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Abstract—Sparse Deep Neural Networks (SpDNNs) has gained
great popularity and been widely applied in various machine
learning area. Compared to traditional dense DNNs, the unpre-
dictable irregularity and sparsity in the sparse weight matrices
of SpDNNs make them difficult to be efficiently parallelled.
Moreover, most of the recent advanced efforts to optimize
SpDNNs are based on high-end GPUs like NVIDIA V100,
which may not be affordable to individuals and smaller re-
search groups. However, migrating the SpDNNs to those cost-
efficient but resource-constrained GPUs confronts enormous
challenges, including limitations in both memory and computing
resources, as well as the tiresome hyper-parameter tuning in
batch parallelism. In this paper, we accelerate SpDNNs on
GPUs with more restricted resources through exploiting the
memory and computing resources. On one hand, we design the
adaptive memory-aware data partition scheme to reduce memory
consumption automatically. On the other hand, we propose
the Tensor core/CUDA core fusion mechanism to efficiently
utilize the hetergeneous computing resources on modern GPU
architecture. To the best of our knowledge, we are the first to
improve the performance on SpDNNs through adaptive memory
tuning and utilizing hetergeneous computing core concurrency.
We compare our implementation with the state-of-art previous
champions, and the results demonstrate that our work achieves
the highest speedup of 1.35 × and 1.39× compared to 2022
champion S&Z on single and multiple NVIDIA Tesla T4 GPUs,
respectively. What’s more, our work can reach similar or even
better throughput compared to 2020 champion H&P on 6 V100
GPUs with only 4 T4 GPUs.

Index Terms—Sparse Neural Networks, GPU, Performance
Optimization, Resource-Constrained

I. INTRODUCTION

Deep Neural Networks (DNNs) have become the corner-
stone in the field of modern artificial intelligence, providing
pivotal contributions to massive machine learning applications
ranging from image enhancement [1] [2], natural language
processing [3], [4] and autonomous driving [5], [6]. In the
mean time, DNN is rapidly evolving with growing network
size, and the resultant extreme large models like GPT-3
(175B parameters) [7] and BERT (340M parameters) [8] are
consuming overwhelming computation and memory resources
during training and inference. Therefore, recent advanced
researches focus on pruning the large DNNs to reduce the
amount of weight parameters, leading to the prosperity of
Sparse Deep Neural Networks (SpDNNs). However, due to the
unpredictable irregularity within the sparse weight matrices, it

is not trivial to optimize SpDNNs through efficient parallelism
on high-performance architecture.

Aiming to accelerate the inference process of SpDNN,
the 2019 MIT/IEEE/Amazon proposed the SpDNN Challenge
track [9], which harnesses networks generated by Radix-Net
[10]. The datasets provided by SpDNN Challenge consist of
sparse neural network with diverse neuron size ranging from
1024 to 65536, layer number spanning from 120 to 1920, and
sparsity degrees varying from 3% to merely 0.05%. Moreover,
the amount of parameters within the network varies from 4M
to 4B.

The inference procedure of SpDNN mostly depends on an
iterative process involving two fundamental kernels: sparse
matrix-dense matrix multiplication (SpMM) and ReLU acti-
vation. Prior works [11], [12] have demonstrated SpMM has
the highest memory demand and is the most time-consuming
operation in SpDNN, and thus the acceleration of SpMM is
the key to accelerate the inference of SpDNN.

In the past few years, many researchers have been paying
great attention to accelerate the inference of SpDNN, focusing
on the main bottleneck SpMM. The 2020 champion H&P
[12] proposed a novel SpMM algorithm based on the sliced-
ELL format on GPU architecture, which can improve sparse
data reuse. Meanwhile, another 2020 champion SNIG [13]
developed an efficient engine for large sparse DNN inference
using task graph parallelism, in order to effectively avoid
unnecessary computations caused by zero entries during the
inference iterations. In addition, the 2021 champion X&Y
[11] defined SpMM optimization space, and then applied
GPU-friendly space pruning along with designing the cost
model to find the optimal SpMM execution scheme. Moreover,
2022 champion S&Z [14] implemented a similarity-based
matrix transformation scheme to enable block-based SpMM
algorithm on the high-throughput Tensor cores [15] in GPUs.

Nonetheless, most of the recent champions implement their
optimization mechanisms on high-end GPUs like V100 [11],
[14], [16], lacking the support for more resource-constrained
but more cost-efficient GPUs like T4. We present the com-
parison between the features of the representative NVIDIA
Tesla V100 and Turing T4 in Table I, where the prices are
from Amazon. It is obvious that the V100 GPU doubles com-
puting resources (CUDA core and Tensor core) and memory
resources, and its memory bandwidth is 2.78× higher than



that of T4, but T4 GPU is 3.97× cheaper and only needs
28% power, thus it is more afforable for individuals or smaller
research institutions to explore the field of deep learning.

However, the resource limitation poses new challenges
when accelerating SpMM. Specifically, restricted computing
and memory resources hinder the algorithm to catch up its
performance on high-end GPUs. What’s more, most of the
previous efforts to alleviate memory consumption for neu-
ral networks like Zero-offload [17] and Superneurons [18]
address on optimization for dense DNNs, which cannot be
directly applied to SpDNNs because of their sparsity and
irregularity. Besides, the batch parallelism [19], adopted by
previous champions H&P and SNIG, use empirical parameters
that need strenuous expert tuning when transferring to novel
architecture. In terms of computing resources, a majority of
advanced researches only use either the CUDA core [12] or
the Tensor core [14], leaving the other cores idle, which is a
waste of the precious resources.

TABLE I: GPU Feature Comparison

Feature Tesla V100 GPU Turing T4 GPU
Price $4686 $1179

Power 250W 70W

Memory 32GB 16GB

Tensor/CUDA Core Number 640/5120 320/2560

Global Memory Bandwidth 900 GB/s 320 GB/s

In this paper, we improve the performance of SpDNN infer-
ence on cost and energy efficient GPUs with more restricted
memory and computing resources. To alleviate the memory
consumption of SpMM, we design the adaptive memory-aware
data partition scheme that can automatically set the batch size
of input and weight matrices at one time, in order to elim-
inate additional expert hyper-parameter tuning. In addition,
we demonstrate the feasibility of concurrency between the
heterogeneous CUDA core and Tensor core in NVIDIA Turing
architecture, and recapitulate the concurrency pattern. To reach
maximum concurrency, we propose the Tensor core/CUDA
core fusion mechanism that splits the computation task of
SpMM to two kind of cores, according to profiled specified
load ratio [20]. What’s more, we explore the data partition
size in the two dimensions of matrices for tensor core routine
to improve the efficency of data reuse and memory access.
To guarantee the precision of SpMM in Tensor core, we
adopt the lightweight emulation algorithm in S&Z [14]. We
compare our implementation with the state-of-art champions
in T4 GPUs, and the results depict that our work exceeds the
previous champions in terms of throughput, with the highest
acceleration rate at 1.35 × and 1.39× compared to 2022
champion S&Z on single and multiple T4 GPUs, respectively.

In summary, this paper makes the following contributions:
• We design the adaptive memory-aware partition scheme

to automatically determine the batch size and layer trans-
fer number through formulating a memory model, which
can avoid memory overflow on large datasets at resource
restriced GPUs.

• We propose the Tensor core/CUDA core fusion mech-
anism to fully leverage the heterogenous computing re-
sources on GPU architecture following the concurrency
pattern formulated by systematic analysis.

• We conduct comprehensive evaluation for our implemen-
tation with the state-of-art preivous champions on the
representative resource-constrained NVIDIA T4 GPUs on
official datasets. The results prove that our work obtains
the highest throughput compared to previous champions,
and can be executed on every dataset without encoutering
memory overflow issues.

II. BACKGROUND AND MOTIVATION

In this section, we present a refined overview of the Sparse
DNN Challenge and GPU architecture. In addition, we de-
sign an experiment to demonstrate the potential concurrency
between CUDA core and Tensor core to further exploit com-
puting resources. Besides, we summarize the challenges to
optimize SpMM on resource constrained GPUs.

A. Overview of Sparse DNN Challenge

The Sparse DNN Challenge [9] targets at improving the
performance of inference tasks on sparse deep neural networks
generated by RadiX-Net [10], which has drawn great attention
worldwide. The input of the neural network contains 60,000
stacked images interpolated from MNIST dataset [21], where
each row is a linearized resized image. The iterative inference
process at the lth layer of sparse DNN with N neurons can be
formulated as (1), where Yl ∈ RM×N , Wl ∈ RN×N and B ∈
RM×N denotes the input, weight and bias matrix, respectively.
It is noteworthy that every weight matrix Wl is sparse in
the Sparse DNN Challenge. As a consequence, the SpMM
algorithm becomes the hotspot of performance optimization.

Yl+1 = ReLU(Yl ×Wl +B) (1)

B. GPU Architecture

GPU is one of the most widely applied Single Instruc-
tion Multiple Data (SIMD) architecture, well known for its
massive parallelism and high computation throughput. Take
advanced NVIDIA Turing architecture [22] as an instance,
each GPU is consist of multiple Streaming Multiprocessors
(SMs). Within one of the four blocks in one SM, there are 16
INT32 CUDA cores, 16 FP32 CUDA cores, 2 Tensor cores
[23] and a 64KB register file, as illustrated in Fig 1. In a
word, a GPU is equipped with heterogeneous computation
resources, where CUDA cores are typically responsible for
scalar computing, and Tensor Cores support direct matrix
multiplication (D = A×B+C). Among them, Tensor cores
can reach higher computation throughput than CUDA cores
and enable better data reuse in GEMM [14]. Nonetheless, in
Turing and Volta architecture, Tensor cores only support half-
precision in matrices A and B, while CUDA cores support
computation in half-, single- or double-precision.
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Fig. 1: Illustration of a Streaming Multiprocessor block in
NVIDIA Turing architecture.

C. Potential Heterogeneous Core Concurrency Opportunity

To further investigate the feasibility of utilizing Tensor core
and CUDA core concurrently, we construct a sample SpMM
kernel following the reference inference calculation code [9],
where each block contains Tensor core warps and CUDA core
warps. Then we test the execution time under different task
load ratio on a T4 GPU, whose results are shown in Fig 2.
The metric load ratio [20] denotes the ratio of the original
time of Tensor core kernel and CUDA core kernel, which is
proportional to their computation size. We fix the computation
size of tasks at Tensor cores and vary that in CUDA cores,
and we abbreviate the two types of computing resources as
TC and CC respectively in Fig 2. From the results, we can
draw the conclusion that the growth of execution time follows
a two-stage linear model: the co-running stage before the
turning point and the solo-running stage after the turning point.
Thus there exists the opportunity of concurrency between the
heterogeneous cores, which can be utilized to further exploit
the computing resources and accelerate SpMM process.
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Fig. 2: Normalized execution time of the fused kernel under
different load ratios with fixed Tensor Core load, TC and
CC are the abbreviation for Tensor Core and CUDA core
respectively.

D. Challenges on Resource Constrained Devices

The cost and energy efficiency, as well as the aspiration
to bring large model inference to everyone, motivate us to
optimize Sparse DNN on cheaper but resource constrained
devices like T4 GPU. However, it is nontrivial to accelerate

SpMM when resources are limited. There are two main
challenges: GPU memory boundary and computing resource
exploitation.
GPU Memory Boundary: Since cheaper GPUs often contains
more confined global memory as depicted in Tabel I, how to
fit the large input and sparse network under more restricted
GPU memory boundary become one of the main obstacle. We
have tested the open source code of previous 2020 champion
SNIG [13], H&P [12] and 2021 champion X&Y [11] on
a single T4 GPU, and they all fail for memory overflow
at the network size 65536. Though SNIG and H&P does
address the memory limitation through batch parallelism [24],
they empirically assign the batch size, resulting in potential
deficient in adaptability when switching to new architecture.
Efficient Computing Resource Exploitation: Most of ad-
vanced researchs only focus on accelerating the SpMM either
on CUDA core [25] [26] or Tensor core [14] [27], leaving
the other kind of cores idled. However, the validation of
fused Tensor-CUDA core concurrency encourages us to fully
exploit the GPU computing resource to optimize SpMM.
What’s more, although previous research Tacker [20] improve
the performance between different dense routines based on
fused cores on GPU, to the best of our knowledge, how to
optimize sparse matrix multiplication through splitting one
kernel between heterogeneous computing resources on GPUs
is a problem still remain unsolved. Moreover, how to dividing
the kernel properly is also a challenge: in one hand, improper
computation load assignment on CUDA core may cause the
fused core enter into solo-running stage in Fig 2; in the other
hand, improper data granularity on Tensor and CUDA core
can reduce the data reuse, causing performance degradation.

III. OUR APPROACH

In this section, we present the details of our optimization
approaches to accelerate the main hotspot SpMM, including
adaptive memory-aware data partition scheme, heterogenous
core fusion mechanism in GPU architecture, and parallel
granularity tuning. We transform the weight matrices like S&Z
[14], where the sparse parts of weight matrices are stored in
CSR format while the dense parts are in BCSR format.

A. Adaptive Memory-aware Data Partition Scheme

As illustrated in Figure 3, there are two stages in the adap-
tive memory-aware data partition scheme: the initialization
stage and online tuning stage. Before the inference process
begins, the partition scheme automatically initializes the batch
size of the input matrix and the number of layer transferred to
GPU global memory at a time. It generates the batch size by
solving the optimization problem with constrains formulated
in (2). The object of the optimization problem is to maximize
the memory for input, denoted as MB , in order to reduce time-
consuming input transmission between CPU and GPUs. MB

is proportional to batch size of input, thus from which the
input partition length NB can be derived.

Meanwhile, we formulate the constrains according to the
following two criteria:
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Fig. 3: Overview of optimizations on resource-constrained
GPUs.

• The overall memory footprint of SpMM process
should not exceed the GPU global memory capacity
MG. The total memory consumption contains memory
for partitioned input matrix and output matrix (MB),
for batched 2NL weight matrices (ML) and other auxil-
liary arrays (MG). Typically, the auxilliary arrays mainly
include the category array and active [12], which are
responsible for permuting the rows of nonzero input and
intermediate matrices respectively.

• The batched layer transmission time should be over-
lapped with the corresponding computation time. This
criteria is to ensure the overlap between communication
and computation to improve execution efficiency. The
total batched layer transmission time is NLTL with
weight batch size NL. T0 is the computation time at input
batch size N0 with the same neuron, thus T0 ∗ NB

N0
is the

approximation for computation time at batch size NB .
Moreover, we add the constrain that the batch size of weight

matrices needs to be larger than 1 to ensure the results are
nonzero.

maximize MB (2)
subject to 2MB + 2NLML +MO ≤MG, (2a)

NLTL ≤ T0 ∗
NB

N0
, (2b)

NL ≥ 1. (2c)

As shown in (2), the optimization problem is equivalent
to a linear programming problem [28]. The solution of the
problem depends on whether the whole input matrix can
fit into the global memory of GPU. On one hand, if the
whole input can be stored in the global memory, the optimal
value MB equals the original input memory consumption,
and we only need to solve (2b) to derive the optimal value

for weight matrices batch size. We use the largest solution
in (2b) to improve global memory utilization. On the other
hand, when the original input is larger than the GPU global
memory capacity, we set the NL to the minimal value 1 and
then solve (2c) to generate optimal MB . As the automatic
hyper-parameter tuning in the initialization stage is through
solving concise linear programming problem once, it will
not deteriorate the performance, but can help SpMM to fully
leveraging the memory resource. Once the batch size of weight
matrices is decided in initialization stage, the corresponding
memory buffer will be alloced. The batched input is executed
sequentially.

Meanwhile, during the SpDNN iteration, we design the
online memory tuning scheme to adjust the weight batch
size dynamically to maintain the communication-computation
overlap. The tuning scheme is invoked only when the SpMM
execution fetch the last cached layer in one buffer for weight
matrices and it needs update, in order to reduce additional
overhead. If called at the start of layer l, it collects the Tl

and the ratio between nonzero input rows at two iterations,
and then generates the new weight buffer length following the
same approach in (2b) by estimating Tl−1. Since the estimation
process is only through simple equations, the online tuning
will only incur negligible overhead and not cause performance
degradation. Besides, as the rank of result matrices Yl+1

cannot be larger than rank of Yl and W , the batch of input
will not increase, thereby preventing memory overflow during
online tuning stage. Once the batch size of weight matrices is
decided in the online stage, the buffer update process starts and
the corresponding layers will be transferred asynchronously.

B. Tensor Core/CUDA Core Fusion Mechanism

To fully exploit the heterogeneous computing resources in
the GPUs, we implement the Tensor core/CUDA core fusion
mechanism utilizing concurrency profiling results and data
parallelism. As the profiling for hetergeneous core concurrency
can be conducted during the training process, it will not lead
to additional overhead in inference procedure. We mainly
focus on splitting the dense blocks in the transformed weight
matrices, which takes most of the place in weights and will be
originally accelerated on Tensor cores, since on the resource-
constrained GPUs the capability and quantity of Tensor cores
are lower than that of high-end GPUs. Furthermore, the CUDA
cores natively support single precision, while computing data
in single precision on Turing architecutre Tensor cores requires
time-consuming type convertion.

We provide the illustration of the mechanism for one layer
in SpMM in Fig 4. After the profiling process, we obtain
the two-stage concurrency model as shown in Fig 2. In order
to execute the fusion core in concurrent stage, it is of great
importance to ensure the load ratio is below the turning point.
As the load ratio is proportional to the computing task load
ratio on the two types of cores, we record the maximum
computing task load ratio PM at the turning point. PM is
utilized as the guideline for weight matrix partition. Before
the SpMM execution, we split the BCSR blocks in the dense



parts of weight matrices with the maximum split ratio PM .
The BCSR blocks are divided along column dimension to
avoid writing conflict. We implement the Tensor core warps
and CUDA core warps in the same thread block to enable
concurrency, and they share the same input row blocksize for
alignment. To improve parallelism, the input data is divided
in the block size of YTB and YCB for Tensor core warps
and CUDA core warps, while the weight matrices are also
partitioned in the block size of WTB and WCB . What’s more,
to improve data reuse, the input YTB and weight WCB are
cached in shared memory. The number of Tensor core warps
and CUDA core warps inside a thread block is fixed. Each
CUDA core thread is responsible for updating at least one
element in the result matrix to avoid writing conflict. In cases
where the computation load in Tensor core is too small, and the
number of BCSR blocks assigned to CUDA core cannot meet
the requirement, we switch the computing pattern to Tensor
core solo-running to avoid load imbalance.

Input Y

×

Weight W

在此处键入公式。

Tensor core warps CUDA core warps

× ×

𝒀𝒀𝑻𝑻𝑻𝑻 𝑾𝑾𝑻𝑻𝑻𝑻
𝑾𝑾𝑪𝑪𝑻𝑻𝒀𝒀𝑪𝑪𝑻𝑻

threadsize.xt threadsize.xc

blocksize.y

blocksize.y

Fig. 4: Illustration of Tensor core/CUDA core fusion mecha-
nism.

C. Other Optimizations

In addition to the adaptive memory aware data partition
scheme and Tensor core/CUDA core fusion mechanism, we
also implement several relatively general optimization tech-
niques to further improve the performance of SpMM on
resource constrained GPU architecture.

Parallel Granularity Tuning. We tune the data granularity
for both of the input and weight matrices based on two kinds of
memory access patterns: access patterns in NVIDIA WMMA
data loading APIs for Tensor cores, and the global memory
access pattern of GPU threads. In terms of partitioning the
input matrices for fused GPU blocks in size of blocksize.y,
the larger blocksize.y results in larger stride when the WMMA
APIs load input row datum from shared memory, impacting the
efficiency; whereas the smaller blocksize.y reduces data reuse
and causes warp divergence in thread blocks, since the threads
within the same warp may need to fetch inconsistent data of
input stored in column major. Meanwhile, the larger warp size
of Tensor core can cause resource oversubscription, while the
smaller warp size of Tensor core cannot fully leverage the
streaming processors. We make a compromise and empirically

tune the blocksize.y to be 64 and warp size of Tensor core to
be 4.

Hash Table Fusion. After the similarity-based matrix
transformation [14], two transformation hash tables pl and ql
are generated, which indicate the map of rows and columns
between original weight matrices and transformed matrices,
respectively. The matrix transformation equals two elementary
transformations which can be denoted as W ′l = PlWlQl,
where Pl and Ql are the transformation matrices derived
from pl and ql. Therefore, we define a fusion matrix as
Fl = QT

l−1P
T
l and the SpMM iteration is converted to

Y ′l+1 = Y ′l FlPlWlQl = Yl+1Ql, which only has column
permutation and will not affect final accuracy. The fusion
matrices are generated during training process and it can
reduce memory consumption efficiently.

IV. EVALUATION

A. Experimental Setup

We evaluate the performance of our implementation on
all datasets officially provided by SpDNN Challenge track.
The experiment platform is a server with four 20-core 2.4
GHz Intel Xeon Gold 6148 CPUs, four NVIDIA Turing T4
GPUs and 256 GB host memory. Each T4 GPU has 16 GB
global memory, 320 Tensor Cores and 2560 CUDA Cores. The
host compiler for the SpDNN programs is GNU GCC-8.1.0,
the device compiler is CUDA NVCC-11.6, and the device
driver version is 530.30.02. We compare our approach with
previous champions, including 2022 champion S&Z [14], 2021
champion X&Y [11], 2020 champions H&P [12] and SNIG
[13] according to throughput and execution time. Since 2022
champion S&Z is not open-sourced, we discreetly implement
the source code following the instruction in [14]. Moreover,
another 2022 champion X&W [16] is not included, as S&Z
has better average performance reported in their paper. The
throughput is calculated through dividing input edges by
inference time. If the comparison libraries confront memory
overflow and failed at a certain dataset, the corresponding
results are dentoed as ’-’.

B. Performance Comparison

1) Single GPU: From Table II, we can conclude that our
implementation obtain the best performance among all official
datasets. We select the 2022 champion S&Z as the baseline.
The highest acceleration rate is 1.35× at the dataset with
neuron size 1024 and layer length 480, while the average
acceleration rate is 1.26×. What’s more, our implementation
on a single T4 GPU can closely match the performance of
one of the cutting-edge champion H&P on a single V100
GPU according to their results reported in [12]. There are
two reasons for performance improvement: on one hand, we
leverage the concurrency between Tensor core and CUDA core
through hetergeneous core fusion; on the other hand, we tune
the data block size within the Tensor core warps to balance
between different memory access pattern. Meanwhile, our
implementation is the only one that can be directly executed on
every dataset without manual tuning, while the others confront



TABLE II: Throughput (TeraEdges/Second) and Speedup Comparison on A Single T4 GPU

Our Work S&Z [14] X&Y [11] H&P [12] SNIG [13]
Neurons Layers Throughput Time Throughput Speedup Throughput Speedup Throughput Speedup Throughput Speedup

1024
120 9.85 0.02s 7.62 1.29× 4.377 2.25× 2.27 4.33× 0.33 30.17×
480 17.34 0.05s 12.82 1.35× 5.78 3.0× 3.33 5.2× 0.41 42.02×

1920 17.59 0.20s 16.67 1.06× 7.04 2.5× 4.74 3.72× 0.41 42.87×

4096
120 9.81 0.10s 7.35 1.33× 7.35 1.33× 2.71 3.61× 0.43 22.96×
480 21.0 0.18s 16.65 1.26× 11.28 1.86× 3.61 5.82× 0.5 41.93×

1920 26.59 0.56s 19.74 1.34× 13.12 2.03× 4.02 6.62× 0.51 51.99×

16384
120 10.76 0.35s 9.88 1.09× 6.64 1.62× 1.65 6.52× 0.54 19.88×
480 18.12 0.83s 15.24 1.19× 10.18 1.78× 2.03 8.91× 0.62 29.31×

1920 21.33 2.83s 17.47 1.22× 11.81 1.81× 2.12 10.04× 0.64 33.38×

65536
120 9.07 1.66s - - - - - - - -
480 18.38 3.29s - - - - - - - -

1920 23.42 10.31s - - - - - - - -

TABLE III: Scalability and Speedup Comparison on Multiple T4 GPUs in Throughput (TeraEdges/Second)

Our Work S&Z [14] X&Y [11] H&P [12]
Neurons Layers 1 2 4 GPUs Throughput Speedup GPUs Throughput Speedup GPUs Throughput Speedup

1024
120 9.85 15.76 19.7 4 15.76 1.25× 4 6.39 3.08× 4 5.252 3.75×
480 17.3 19.92 26.75 4 20.81 1.28× 4 7.87 3.4× 4 6.41 4.17×
1920 17.59 24.95 28.84 4 23.93 1.20× 4 7.68 3.75× 4 7.31 3.94×

4096
120 9.81 20.92 30.37 4 18.82 1.39× 4 10.12 3.0× 4 4.53 6.71×
480 21.0 32.31 42.0 4 31.5 1.33× 4 14.0 3.0× 4 6.86 6.12×
1920 26.59 45.36 68.04 4 54.23 1.25× 4 18.46 3.69× 4 7.22 9.42×

16384
120 10.76 17.9 32.01 4 24.85 1.29× 4 13.59 2.36× 4 5.46 5.86×
480 18.12 27.24 48.69 4 42.28 1.15× 4 19.06 2.55× 4 6.4 7.61×
1920 21.33 32.24 59.15 4 53.21 1.11× 4 19.31 3.06× 4 6.69 8.84×

65536
120 9.07 16.19 31.97 4 30.36 1.05× 4 17.3 1.85× 4 4.06 7.88×
480 18.38 24.52 49.74 4 43.85 1.13× 4 16.89 2.94× 4 4.6 10.81×
1920 23.42 28.53 53.69 4 50.33 1.07× 4 - - 4 - -

memory overflow at weight size 65536. Our implementation
automatically avoid global memory oversubscription through
adopting adaptive data partitioning scheme, which can decide
the batch size of both input and weight matrices based on
architecture feature.

2) Multiple GPUs: The results of scalability and perfor-
mance comparison between our implementation and previous
champions on multiple GPUs are depicted in Table III. We
still select the S&Z as the baseline. It is obvious that our im-
plementation has the best performance compared to previous
champions at 4 T4 GPUs, with the highest speedup of 1.39×
and average acceleration rate of 1.20×. Besides, our work can
reach the similar or even better throughput with H&P on up to
6 V100 GPUs (compared to the throughput reported in their
paper [12]). Moreover, the throughput of our implementation
grows as the number of GPU increases from 1 GPU, 2GPUs
to 4 GPUs, which demonstrates its scalability. Furthermore,
only our implementation and S&Z can be executed on all
datasets with 4 GPUs, while X&Y and H&P still fail for
memory overflow with the largest dataset, which proves the
effectiveness of the memory aware data partition scheme.

V. CONCLUSION

In this paper, we exploit the memory and computing re-
sources to accelerate the SpDNNs on cost efficient but resource

constrained low-end GPUs. We develop the adaptive memory
aware data partition scheme to automatically tune the batch
size for both input and weight matrices, by solving concise
linear programming problem, which can fully utilize the global
memory and avoid memory overflow. Moreover, we adopt
the Tensor core/CUDA core fusion mechanism leaveraging
the concurrency between heterogeneous computing resources
on GPUs. We compare our implementation with the state-
of-art previous Graph Challenge champions on single and
multiple Tesla T4 GPUs, and the results demonstrate that our
implementation achieves the best performance with the highest
acceleration rate at 1.35 × and 1.39× compared to 2022
champion S&Z on single and multiple GPUs respectively, and
it can catch up the performance of H&P at up to 6 V100
GPUs with only 4 T4 GPUs, which enhances the availability
and efficiency of large-scale SpDNN to individuals and small
research groups.
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