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Abstract² GAN architecture is comprised of a 
generator model for outputting new plausible 
synthetic images and a discriminator model that 
classifies images as authentic (from the dataset) or 
fake (generated). First, the generator model fools the 
discriminator model and updates itself via the 
discriminator model. Then, the discriminator model 
updates itself directly. Deepfake GAN is applied to 
image generation, high-resolution image generation, 
3D object generation, age estimation, cartoon 
character / animation / sketches generation, natural 
language processing, video generation, data 
augmentation, and detection. However, there are 
different models to do different tasks. Therefore, we 
want a combination of the Deepfake GAN models 
which can carry out the tasks of all the categories. 
After analysis of the different studies, we concluded 
that AttGAN and Pix2Pix models are the top models 
with highest degree centrality and this combination 
can generate deepfakes in all the categories. 

Keywords² Deepfake, GAN, Image Generation, 
High-Resolution image generation, 3D object 
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I. INTRODUCTION  
Fake content has a harmful impact on its target 

audience by spreading misinformation and 
manipulation through various mediums, such as 
videos, photos, news, reviews, and social media 
likes [1]. Deepfake-based multimedia content can 
cause distress, spread hatred, damage reputations, 
and erode trust in digital content. It can also lead to 
financial fraud, false allegations, and manipulation 
of democratic discourse, elections, and public 
opinion, posing a threat to national security and 
discouraging international relations and 
journalism.. 

Generative Adversarial Networks (GANs), 
introduced in 2014 [2], are a type of deep neural 
network that can generate and synthesize deepfake 
images [3], audio, video, and time series data for 
medical data and stock market forecasting, visual 

similarity recommendation [4] and statistical 
inference in designing clothes and shoes by 
analyzing photos of specific classes, text-to-image 
synthesis, and image super-resolution applications 
[5].  

GAN models consist of two neural networks: a 
generator that produces solutions from a random 
dataset and a discriminator that distinguishes 
between real and fake data. While the generator 
network generates new data samples, the 
discriminator network acts as a classifier that 
distinguishes whether the data given as input is real 
or fake.  

Deepfakes via GANs have gained importance 
due to their synthetic data generation capabilities 
and the benefits of representations in various 
applications. GANs have been used in a variety of 
applications as a tool for generating deepfakes, 
including image and video generation, natural 
language processing, data augmentation, and 
detection, and have proven to be a powerful tool for 
producing and distinguishing real data from 
synthetic data. 

Multimedia creation and manipulation 
techniques have a high degree of realism [6]. 
Generative deep learning algorithms have 
progressed to a point where it is difficult to 
distinguish between real and fake [7]. This opens 
the door to applications in different fields such as 
creative arts, advertising, film production, and 
video games. It also poses enormous security 
threats. Software packages like Zao, Deepfakes 
web, RefaceAI, MyHeritage, DeepFaceLab, Deep 
Art, FaceSwap, and FaceApp are freely available 
on the web, allowing any individual without special 
skills to create very realistic fake images and videos 
[7]. These can be used for various malicious 
purposes, such as committing fraud, discrediting, 
blackmailing, and manipulating public opinion 
during elections [7]. 



 
 

II. METHODOLOGY 
A systematic review was conducted to explore the various ways 
in which Generative Adversarial Networks (GANs) have been 
utilized to generate deepfakes. This involved surveying 
published research papers indexed in Academic Search Premier 
(EBSCO), Web of Science Core Collection, IEEE Xplore, and 
Scopus databases for Computer Science, with the inclusion 
criteria being papers published between 2017 and 2022, in 
English language, and focused on academic journals. The search 
yielded 318 papers from EBSCOhost Academic Search Premier 
(EBSCO), 109 papers from Scopus, 54 papers from Science 
direct, 739 papers from IEEE Xplore, and 242 papers from Web 
of Science. After removing duplicates and applying article 
inclusion and exclusion criteria, 189 papers were left. The study 
included papers on deepfakes involving text, images, audio, and 
videos but excluded medical-related deepfake papers. This study 
is the first of its kind to use network analysis to gain a deeper 
understanding of the use of GANs in generating deepfakes. The 
study provides an overview of deepfakes via Generative 
Adversarial Network (GAN), reviews the applications of 
deepfakes in specific categories, calculates the degree 
centralities of each model, and provides a network for each 
category. Different GAN models were found to have been 
developed for various categories of applications. Finally, a 
combination model of GAN based on degree centralities was 

presented, which meets the functionality requirements of all 
categories. This analysis gives an overview of the distribution of 
GAN models across different categories and highlights the most 
versatile models that can be used across a wide range of 
applications. The networks were carried on Mac computer 
running macOS Catalina equipped with 2.9 GHz dual-core Intel 
Core i7 processor, the 16 GB  1600MHz of DDR3 RAM, 750 
GB SATA disk and the Intel HD Graphics 4000 with 1336 MG 
graphics memory.  
 

III. RESULTS AND DISCUSSIONS 
Generative Adversarial Networks (GANs) used for deep fakes 
have achieved unprecedented success in image generation, high-
resolution image generation, 3D object generation, age 
estimation, cartoon character /animation/sketches generation, 
natural language processing, video generation, data 
augmentation, and detection. So, the papers are divided into 
various categories: Image generation, High-resolution image 
generation, 3D object generation, Age estimation, Cartoon 
character/ animation/ sketches generation, Natural language 
processing, Video generation, Data augmentation, Detection.   

 
Fig. 1. Degree Centralities                                                                                                                                                         

Figure 1. shows the degree centralities of top models. AttGAN, 
Pix2pix and StarGAN has the highest degree centralities 
followed by  CycleGAN, CGAN, SRGAN. CNN, DCGAN, 

WGAN-GP, LSTM, and ResNet have lower degree centralities, 
with ResNet having the lowest value.  

DEGREE CENTRALITIES
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The Table 1 provides information on the frequency of GAN 
models used in different categories of deepfakes and their degree 
centrality. To perform a network analysis, we can represent each 
GAN model as a node and draw edges between nodes that are 
used in the same category of deepfakes. Using this approach, we 
can identify the GAN models that are most central to the 
network, as they have the highest number of connections to other 
models. In this table, AttGAN, Pix2pix, and Star GAN have the 
highest degree centrality, indicating that they are the most 
connected GAN models in the network. This suggests that these 
models are highly versatile and can be used across multiple 

categories of deepfakes. Furthermore, the table shows that 
AttGAN and Pix2pix have the highest degree centrality among 
all the GAN models, which suggests that a combination of these 
two models can be used to generate deepfakes across all the 
specified categories. This combination model would likely 
produce high-quality deepfakes and meet the specific 
requirements of a wide range of tasks. However, it is important 
to note that the effectiveness of any approach will depend on the 
specific requirements of the task at hand and may vary based on 
the dataset, the quality of the input data, and other factor. 

 

 
TABLE I.  THE MODELS WHICH ARE USED IN MORE THAN THREE DIFFERENT CATEGORIES AND THEIR DEGREE CENTRALITIES  
 

Model Categories Frequency of categories Degree Centrality 
AttGAN 1,4,6,7,8,9 6 0.01056338 

Pix2pix 1,2,3,5,8,9 6 0.01056338 

Star GAN 1,3,5,6,8,9 6 0.01056338 

Cycle GAN 1,3,4,5,7,8 6 0.00880282 

CGAN 1,3,5,8,9 5 0.00880282 

SRGAN 1,2,4,8,9 5 0.00880282 

CNN 1,4,8,9 4 0.00704225 

DCGAN 1,5,8,9 4 0.00704225 

Wasserstein GAN (WGAN) 2,5,8,9 4 0.00704225 

LSTM 4,5,6,9 4 0.00704225 

ResNet 4,6,7,8 4 0.00352113 

Bicubic 2,7,9 3 0.00528169 

LR 2,4,9 3 0.00528169 

VDSR 2,8,9 3 0.00528169 

LapSRN 2,8,9 3 0.00528169 

ICGAN 1,5,8 3 0.00528169 

VAE 1,8,9 3 0.00528169 

SeqGAN 4,6,9 3 0.00528169 

SVM 4,8,9 3 0.00528169 

PCA 3,8,9 3 0.00352113 

BEGAN 1,8,9 3 0.00352113 
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Fig. 2. The Models which are used in more than three different categories 

Figure 2 is a network graph that displays the top models used 
in more than two categories. The graph consists of nodes 
(represented by circles) and edges (represented by lines 
connecting the nodes). The nodes represent the models and are 
labeled accordingly. The size of the nodes varies based on the 
number of categories the model is used in. Models used in more 
categories have larger nodes. The edges represent the 
connections between the models based on their co-occurrence in 
categories. The thickness of the edges varies based on the 
frequency of co-occurrence. In this network graph, AttGAN, 

Pix2pix, StarGAN, and CycleGAN are represented by larger 
nodes, indicating that they are used in six categories and have 
the highest degree centralities. These models are connected by 
thick edges, indicating their high co-occurrence in categories. 
CGAN and SRGAN are used in five categories, while CNN, 
DCGAN, WGAN, LSTM, and ResNet are used in four 
categories and are also represented in the graph with smaller 
nodes and thinner edges. The remaining models are used in three 
categories. 

 

 

Fig. 3. Network of GAN models for image generation  

Figure 3 shows all the GAN models used for image 
generation. This is fruchterman reingold layout depiction of the 
image generation models. StarGAN was used in maximum 

numbers of papers followed by DCGAN, CNN, CGAN and 
CycleGAN. These were followed by AttGAN, PGGAN, 
Pix2Pix, STGAN, StyleGAN. 
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Fig. 4. (a) Network of GAN models for High resolution and image generation   Fig 4 (b) Network of GAN models for Cartoon Character/Animation/sketches 

generation  
  

Figure 4 (a) shows all the GAN models for High resolution 
and image generation. This is kamada kawai layout depiction of 
the for high resolution and image generation models. SRGAN 
was used in maximum number of papers followed by ESRGAN, 
SRdensenet, VDSR, and Bicubic. 

 Figure 4 (b)  shows all the GAN models for Cartoon 
Character/Animation/sketches generation. This is shell layout 
depiction of the Cartoon Character/Animation/sketches 
generation models. CycleGAN, DCGAN were used in 
maximum number of papers. 

 

 
 
 
 

Fig. 5. (a) Network of GAN models for 3D Object Generation                                 Fig. 5. (b) Network of GAN models for Age estimation 
 

Figure 5. (a) shows all the GAN models for 3D Object 
Generation. This is kamada kawai layout depiction of the 3D 
Object Generation models. Pix2pix was used in maximum 
number of papers. 

 

Figure 5. (b) shows all the GAN models for 3D Age 
estimation. This is random layout depiction of the Age 
estimation models. AttGAN, CNN, CycleGAN and SRGAN 
were used in maximum number of papers. 

  
Fig. 6. (a) Network of GAN models for Natural Language processing                          Fig. 6. (b) Network of GAN models for Video generation   

Figure 6. (a)  shows all the GAN models for Natural 
Language processing. This is circular layout depiction of the 
Natural Language processing models.             

Figure 6 (b) shows all the GAN models for video generation. 
This is circular layout depiction of the video generation models. 
MoCoGAN was used in maximum number of papers.
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Fig. 7. (a) Network of GAN models for Detection                                               Fig 7. (b) Network of GAN models for Data Augmentation 

Figure 7 (a) shows all the GAN models for Detection. This 
is spring layout depiction of the Detection models. DCGAN, and 
StyleGAN were followed  by CNN and PGGAN. 

Figure 7. (b) shows all the GAN models for Data 
Augmentation. This is fruchterman reingold layout depiction of 

 the Data Augmentation. models. DCGAN was used in 
maximum number  of papers followed by WGAN-GP, CGAN. 
These were followed by ALI, CatGAN, CNN, CycleGAN, 
LSGAN, SMOTE, SRGAN, and  VGG..  

 
 
 
 
 

.

 

 

Fig. 8. Network of GAN models for All Categories Models 

Figure 8 shows all the GAN models for all categories. This 
is fruchterman reingold layout depiction of the for all categories 
models. 

IV. CONCLUSION 
Generative Adversarial Networks (GANs) are a potent tool 

for creating deepfakes with applications across various 
industries like advertising, film production, video games, and 
creative arts. However, these deepfakes can also pose significant 
security threats like election manipulation, fraud, and blackmail. 
While GANs have been used for tasks like image and high-
resolution image generation, 3D object generation, age 
estimation, natural language processing, video generation, data 
augmentation, and detection, each task requires a different 
model for optimal performance. Hence, we aimed to identify a 
single combination model of GANs that can perform all 
categories of deepfake generation tasks. In this study, we 

conducted a systematic review of various GAN models and 
found that AttGAN and Pix2Pix had the highest degree 
centralities. Based on these findings, we proposed a combination 
model of GANs that can carry out all categories of deepfake 
generation tasks. This study sheds light on GAN model 
development for deepfake generation and emphasizes 
responsible use and regulation of this technology to prevent 
misuse and emphasizes the need for continued research and 
development in this area.  

However, it's worth noting that creating a single "one-size-
fits-all" GAN model that can perform all tasks optimally may 
not be feasible, as different tasks require different features and 
training data. It may be more practical to develop specialized 
models for each task or a framework for integrating multiple 
models as needed.
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