based on the
frequency of co-occurrence. In this network graph, AttGAN,

Pix2pix, StarGAN, and CycleGAN are represented by larger
nodes, indicating that they are used in six categories and have
the highest degree centralities. These models are connected by
thick edges, indicating their high co-occurrence in categories.
CGAN and SRGAN are used in five categories, while CNN,
DCGAN, WGAN, LSTM, and ResNet are used in four
categories and are also represented in the graph with smaller
nodes and thinner edges. The remaining models are used in three
categories.
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Fig. 3. Network of GAN models for image generation

Figure 3 shows all the GAN models used for image
generation. This is fruchterman reingold layout depiction of the
image generation models. StarGAN was used in maximum

numbers of papers followed by DCGAN, CNN, CGAN and
CycleGAN. These were followed by AttGAN, PGGAN,
Pix2Pix, STGAN, StyleGAN.
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Fig. 4. (a) Network of GAN models for High resolution and image generation Fig 4 (b) Network of GAN models for Cartoon Character/Animation/sketches

generation

Figure 4 (a) shows all the GAN models for High resolution
and image generation. This is kamada kawai layout depiction of
the for high resolution and image generation models. SRGAN
was used in maximum number of papers followed by ESRGAN,
SRdensenet, VDSR, and Bicubic.
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Figure 4 (b) shows all the GAN models for Cartoon
Character/Animation/sketches generation. This is shell layout
depiction of the Cartoon Character/Animation/sketches
generation models. CycleGAN, DCGAN were used in
maximum number of papers.
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Fig. 5. (a) Network of GAN models for 3D Object Generation

Figure 5. (a) shows all the GAN models for 3D Object
Generation. This is kamada kawai layout depiction of the 3D
Object Generation models. Pix2pix was used in maximum
number of papers.
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Fig. 5. (b) Network of GAN models for Age estimation

Figure 5. (b) shows all the GAN models for 3D Age
estimation. This is random layout depiction of the Age
estimation models. AttGAN, CNN, CycleGAN and SRGAN
were used in maximum number of papers.
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Fig. 6. (a) Network of GAN models for Natural Language processing

Figure 6. (a) shows all the GAN models for Natural
Language processing. This is circular layout depiction of the
Natural Language processing models.
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Fig. 6. (b) Network of GAN models for Video generation

Figure 6 (b) shows all the GAN models for video generation.
This is circular layout depiction of the video generation models.
MoCoGAN was used in maximum number of papers.
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Fig. 7. (a) Network of GAN models for Detection

Figure 7 (a) shows all the GAN models for Detection. This
is spring layout depiction of the Detection models. DCGAN, and
StyleGAN were followed by CNN and PGGAN.

Figure 7. (b) shows all the GAN models for Data
Augmentation. This is fruchterman reingold layout depiction of

Data Augmentation models
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Fig 7. (b) Network of GAN models for Data Augmentation

the Data Augmentation. models. DCGAN was used in
maximum number of papers followed by WGAN-GP, CGAN.
These were followed by ALI, CatGAN, CNN, CycleGAN,
LSGAN, SMOTE, SRGAN, and VGG.

All Categories models

Fig. 8. Network of GAN models for All Categories Models

Figure 8 shows all the GAN models for all categories. This
is fruchterman reingold layout depiction of the for all categories
models.

IV. CONCLUSION

Generative Adversarial Networks (GANs) are a potent tool
for creating deepfakes with applications across various
industries like advertising, film production, video games, and
creative arts. However, these deepfakes can also pose significant
security threats like election manipulation, fraud, and blackmail.
While GANs have been used for tasks like image and high-
resolution image generation, 3D object generation, age
estimation, natural language processing, video generation, data
augmentation, and detection, each task requires a different
model for optimal performance. Hence, we aimed to identify a
single combination model of GANs that can perform all
categories of deepfake generation tasks. In this study, we

conducted a systematic review of various GAN models and
found that AttGAN and Pix2Pix had the highest degree
centralities. Based on these findings, we proposed a combination
model of GANSs that can carry out all categories of deepfake
generation tasks. This study sheds light on GAN model
development for deepfake generation and emphasizes
responsible use and regulation of this technology to prevent
misuse and emphasizes the need for continued research and
development in this area.

However, it's worth noting that creating a single "one-size-
fits-all" GAN model that can perform all tasks optimally may
not be feasible, as different tasks require different features and
training data. It may be more practical to develop specialized
models for each task or a framework for integrating multiple
models as needed.
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